Road Impact on Deforestation and Jaguar Habitat Loss in The

Total Page:16

File Type:pdf, Size:1020Kb

Road Impact on Deforestation and Jaguar Habitat Loss in The ROAD IMPACT ON DEFORESTATION AND JAGUAR HABITAT LOSS IN THE MAYAN FOREST by Dalia Amor Conde Ovando University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Norman L. Christensen, Supervisor ___________________________ Alexander Pfaff ___________________________ Dean L. Urban ___________________________ Randall A. Kramer Dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2008 ABSTRACT ROAD IMPACT ON DEFORESTATION AND JAGUAR HABITAT LOSS IN THE MAYAN FOREST by Dalia Amor Conde Ovando University Program in Ecology Duke University Date:_______________________ Approved: ___________________________ Norman L. Christensen, Supervisor ___________________________ Alexander Pfaff ___________________________ Dean L. Urban ___________________________ Randall A. Kramer An abstract of a dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the University Program in Ecology in the Graduate School of Duke University 2008 Copyright by Dalia Amor Conde Ovando 2008 Abstract The construction of roads, either as an economic tool or as necessity for the implementation of other infrastructure projects is increasing in the tropical forest worldwide. However, roads are one of the main deforestation drivers in the tropics. In this study we analyzed the impact of road investments on both deforestation and jaguar habitat loss, in the Mayan Forest. As well we used these results to forecast the impact of two road investments planned in the region. Our results show that roads are the single deforestation driver in low developed areas, whether many other drivers play and important role in high developed areas. In the short term, the impact of a road in a low developed area is lower than in a road in a high developed area, which could be the result of the lag effect between road construction and forest colonization. This is consistent since roads resulted to be a significant deforestation driver for at least two decades. Roads significantly affect jaguar’s habitat selection; however males showed a higher tolerance than females. From 1980 to 2000 female jaguars lost 36% of their habitat wile males lost 22%. Our forecasting of the impact of the proposed road, shows that it will promote the deforestation of approximately 16,851 has, and the jaguar habitat loss of 146,929, during the first decade; meanwhile the alternative route will have and impact of 2519 hectares and the habitat loss of 899 hectares. iv Contents Abstract .........................................................................................................................................iv List of Tables............................................................................................................................... vii List of Figures ............................................................................................................................ viii Acknowledgments.......................................................................................................................ix 1. Introduction...........................................................................................................................1 2. Road investments and deforestation of the Mayan forest ..................................................9 Introduction.............................................................................................................................9 Methods .................................................................................................................................13 Study Area and Data Processing......................................................................................13 Model of Deforestation and Road Investments .............................................................19 Results and Discussion ........................................................................................................25 Short and medium term effects of road investments on deforestation. .....................25 Differences of road impacts given the landscape context. ...........................................31 Differences of deforestation drivers impacts, other than roads given the landscape context..................................................................................................................................34 The role of country/state on deforestation......................................................................35 What are the implications of these results for decision makers?.................................40 3. Using a jaguar habitat model to understand the early history of road impact on the Mayan forest degradation..........................................................................................................42 Introduction...........................................................................................................................42 Methods .................................................................................................................................44 iv Species..................................................................................................................................44 Study area............................................................................................................................48 Data collection.....................................................................................................................49 Jaguar data ......................................................................................................................49 Landscape Data..............................................................................................................52 Jaguar Habitat Model.........................................................................................................53 Mapping the early history of jaguar habitat..................................................................57 Results....................................................................................................................................58 Descriptive Statistics ..........................................................................................................58 Jaguar’s habitat model and road impact.........................................................................59 Roads impact on the Mayan Forest from 1980 to 2000: a jaguar’s perspective. ........62 Discussion..............................................................................................................................67 4. Impact of a road investment in the Mayan Forest: forecasting and policy alternatives70 Introduction...........................................................................................................................70 Methods .................................................................................................................................73 Deforestation model...........................................................................................................73 Forecasting the probability of deforestation...................................................................75 Estimating deforestation ...................................................................................................77 Forecast the habitat loss for female and male jaguar’s in the Mayan Forest from the alternative road investments ............................................................................................78 Results....................................................................................................................................78 Deforestation model...........................................................................................................78 v Forecasting the probability of deforestation...................................................................81 Estimating deforestation ...................................................................................................83 Estimating jaguar habitat loss...........................................................................................85 Discussion..............................................................................................................................86 5. General Conclusion.................................................................................................................92 References ....................................................................................................................................96 Biography...................................................................................................................................104 vi List of Tables Table 1. Path and row of satellite images used to estimate deforestation. .........................14 Table 2. Summary Statistics.......................................................................................................18 Table 3. Log-regression coefficients of deforestation covariates resulted from the per road type, per period models....................................................................................................27 Table 4. Results from the logit-models of 80-90 deforestation in high and low developed.....................................................................................................................................32
Recommended publications
  • Rural Highways
    Rural Highways Updated July 5, 2018 Congressional Research Service https://crsreports.congress.gov R45250 Rural Highways Summary Of the nation’s 4.1 million miles of public access roads, 2.9 million, or 71%, are in rural areas. Rural roads account for about 30% of national vehicle miles traveled. However, with many rural areas experiencing population decline, states increasingly are struggling to maintain roads with diminishing traffic while at the same time meeting the needs of growing rural and metropolitan areas. Federal highway programs do not generally specify how much federal funding is used on roads in rural areas. This is determined by the states. Most federal highway money, however, may be used only for a designated network of highways. While Interstate Highways and other high-volume roads in rural areas are eligible for these funds, most smaller rural roads are not. It is these roads, often under the control of county or township governments, that are most likely to have poor pavement and deficient bridges. Rural roads received about 37% of federal highway funds during FY2009-FY2015, although they accounted for about 30% of annual vehicle miles traveled. As a result, federal-aid-eligible rural roads are in comparatively good condition: 49% of rural roads were determined to offer good ride quality in 2016, compared with 27% of urban roads. Although 1 in 10 rural bridges is structurally deficient, the number of deficient rural bridges has declined by 41% since 2000. When it comes to safety, on the other hand, rural roads lag; the fatal accident rate on rural roads is over twice the rate on urban roads.
    [Show full text]
  • Impacts of Roads and Hunting on Central African Rainforest Mammals
    Impacts of Roads and Hunting on Central African Rainforest Mammals WILLIAM F. LAURANCE,∗ BARBARA M. CROES,† LANDRY TCHIGNOUMBA,† SALLY A. LAHM,†‡ ALFONSO ALONSO,† MICHELLE E. LEE,† PATRICK CAMPBELL,† AND CLAUDE ONDZEANO† ∗Smithsonian Tropical Research Institute, Apartado 2072, Balboa, Republic of Panam´a, email [email protected] †Monitoring and Assessment of Biodiversity Program, National Zoological Park, Smithsonian Institution, P.O. Box 37012, Washington, D.C. 20560–0705, U.S.A. ‡Institut de Recherche en Ecologie Tropicale, B.P. 180, Makokou, Gabon Abstract: Road expansion and associated increases in hunting pressure are a rapidly growing threat to African tropical wildlife. In the rainforests of southern Gabon, we compared abundances of larger (>1kg) mammal species at varying distances from forest roads and between hunted and unhunted treatments (com- paring a 130-km2 oil concession that was almost entirely protected from hunting with nearby areas outside the concession that had moderate hunting pressure). At each of 12 study sites that were evenly divided between hunted and unhunted areas, we established standardized 1-km transects at five distances (50, 300, 600, 900, and 1200 m) from an unpaved road, and then repeatedly surveyed mammals during the 2004 dry and wet seasons. Hunting had the greatest impact on duikers (Cephalophus spp.), forest buffalo (Syncerus caffer nanus), and red river hogs (Potamochoerus porcus), which declined in abundance outside the oil concession, and lesser effects on lowland gorillas (Gorilla gorilla gorilla) and carnivores. Roads depressed abundances of duikers, si- tatungas (Tragelaphus spekei gratus), and forest elephants (Loxondonta africana cyclotis), with avoidance of roads being stronger outside than inside the concession.
    [Show full text]
  • Desertification and Deforestation in Africa - R
    LAND USE, LAND COVER AND SOIL SCIENCES – Vol. V – Desertification and Deforestation in Africa - R. Penny DESERTIFICATION AND DEFORESTATION IN AFRICA R. Penny Environmental and Developmental Consultant/Practitioner, Cape Town, South Africa Keywords: arid, semi-arid, dry sub-humid, drought, drylands, land degradation, land tenure, sustainability Contents 1. Introduction 2. Global Context 3. Land Degradation in Africa Today 3.1. Geographical Regions 3.2. Socio-Economic Aspects 4. Causes and Consequences 4.1. Drought and Other Disasters 4.2. Water Quality and Availability 4.3. Loss of Vegetative Cover 4.4. Loss of Soil Fertility 4.5. Poverty and Population 4.6. Effect of Land Tenure 4.7. Health 5. Combating Desertification 5.1. Past Trends 5.2. Current Attempts to Combat Desertification 5.3. Synergy of the Three Sustainable Development Conventions 5.4. The Role of Science and Technology in Combating Desertification 5.5. Synergy in Environmental Policy Development 6. Future Perspectives: The Way Forward 7. Conclusions Glossary Bibliography Biographical Sketch Summary UNESCO – EOLSS Africa is particularly vulnerable to desertification. Two thirds of the continent consists of desert or drylands.SAMPLE The obvious causes of desertificatiCHAPTERSon and deforestation consist of major ecosystem changes, such as land conversion for various purposes, over- dependence on natural resources and several forms of unsustainable land use. However, the issue of desertification is inseparable from social problems such as poverty and land tenure issues. Politics, war and national disasters affect the movements of people and thus impact on the land. International trade policies as well play a part in land management and/or exploitation.
    [Show full text]
  • Impact of Highway Capacity and Induced Travel on Passenger Vehicle Use and Greenhouse Gas Emissions
    Impact of Highway Capacity and Induced Travel on Passenger Vehicle Use and Greenhouse Gas Emissions Policy Brief Susan Handy, University of California, Davis Marlon G. Boarnet, University of Southern California September 30, 2014 Policy Brief: http://www.arb.ca.gov/cc/sb375/policies/hwycapacity/highway_capacity_brief.pdf Technical Background Document: http://www.arb.ca.gov/cc/sb375/policies/hwycapacity/highway_capacity_bkgd.pdf 9/30/2014 Policy Brief on the Impact of Highway Capacity and Induced Travel on Passenger Vehicle Use and Greenhouse Gas Emissions Susan Handy, University of California, Davis Marlon G. Boarnet, University of Southern California Policy Description Because stop-and-go traffic reduces fuel efficiency and increases greenhouse gas (GHG) emissions, strategies to reduce traffic congestion are sometimes proposed as effective ways to also reduce GHG emissions. Although transportation system management (TSM) strategies are one approach to alleviating traffic congestion,1 traffic congestion has traditionally been addressed through the expansion of roadway vehicle capacity, defined as the maximum possible number of vehicles passing a point on the roadway per hour. Capacity expansion can take the form of the construction of entirely new roadways, the addition of lanes to existing roadways, or the upgrade of existing highways to controlled-access freeways. One concern with this strategy is that the additional capacity may lead to additional vehicle travel. The basic economic principles of supply and demand explain this phenomenon: adding capacity decreases travel time, in effect lowering the “price” of driving; when prices go down, the quantity of driving goes up (Noland and Lem, 2002). An increase in vehicle miles traveled (VMT) attributable to increases in capacity is called “induced travel.” Any induced travel that occurs reduces the effectiveness of capacity expansion as a strategy for alleviating traffic congestion and offsets any reductions in GHG emissions that would result from reduced congestion.
    [Show full text]
  • Hidden Deforestation in the Brazil - China Beef and Leather Trade 1
    Hidden deforestation in the Brazil - China beef and leather trade 1 Hidden deforestation in the Brazil - China beef and leather trade Christina MacFarquhar, Alex Morrice, Andre Vasconcelos August 2019 Key points: China is Brazil’s biggest export market for cattle products, • Cattle ranching is the leading direct driver of deforestation which are a major driver of deforestation and other native and other native vegetation clearance in Brazil, and some vegetation loss in Brazil. This brief identifies 43 companies international beef and leather supply chains are linked to worldwide that are highly exposed to deforestation risk through these impacts. the Brazil-China beef and leather trade, and which have significant potential to help reduce this risk. The brief shows • China (including Hong Kong) is Brazil’s biggest importer of which of these companies have published policies to address beef and leather, and many companies linked to this trade are deforestation risk related to these commodities. It also reveals exposed to deforestation risk. the supplier-buyer relationships between these companies, • We identify 43 companies globally that are particularly exposed and how their connections may mean even those buyers with to the deforestation risk associated with the Brazil-China beef commitments to reduce or end deforestation may not be able to and leather trade and have the potential to reduce these risks. meet them. It then makes recommendations for the next steps companies can take to address deforestation risk. • Most of these companies have not yet published sustainable sourcing policies to address this risk. The companies include cattle processors operating in Brazil, processors and manufacturers operating in China, and • Most appear unable to guarantee that their supply chains are manufacturers and retailers headquartered in Europe and the deforestation-free, because they, or a supplier, lack a strong United States of America (US).
    [Show full text]
  • Reducing Carbon Emissions from Transport Projects
    Evaluation Study Reference Number: EKB: REG 2010-16 Evaluation Knowledge Brief July 2010 Reducing Carbon Emissions from Transport Projects Independent Evaluation Department ABBREVIATIONS ADB – Asian Development Bank APTA – American Public Transportation Association ASIF – activity–structure–intensity–fuel BMRC – Bangalore Metro Rail Corporation BRT – bus rapid transit CO2 – carbon dioxide COPERT – Computer Programme to Calculate Emissions from Road Transport DIESEL – Developing Integrated Emissions Strategies for Existing Land Transport DMC – developing member country EIRR – economic internal rate of return EKB – evaluation knowledge brief g – grams GEF – Global Environment Facility GHG – greenhouse gas HCV – heavy commercial vehicle IEA – International Energy Agency IED – Independent Evaluation Department IPCC – Intergovernmental Panel on Climate Change kg/l – kilogram per liter km – kilometer kph – kilometer per hour LCV – light commercial vehicle LRT – light rail transit m – meter MJ – megajoule MMUTIS – Metro Manila Urban Transportation Integration Study MRT – metro rail transit NAMA – nationally appropriate mitigation actions NH – national highway NHDP – National Highway Development Project NMT – nonmotorized transport NOx – nitrogen oxide NPV – net present value PCR – project completion report PCU – passenger car unit PRC – People’s Republic of China SES – special evaluation study TA – technical assistance TEEMP – transport emissions evaluation model for projects UNFCCC – United Nations Framework Convention on Climate Change USA – United States of America V–C – volume to capacity VKT – vehicle kilometer of travel VOC – vehicle operating cost NOTE In this report, “$” refers to US dollars. Key Words adb, asian development bank, greenhouse gas, carbon emissions, transport, emission saving, carbon footprint, adb transport sector operation, induced traffic, carbon dioxide emissions, vehicles, roads, mrt, metro transport Director General H.
    [Show full text]
  • Desertification and Agriculture
    BRIEFING Desertification and agriculture SUMMARY Desertification is a land degradation process that occurs in drylands. It affects the land's capacity to supply ecosystem services, such as producing food or hosting biodiversity, to mention the most well-known ones. Its drivers are related to both human activity and the climate, and depend on the specific context. More than 1 billion people in some 100 countries face some level of risk related to the effects of desertification. Climate change can further increase the risk of desertification for those regions of the world that may change into drylands for climatic reasons. Desertification is reversible, but that requires proper indicators to send out alerts about the potential risk of desertification while there is still time and scope for remedial action. However, issues related to the availability and comparability of data across various regions of the world pose big challenges when it comes to measuring and monitoring desertification processes. The United Nations Convention to Combat Desertification and the UN sustainable development goals provide a global framework for assessing desertification. The 2018 World Atlas of Desertification introduced the concept of 'convergence of evidence' to identify areas where multiple pressures cause land change processes relevant to land degradation, of which desertification is a striking example. Desertification involves many environmental and socio-economic aspects. It has many causes and triggers many consequences. A major cause is unsustainable agriculture, a major consequence is the threat to food production. To fully comprehend this two-way relationship requires to understand how agriculture affects land quality, what risks land degradation poses for agricultural production and to what extent a change in agricultural practices can reverse the trend.
    [Show full text]
  • Road Sector Development and Economic Growth in Ethiopia1
    ROAD SECTOR DEVELOPMENT AND ECONOMIC GROWTH IN ETHIOPIA1 Ibrahim Worku2 Abstract The study attempts to see the trends, stock of achievements, and impact of road network on economic growth in Ethiopia. To do so, descriptive and econometric analyses are utilized. From the descriptive analysis, the findings indicate that the stock of road network is by now growing at an encouraging pace. The government’s spending has reached tenfold relative to what it was a decade ago. It also reveals that donors are not following the footsteps of the government in financing road projects. The issue of rural accessibility still remains far from the desired target level that the country needs to have. Regarding community roads, both the management and accountancy is weak, even to analyze its impact. Thus, the country needs to do a lot to graduate to middle income country status in terms of road network expansion, community road management and administration, and improved accessibility. The econometric analysis is based on time series data extending from 1971‐2009. Augmented Cobb‐Douglas production function is used to investigate the impact of roads on economic growth. The model is estimated using a two‐step efficient GMM estimator. The findings reveal that the total road network has significant growth‐spurring impact. When the network is disaggregated, asphalt road also has a positive sectoral impact, but gravel roads fail to significantly affect both overall and sectoral GDP growth, including agricultural GDP. By way of recommendation, donors need to strengthen their support on road financing, the government needs to expand the road network with the aim of increasing the current rural accessibility, and more attention has to be given for community road management and accountancy.
    [Show full text]
  • Human Population Growth and Its Implications on the Use and Trends of Land Resources in Migori County, Kenya
    HUMAN POPULATION GROWTH AND ITS IMPLICATIONS ON THE USE AND TRENDS OF LAND RESOURCES IN MIGORI COUNTY, KENYA PAULINE TOLO OGOLA A Thesis Submitted in Partial Fulfilment of the Requirements for the Award of the Degree of Master of Environmental Studies (Agroforestry and Rural Development) in the School of Environmental Studies of Kenyatta University NOVEMBR, 2018 1 DEDICATION To my loving parents, Mr. and Mrs. Ogola, With long life He will satisfy you i ACKNOWLEDGEMENT First of all, I am grateful to the Man above who gave me strength and health throughout this study. For sure, His goodness and Mercies are new every day. Secondly, I am greatly indebted to my supervisors Dr. Letema and Dr. Obade for their wise counsel and patience. Thirdly, I would like to convey my utmost gratitude to my parents and siblings for their moral support and prayers. Special thanks to my brother Stephen Ogeda for supporting me financially. Finally, I wish to express many thanks to my colleagues at the Regional Centre for Mapping of Resources for Development and friends who have offered their support in kind and deed. ii TABLE OF CONTENTS DECLARATION………………………………………………………………………… Error! Bookmark not defined. DEDICATION…………………………………………………………………………...i ACKNOWLEDGEMENT……………………………………………………………...ii LIST OF TABLES……………………………………………………………………...vi LIST OF FIGURES……………………………………………………………………vii ABBREVIATIONS AND ACRONYMS……………………………………………….viii ABSTRACT………………………………………………………………………………i x CHAPTER ONE: INTRODUCTION…………………………………………………..1 1.1 Background to the Problem .........................................................................................
    [Show full text]
  • What Are the Major Causes of Desertification?
    What Are the Major Causesof Desertification? ‘Climatic variations’ and ‘Human activities’ can be regarded as relationship with development pressure on land by human the two main causes of desertification. activities which are one of the principal causes of Climatic variations: Climate change, drought, moisture loss on a desertification. The table below shows the population in global level drylands by each continent and as a percentage of the global Human activities: These include overgrazing, deforestation and population of the continent. It reveals a high ratio especially in removal of the natural vegetation cover(by taking too much fuel Africa and Asia. wood), agricultural activities in the vulnerable ecosystems of There is a vicious circle by which when many people live in arid and semi-arid areas, which are thus strained beyond their the dryland areas, they put pressure on vulnerable land by their capacity. These activities are triggered by population growth, the agricultural practices and through their daily activities, and as a impact of the market economy, and poverty. result, they cause further land degradation. Population levels of the vulnerable drylands have a close 2 ▼ Main Causes of Soil Degradation by Region in Susceptible Drylands and Other Areas Degraded Land Area in the Dryland: 1,035.2 million ha 0.9% 0.3% 18.4% 41.5% 7.7 % Europe 11.4% 34.8% North 99.4 America million ha 32.1% 79.5 million ha 39.1% Asia 52.1% 5.4 26.1% 370.3 % million ha 11.5% 33.1% 30.1% South 16.9% 14.7% America 79.1 million ha 4.8% 5.5 40.7% Africa
    [Show full text]
  • The Road to Clean Transportation
    The Road to Clean Transportation A Bold, Broad Strategy to Cut Pollution and Reduce Carbon Emissions in the Midwest The Road to Clean Transportation A Bold, Broad Strategy to Cut Pollution and Reduce Carbon Emissions in the Midwest Alana Miller and Tony Dutzik, Frontier Group Ashwat Narayanan, 1000 Friends of Wisconsin Peter Skopec, WISPIRG Foundation August 2018 Acknowledgments The authors wish to thank Kevin Brubaker, Deputy Director, Environmental Law & Policy Center; Gail Francis, Strategic Director, RE-AMP Network; Sean Hammond, Deputy Policy Director, Michigan Environmental Council; Karen Kendrick-Hands, Co-founder, Transportation Riders United and Member of Citizens’ Climate Lobby; Brian Lutenegger, Program Associate, Smart Growth America; and Chris McCahill, Deputy Director, and Eric Sundquist, Director, State Smart Transportation Initiative for their review of drafts of this document, as well as their insights and suggestions. Thanks also to Gideon Weissman of Frontier Group for editorial support, and to Huda Alkaff of Wisconsin Green Muslims; Bill Davis and Cassie Steiner of Sierra Club – John Muir Chapter; Megan Owens of Transportation Riders United; and Abe Scarr of Illinois PIRG for their expertise throughout the project. The authors thank the RE-AMP Network for making this report possible. The authors also thank the RE-AMP Network for its work to articulate a decarbonization strategy that “includes everyone, electrifies everything and decarbonizes electricity,” concepts we drew upon for this report. The WISPIRG Foundation and 1000 Friends of Wisconsin thank the Sally Mead Hands Foundation for generously supporting their work for a 21st century transportation system in Wisconsin. The WISPIRG Foundation thanks the Brico Fund for generously supporting its work to transform transportation in Wisconsin.
    [Show full text]
  • Natural Capital & Roads: Managing
    Natural Capital & Roads Managing dependencies and impacts on ecosystem services for sustainable road investments Natural Capital & Roads | 1 Natural Capital & Roads: Managing dependencies and impacts on ecosystem services for sustainable road investments provides an introduction to incorporating ecosystem services into road design and development. It is intended to help transportation specialists and road engineers at the Inter-American Development Bank as well as others planning and building roads to identify, prioritize, and proactively manage the impacts the environment has on roads and the impacts roads have on the environment. This document provides practical examples of how natural capital thinking has been useful to road development in the past, and how ecosystem services can be incorporated into future road projects. Natural Capital & Roads was written by Lisa Mandle and Rob Griffin of the Natural Capital Project and Josh Goldstein of The Nature Conservancy for the Inter-American Development Bank. The document was designed and edited by Elizabeth Rauer and Victoria Peterson of the Natural Capital Project. Its production was supervised by Rafael Acevedo-Daunas, Ashley Camhi, and Michele Lemay at the Inter-American Development Bank. The Natural Capital Project is an innovative partnership with the Stanford Woods Institute for the Environment, the University of Minnesota’s Institute on the Environment, The Nature Conservancy, and the World Wildlife Fund, aimed at aligning economic forces with conservation. The Nature Conservancy is the leading conservation organization working around the world to protect ecologically important lands and waters for nature and people. The Inter-American Development Bank (IDB) is the main source of multilateral financing in Latin America.
    [Show full text]