Functional Selectivity at the Cannabinoid Receptor Both Endogenously and Exogenously Expressed in a Variety of Cell Lines and Tissues

Total Page:16

File Type:pdf, Size:1020Kb

Functional Selectivity at the Cannabinoid Receptor Both Endogenously and Exogenously Expressed in a Variety of Cell Lines and Tissues A Study of Functional Selectivity at the Cannabinoid Type 1 Receptor Richard Priestley, BSc (Hons) Thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy July 2015 1 Abstract The cannabinoid CB1 receptor is a G protein-coupled receptor (GPCR) which is important in the regulation of neuronal function, predominately via coupling to heterotrimeric Gi/o proteins. The receptor has also been shown to interact with a variety of other intracellular signalling mediators, including other G proteins, several members of the mitogen activated kinase (MAP) superfamily and β- arrestins. The CB1 receptor is recognised by an array of structurally distinct endogenous and exogenous ligands and a growing body of evidence indicates that ligands acting at GPCRs are able to differently activate specific signalling pathways, a phenomenon known as functional selectivity or biased agonism. This is important in future drug development as it may be possible to produce drugs which selectively activate signalling pathways linked to therapeutic benefits, while minimising activation of those associated with unwanted side effects. The main aim of this thesis, therefore, was to investigate ligand-selective functional selectivity at the cannabinoid CB1 receptor both endogenously and exogenously expressed in a variety of cell lines. Chinese hamster ovary (CHO) and human embryonic kidney (HEK 293) cells stably transfected with the human recombinant CB1 receptor and untransfected murine Neuro 2a (N2a) cells, were exposed to a number of cannabinoid receptor agonists, including the endogenous agonist anandamide, the phytocannabinoid Δ9- THC, and several synthetic ligands. Ligand affinity was determined using competition radioligand binding assays. Regulation of several CB1 receptor- coupled intracellular signalling mediators was investigated; G protein activation was measured using the [35S]-GTPγS binding assay; phosphorylation of extracellular signal-regulated kinases (ERK), c-Jun N-terminal kinases (JNK) and p38 MAP kinases was measured using the immunocytochemical In-cell Western technique. Modulation of cAMP accumulation and β-arrestin recruitment were measured using DiscoveRx detection assay kits. Using concentration-response data, agonist bias was analysed using equimolar comparison plots, and by comparison of intrinsic relative activities for all agonists, calculated relative to the high potency cannabinoid receptor agonist HU-210 for the transfected cells or WIN 55,212-2 for the Neuro 2a cells. 2 The PPARα agonist fenofibrate was identified as a previously unrecognized cannabinoid receptor agonist, exhibiting modest selectivity for the CB2 receptor subtype (~25-fold). In addition to its functioning as an orthosteric agonist, fenofibrate, at high concentrations, appeared to act as a negative allosteric modulator at the CB1 receptor expressed in CHO cells, identified by radioligand binding assays, and non-competitive inhibition of the orthosteric agonist CP 55,940 in the [35S]-GTPγS binding assay. All three cell lines showed CB1- and Gi/o protein-dependent activation of ERK and inhibition of forskolin-stimulated cAMP accumulation: however, the magnitude of these responses differed between the three cell lines, with the responses in the Neuro 2a cells being markedly smaller than in the recombinant cell lines. The synthetic agonists WIN 55,212-2 and ACEA both exhibited bias towards ERK activation, in comparison to inhibition of cAMP accumulation, in both the CHO and HEK cell lines. HU-210, Δ9-THC, methanandamide and fenofibrate all exhibited bias towards ERK activation in the Neuro 2a cells, but only the HU-210 bias was quantified, as the other three agonists did not couple to cAMP formation or inhibition in this cell line. In addition, time-course experiments revealed further novel patterns of agonist bias in ERK signalling, with CP 55,940 alone producing a second phase sustained ERK response in CHO cells, while higher concentrations of WIN 55-212-2 produced a CB1-receptor-dependent reversal of ERK phosphorylation in HEK cells at 20 min, but not 5 min, agonist stimulation. Additional cell-dependent responses were observed with HEK cells alone, exhibiting Gi/o protein-independent ERK activation and increase in cAMP levels. Despite reports in the literature to the contrary, none of the cell lines tested showed receptor-mediated activation of JNK or p38 MAP kinase. In conclusion, this thesis has demonstrated functional selectivity at the cannabinoid type 1 receptor in a number of cell lines, expressing both native and transfected recombinant receptors. These findings contribute to our increasing understand of the complexity of GPCR signalling, and potentially allow for the development of more targeted drugs able to selectively engage with beneficial signal transduction pathways. 3 Acknowledgements I would like to express my deep thanks to my supervisors Professor Dave Kendall and Dr Steve Alexander. You have given me the opportunity to pursue my ambitions, and helped me with much needed advice and direction. I am undoubtedly a better person for having known you, and I count you both as dear friends. Thanks as well to the other staff and students at the University of Nottingham, without whom, this thesis would not have been possible. I am sincerely grateful to Dr Sarah Nickolls who has given me great support from both near and afar. Your input and friendship has been vital to my success and I am happy to have worked with you, especially through my numerous moments of injury and illness. Thanks also to Pfizer-Neusentis for the financial support and the chance to learn from and befriend many talented and helpful people. I wouldn’t be anywhere without the support of my loved ones. My eternal thanks and love goes to my family and to Liz. Finally, I wish to say thank you to my inspiration, Peter Parker. You have shown me that even the most science-obsessed nerdy person can have a big impact on the world. I will never forget that with great power there must also come, great responsibility. 4 The experiments described in chapter 4 were performed at Pfizer-Neusentis, under the supervisor of Dr Sarah Nickolls, and with the assistance of Linda Kitching, Gordon McMurray, David Winpenny and others. All other experiments were performed at the University of Nottingham under the supervisor of Professor Dave Kendall and Dr Stephen Alexander, and with the assistance of Michael Garle, Liaque Latif, Paul Millns, and others. 5 Contents CHAPTER 1 – General Introduction ................................................................ 13 1.1. Cannabinoid Receptors .................................................................................. 14 1.2. Cannabinoid Signalling Pathways .................................................................. 18 1.3. Modulation of Cannabinoid Receptor Signalling ........................................... 26 1.4. Cannabinoid Ligands ...................................................................................... 32 1.5. Functional Selectivity ..................................................................................... 45 1.6. Project Aim .................................................................................................... 53 CHAPTER 2 - Characterisation of fenofibrate as a novel cannabinoid receptor agonist and negative allosteric modulator ......................................... 55 2.1. Introduction .................................................................................................... 56 2.2. Aims and objectives ....................................................................................... 58 2.3. Methods .......................................................................................................... 59 2.4. Results ............................................................................................................ 66 2.5. Discussion ...................................................................................................... 80 2.6. Conclusions .................................................................................................... 83 CHAPTER 3 - Investigation of Functional Selectivity at the Cannabinoid Receptor in Human CB1 Receptor-Transfected Chinese Hamster Ovary Cells ............................................................................................................................... 85 3.1. Introduction .................................................................................................... 86 3.2. Aims and objectives ....................................................................................... 86 3.3. Methods .......................................................................................................... 87 3.4. Results ............................................................................................................ 92 6 3.5. Discussion ..................................................................................................... 131 3.6. Conclusion .................................................................................................... 142 CHAPTER 4 - Investigation of Functional Selectivity at the Cannabinoid Receptor in Human CB1 Receptor-Transfected Human Embryonic Kidney 293 cells ............................................................................................................... 143 4.1. Introduction ................................................................................................... 144 4.2. Aims and
Recommended publications
  • Download Product Insert (PDF)
    PRODUCT INFORMATION Hemopressin Item No. 10011038 Contents: This vial contains 1 mg peptide Peptide Sequence: Rat hemopressin PVNFKFLSH Mr: 1,088 Da Stability: ≥1 year at -20°C Supplied as: 1 mg peptide Solubility: Sparingly soluble (0.05 mg/ml) with sterile filtered water Laboratory Procedures This peptide is sparingly soluble in water and the following resuspension technique is recommended. Bring the peptide to room temperature and empty the contents of the vial into a 25 ml graduated cylinder. Use 1 ml serial aliquots of sterile filtered water to dissolve any remaining peptide in the glass vial to quantitatively transfer the total amount to the cylinder. Finally, add sterile filtered water to 20 ml final volume and mix gently to dissolve fully. One milligram of hemopressin dissolved in 20 ml water provides a 45.9 µM solution. One milligram per milliliter concentrations of hemopressin may also be prepared with the use of 10% methanol in water containing 0.1% trifluoroacetic acid. Description Rat hemopressin is a bioactive peptide fragment derived from the hemoglobin α1 chain. Hemopressin exhibits potent vasoactive biological activity, reducing rat blood pressure over a dosage range of 1 0.1-10 μg/kg. This peptide is also a potent central cannabinoid (CB1) receptor antagonist conferring analgesia and pain relief or antinociception in vivo.2 Further studies will clarify the cellular and physiological effects of hemopressin, as well the possible products of endopeptidase activity on hemopressin.1,2 References 1. Rioli, V., Gozzo, F.C., Heimann, A.S., et al. Novel natural peptide substrates for endopeptidase 24.15, neurolysin, and angiotensin-converting enzyme.
    [Show full text]
  • 2-Arachidonoylglycerol a Signaling Lipid with Manifold Actions in the Brain
    Progress in Lipid Research 71 (2018) 1–17 Contents lists available at ScienceDirect Progress in Lipid Research journal homepage: www.elsevier.com/locate/plipres Review 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain T ⁎ Marc P. Baggelaara,1, Mauro Maccarroneb,c,2, Mario van der Stelta, ,2 a Department of Molecular Physiology, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands. b Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy c European Centre for Brain Research/IRCCS Santa Lucia Foundation, via del Fosso del Fiorano 65, 00143 Rome, Italy ABSTRACT 2-Arachidonoylglycerol (2-AG) is a signaling lipid in the central nervous system that is a key regulator of neurotransmitter release. 2-AG is an endocannabinoid that activates the cannabinoid CB1 receptor. It is involved in a wide array of (patho)physiological functions, such as emotion, cognition, energy balance, pain sensation and neuroinflammation. In this review, we describe the biosynthetic and metabolic pathways of 2-AG and how chemical and genetic perturbation of these pathways has led to insight in the biological role of this signaling lipid. Finally, we discuss the potential therapeutic benefits of modulating 2-AG levels in the brain. 1. Introduction [24–26], locomotor activity [27,28], learning and memory [29,30], epileptogenesis [31], neuroprotection [32], pain sensation [33], mood 2-Arachidonoylglycerol (2-AG) is one of the most extensively stu- [34,35], stress and anxiety [36], addiction [37], and reward [38]. CB1 died monoacylglycerols. It acts as an important signal and as an in- receptor signaling is tightly regulated by biosynthetic and catabolic termediate in lipid metabolism [1,2].
    [Show full text]
  • NIH Public Access Author Manuscript Drug Alcohol Depend
    NIH Public Access Author Manuscript Drug Alcohol Depend. Author manuscript; available in PMC 2015 October 01. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Drug Alcohol Depend. 2014 October 1; 143: 251–256. doi:10.1016/j.drugalcdep.2014.08.004. Effects of the cannabinoid CB1 receptor allosteric modulator ORG 27569 on reinstatement of cocaine- and methamphetamine- seeking behavior in rats* Li Jinga,b, Yanyan Qiua, Yanan Zhangc, and Jun-Xu Lia aDepartment of Pharmacology and Toxicology, University at Buffalo, Buffalo, New York, USA bDepartment of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China cResearch Triangle Institute, Research Triangle Park, North Carolina, USA Abstract Background—Cannabinoid CB1 receptors play an essential role in drug addiction. Given the side effect profiles of orthosteric CB1 antagonism, new strategies have been attempted to modulate this target, such as CB1 receptor allosteric modulation. However, the effect of CB1 allosteric modulation in drug addiction is unknown. The present study examined the effects of the CB1 receptor allosteric modulator ORG27569 on the reinstatement of cocaine- and methamphetamine- seeking behavior in rats. Methods—Rats were trained to self-administer 0.75 mg/kg cocaine or 0.05 mg/kg methamphetamine in 2-hr daily sessions for 14 days which was followed by 7 days of extinction sessions in which rats responded on the levers with no programmed consequences. On reinstatement test sessions, rats were administered ORG27569 (1.0, 3.2, 5.6 mg/kg, i.p.) or SR141716A (3.2 mg/kg, i.p.) 10 min prior to re-exposure to cocaine- or methamphetamine-paired cues or a priming injection of cocaine (10 mg/kg, i.p.) or methamphetamine (1 mg/kg, i.p.).
    [Show full text]
  • Potential Cannabis Antagonists for Marijuana Intoxication
    Central Journal of Pharmacology & Clinical Toxicology Bringing Excellence in Open Access Review Article *Corresponding author Matthew Kagan, M.D., Cedars-Sinai Medical Center, 8730 Alden Drive, Los Angeles, CA 90048, USA, Tel: 310- Potential Cannabis Antagonists 423-3465; Fax: 310.423.8397; Email: Matthew.Kagan@ cshs.org Submitted: 11 October 2018 for Marijuana Intoxication Accepted: 23 October 2018 William W. Ishak, Jonathan Dang, Steven Clevenger, Shaina Published: 25 October 2018 Ganjian, Samantha Cohen, and Matthew Kagan* ISSN: 2333-7079 Cedars-Sinai Medical Center, USA Copyright © 2018 Kagan et al. Abstract OPEN ACCESS Keywords Cannabis use is on the rise leading to the need to address the medical, psychosocial, • Cannabis and economic effects of cannabis intoxication. While effective agents have not yet been • Cannabinoids implemented for the treatment of acute marijuana intoxication, a number of compounds • Antagonist continue to hold promise for treatment of cannabinoid intoxication. Potential therapeutic • Marijuana agents are reviewed with advantages and side effects. Three agents appear to merit • Intoxication further inquiry; most notably Cannabidiol with some evidence of antipsychotic activity • THC and in addition Virodhamine and Tetrahydrocannabivarin with a similar mixed receptor profile. Given the results of this research, continued development of agents acting on cannabinoid receptors with and without peripheral selectivity may lead to an effective treatment for acute cannabinoid intoxication. Much work still remains to develop strategies that will interrupt and reverse the effects of acute marijuana intoxication. ABBREVIATIONS Therapeutic uses of cannabis include chronic pain, loss of appetite, spasticity, and chemotherapy-associated nausea and CBD: Cannabidiol; CBG: Cannabigerol; THCV: vomiting [8]. Recreational cannabis use is on the rise with more Tetrahydrocannabivarin; THC: Tetrahydrocannabinol states approving its use and it is viewed as no different from INTRODUCTION recreational use of alcohol or tobacco [9].
    [Show full text]
  • Synthetic Cannabinoids (60 Substances) A) Classical Cannabinoid
    Synthetic cannabinoids (60 substances) a) Classical cannabinoid OH H OH H O Common name Chemical name CAS number Molecular Formula HU-210 3-(1,1’-dimethylheptyl)-6aR,7,10,10aR-tetrahydro-1- Synonym: 112830-95-2 C H O hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol 25 38 3 11-Hydroxy-Δ-8-THC-DMH b) Nonclassical cannabinoids OH OH R2 R3 R4 R1 CAS Molecular Common name Chemical name R1 R2 R3 R4 number Formula rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methyloctan- 2- yl) CP-47,497 70434-82-1 C H O CH H H H phenol 21 34 2 3 rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methylheptan- 2- yl) CP-47,497-C6 - C H O H H H H phenol 20 32 2 CP-47,497-C8 rel-2- [(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methylnonan- 2- yl) 70434-92-3 C H O C H H H H Synonym: Cannabicyclohexanol phenol 22 36 2 2 5 CAS Molecular Common name Chemical name R1 R2 R3 R4 number Formula rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methyldecan- 2- yl) CP-47,497-C9 - C H O C H H H H phenol 23 38 2 3 7 rel-2- ((1 R,2 R,5 R)-5- hydroxy- 2- (3- hydroxypropyl)cyclohexyl)- 3-hydroxy CP-55,940 83003-12-7 C H O CH H H 5-(2- methyloctan- 2- yl)phenol 24 40 3 3 propyl rel-2- [(1 S,3 R)-3- hydroxy-5,5-dimethylcyclohexyl]- 5- (2- Dimethyl CP-47,497-C8 - C H O C H CH CH H methylnonan-2- yl)phenol 24 40 2 2 5 3 3 c) Aminoalkylindoles i) Naphthoylindoles 1' R R3' R2' O N CAS Molecular Common name Chemical name R1’ R2’ R3’ number Formula [1-[(1- methyl- 2- piperidinyl)methyl]- 1 H-indol- 3- yl]- 1- 1-methyl-2- AM-1220 137642-54-7 C H N O H H naphthalenyl-methanone 26 26 2 piperidinyl
    [Show full text]
  • Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model
    Glaucoma Harnessing the Endocannabinoid 2-Arachidonoylglycerol to Lower Intraocular Pressure in a Murine Model Sally Miller,1 Emma Leishman,1 Sherry Shujung Hu,2 Alhasan Elghouche,1 Laura Daily,1 Natalia Murataeva,1 Heather Bradshaw,1 and Alex Straiker1 1Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States 2Department of Psychology, National Cheng Kung University, Tainan, Taiwan Correspondence: Alex Straiker, De- PURPOSE. Cannabinoids, such as D9-THC, act through an endogenous signaling system in the partment of Psychological and Brain vertebrate eye that reduces IOP via CB1 receptors. Endogenous cannabinoid (eCB) ligand, 2- Sciences, Indiana University, Bloom- arachidonoyl glycerol (2-AG), likewise activates CB1 and is metabolized by monoacylglycerol ington, IN 47405, USA; lipase (MAGL). We investigated ocular 2-AG and its regulation by MAGL and the therapeutic [email protected]. potential of harnessing eCBs to lower IOP. Submitted: February 16, 2016 Accepted: May 16, 2016 METHODS. We tested the effect of topical application of 2-AG and MAGL blockers in normotensive mice and examined changes in eCB-related lipid species in the eyes and spinal Citation: Miller S, Leishman E, Hu SS, cord of MAGL knockout (MAGLÀ/À) mice using high performance liquid chromatography/ et al. Harnessing the endocannabinoid tandem mass spectrometry (HPLC/MS/MS). We also examined the protein distribution of 2-arachidonoylglycerol to lower intra- ocular pressure in a murine model. MAGL in the mouse anterior chamber. Invest Ophthalmol Vis Sci. RESULTS. 2-Arachidonoyl glycerol reliably lowered IOP in a CB1- and concentration-dependent 2016;57:3287–3296. DOI:10.1167/ manner. Monoacylglycerol lipase is expressed prominently in nonpigmented ciliary iovs.16-19356 epithelium.
    [Show full text]
  • Positive Allosteric Modulators (Pams) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects, and Neuropathic Pain
    Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2021 Investigating Cannabinoid Type-1 Receptor (CB1R) Positive Allosteric Modulators (PAMs) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects, and Neuropathic Pain Jayden Elmer Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Behavioral Neurobiology Commons, Behavior and Behavior Mechanisms Commons, Medicinal and Pharmaceutical Chemistry Commons, Nervous System Diseases Commons, and the Pharmacology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/6777 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. 2021 Investigating Cannabinoid Type-1 Receptor (CB1R) Positive Allosteric Modulators (PAMs) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects and Neuropathic Pain Jayden A. Elmer Investigating Cannabinoid Type-1 Receptor (CB1R) Positive Allosteric Modulators (PAMs) in Mouse Models of Overt Cannabimimetic Activity, Subjective Drug Effects and Neuropathic Pain A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at Virginia Commonwealth University By Jayden Aric Elmer Bachelor of Science, University of Virginia, 2018 Director: Dr. Aron Lichtman, Professor, Department of Pharmacology & Toxicology; Associate Dean of Research and Graduate Studies, School of Pharmacy Virginia Commonwealth University Richmond, Virginia July 2021 Acknowledgements I would first like to extend my gratitude towards the CERT program at VCU. The CERT program opened the doors for me to get involved in graduate research.
    [Show full text]
  • Cannabinoid Receptor Cannabinoid Receptor
    Cannabinoid Receptor Cannabinoid Receptor Cannabinoid receptors are currently classified into three groups: central (CB1), peripheral (CB2) and GPR55, all of which are G-protein-coupled. CB1 receptors are primarily located at central and peripheral nerve terminals. CB2 receptors are predominantly expressed in non-neuronal tissues, particularly immune cells, where they modulate cytokine release and cell migration. Recent reports have suggested that CB2 receptors may also be expressed in the CNS. GPR55 receptors are non-CB1/CB2 receptors that exhibit affinity for endogenous, plant and synthetic cannabinoids. Endogenous ligands for cannabinoid receptors have been discovered, including anandamide and 2-arachidonylglycerol. www.MedChemExpress.com 1 Cannabinoid Receptor Antagonists, Agonists, Inhibitors, Modulators & Activators (S)-MRI-1867 (±)-Ibipinabant Cat. No.: HY-141411A ((±)-SLV319; (±)-BMS-646256) Cat. No.: HY-14791A (S)-MRI-1867 is a peripherally restricted, orally (±)-Ibipinabant ((±)-SLV319) is the racemate of bioavailable dual cannabinoid CB1 receptor and SLV319. (±)-Ibipinabant ((±)-SLV319) is a potent inducible NOS (iNOS) antagonist. (S)-MRI-1867 and selective cannabinoid-1 (CB-1) receptor ameliorates obesity-induced chronic kidney disease antagonist with an IC50 of 22 nM. (CKD). Purity: >98% Purity: 99.93% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg 2-Arachidonoylglycerol 2-Palmitoylglycerol Cat. No.: HY-W011051 (2-Palm-Gl) Cat. No.: HY-W013788 2-Arachidonoylglycerol is a second endogenous 2-Palmitoylglycerol (2-Palm-Gl), an congener of cannabinoid ligand in the central nervous system. 2-arachidonoylglycerol (2-AG), is a modest cannabinoid receptor CB1 agonist. 2-Palmitoylglycerol also may be an endogenous ligand for GPR119.
    [Show full text]
  • Control of Analgesic and Anti-Inflammatory Pathways by Fatty Acid Amide Hydrolase Long, James Harry
    Control of analgesic and anti-inflammatory pathways by fatty acid amide hydrolase Long, James Harry The copyright of this thesis rests with the author and no quotation from it or information derived from it may be published without the prior written consent of the author For additional information about this publication click this link. http://qmro.qmul.ac.uk/jspui/handle/123456789/3124 Information about this research object was correct at the time of download; we occasionally make corrections to records, please therefore check the published record when citing. For more information contact [email protected] Control of analgesic and anti-inflammatory pathways by fatty acid amide hydrolase James Harry Long Thesis submitted for the degree of Doctor of Philosophy to the University of London Translational Medicine and Therapeutics William Harvey Research Institute Charterhouse Square, London, EC1M 6BQ Table of contents Table of Contents Declaration VIII Acknowledgements IX Abstract X Abbreviations XI Chapter 1 – Introduction 1 1.1. Pain and analgesia 2 1.1.1. Nociception 2 1.1.2. Inflammatory pain 5 1.1.3. Neuropathic pain 10 1.1.4. Analgesia 10 1.1.5. COX inhibitors 11 1.1.6. Opioid receptor agonists 12 1.1.7. Glucocorticoids 13 1.1.8. Anaesthetics 13 1.1.9. Antidepressants 14 1.1.10. Anticonvulsants 14 1.1.11. Muscle relaxants 15 1.1.12. An alternative analgesic pathway 15 1.2. Endocannabinoid system 16 1.2.1. Cannabinoid receptors 16 1.2.2. Endocannabinoids 18 1.2.3. Endocannabinoid biosynthesis 21 1.2.4. Endocannabinoid metabolism 21 1.2.5.
    [Show full text]
  • The Multiple Waves of Cannabinoid 1 Receptor Signaling
    1521-0111/90/5/620–626$25.00 http://dx.doi.org/10.1124/mol.116.104539 MOLECULAR PHARMACOLOGY Mol Pharmacol 90:620–626, November 2016 Copyright ª 2016 by The Author(s) This is an open access article distributed under the CC BY-NC Attribution 4.0 International license http://creativecommons.org/licenses/by-nc/4.0/. MINIREVIEW—A LATIN AMERICAN PERSPECTIVE ON G PROTEIN-COUPLED RECEPTORS The Multiple Waves of Cannabinoid 1 Receptor Signaling Carlos Nogueras-Ortiz and Guillermo A. Yudowski Institute of Neurobiology(C.N.-O., G.A.Y.) and Department of Anatomy and Neurobiology (G.A.Y.), University of Puerto Rico Medical Sciences Campus, San Juan, Puerto Rico Received April 1, 2016; accepted June 22, 2016 Downloaded from ABSTRACT The cannabinoid 1 receptor (CB1R) is one of the most abundant underlying molecular mechanisms and physiologic impacts of G protein–coupled receptors (GPCRs) in the central nervous these waves. Simultaneously, it provides new opportunities to system, with key roles during neurotransmitter release and harness the therapeutic potential of the cannabinoid system and molpharm.aspetjournals.org synaptic plasticity. Upon ligand activation, CB1Rs may signal other GPCRs. Over the last several years, we have significantly in three different spatiotemporal waves. The first wave, which is expanded our understanding of the mechanisms and pathways transient (,10 minutes) and initiated by heterotrimeric G pro- downstream from the CB1R. The identification of receptor teins, is followed by a second wave (.5 minutes) that is mediated mutations that can bias signaling to specific pathways and the by b-arrestins. The third and final wave occurs at intracellular use of siRNA technology have been key tools to identifying which compartments and could be elicited by G proteins or b-arrestins.
    [Show full text]
  • A Cannabinoid CB1 Receptor Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with No Psychoactive Effects
    NPP-15-0045 A Cannabinoid CB1 Receptor Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with no Psychoactive Effects 1 †Bogna M. Ignatowska-Jankowska, 5, †Gemma L. Baillie, 3Steven Kinsey, 3Molly Crowe, 1Sudeshna Ghosh, 1 Robert Allen Owens, 1M. Imad Damaj, 1Justin Poklis, 4Jenny L. Wiley, 2Matteo Zanda, 2Chiara Zanato, 2Iain R. Greig, 1††Aron H. Lichtman, 5†† Ruth A. Ross. 1 Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, USA; 2 School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK; 3 Department of Psychology, West Virginia University, Morgantown, WV, USA; 4 Research Triangle Institute, Research Triangle Park, NC, USA; 5 Department of Pharmacology and Toxicology, University of Toronto and Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto. †Joint first authors. ††Joint corresponding authors Running Title: CB1 Allosteric Modulation 1 ABSTRACT The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states. However, therapeutic applications of Δ9-tetrahydrocannabinol (THC) and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects. Here we describe the development of the novel synthetic CB1 PAM, 6-methyl-3-(2-nitro-1-(thiophen-2-yl)ethyl)-2- phenyl-1H-indole (ZCZ011), which augments the in vitro and in vivo pharmacological actions of the CB1 orthosteric agonists CP55,940 and N-arachidonoylethanolamine (AEA). ZCZ011 3 potentiated binding of [ H]CP55,940 to the CB1 receptor as well as enhancing AEA-stimulated [35S]GTPγS binding in mouse brain membranes and β-arrestin recruitment and ERK phosphorylation in hCB1 cells.
    [Show full text]
  • Appendix-2Final.Pdf 663.7 KB
    North West ‘Through the Gate Substance Misuse Services’ Drug Testing Project Appendix 2 – Analytical methodologies Overview Urine samples were analysed using three methodologies. The first methodology (General Screen) was designed to cover a wide range of analytes (drugs) and was used for all analytes other than the synthetic cannabinoid receptor agonists (SCRAs). The analyte coverage included a broad range of commonly prescribed drugs including over the counter medications, commonly misused drugs and metabolites of many of the compounds too. This approach provided a very powerful drug screening tool to investigate drug use/misuse before and whilst in prison. The second methodology (SCRA Screen) was specifically designed for SCRAs and targets only those compounds. This was a very sensitive methodology with a method capability of sub 100pg/ml for over 600 SCRAs and their metabolites. Both methodologies utilised full scan high resolution accurate mass LCMS technologies that allowed a non-targeted approach to data acquisition and the ability to retrospectively review data. The non-targeted approach to data acquisition effectively means that the analyte coverage of the data acquisition was unlimited. The only limiting factors were related to the chemical nature of the analyte being looked for. The analyte must extract in the sample preparation process; it must chromatograph and it must ionise under the conditions used by the mass spectrometer interface. The final limiting factor was presence in the data processing database. The subsequent study of negative MDT samples across the North West and London and the South East used a GCMS methodology for anabolic steroids in addition to the General and SCRA screens.
    [Show full text]