19820014972.Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information
Cambridge University Press 978-1-108-44568-9 — Active Faults of the World Robert Yeats Index More Information Index Abancay Deflection, 201, 204–206, 223 Allmendinger, R. W., 206 Abant, Turkey, earthquake of 1957 Ms 7.0, 286 allochthonous terranes, 26 Abdrakhmatov, K. Y., 381, 383 Alpine fault, New Zealand, 482, 486, 489–490, 493 Abercrombie, R. E., 461, 464 Alps, 245, 249 Abers, G. A., 475–477 Alquist-Priolo Act, California, 75 Abidin, H. Z., 464 Altay Range, 384–387 Abiz, Iran, fault, 318 Alteriis, G., 251 Acambay graben, Mexico, 182 Altiplano Plateau, 190, 191, 200, 204, 205, 222 Acambay, Mexico, earthquake of 1912 Ms 6.7, 181 Altunel, E., 305, 322 Accra, Ghana, earthquake of 1939 M 6.4, 235 Altyn Tagh fault, 336, 355, 358, 360, 362, 364–366, accreted terrane, 3 378 Acocella, V., 234 Alvarado, P., 210, 214 active fault front, 408 Álvarez-Marrón, J. M., 219 Adamek, S., 170 Amaziahu, Dead Sea, fault, 297 Adams, J., 52, 66, 71–73, 87, 494 Ambraseys, N. N., 226, 229–231, 234, 259, 264, 275, Adria, 249, 250 277, 286, 288–290, 292, 296, 300, 301, 311, 321, Afar Triangle and triple junction, 226, 227, 231–233, 328, 334, 339, 341, 352, 353 237 Ammon, C. J., 464 Afghan (Helmand) block, 318 Amuri, New Zealand, earthquake of 1888 Mw 7–7.3, 486 Agadir, Morocco, earthquake of 1960 Ms 5.9, 243 Amurian Plate, 389, 399 Age of Enlightenment, 239 Anatolia Plate, 263, 268, 292, 293 Agua Blanca fault, Baja California, 107 Ancash, Peru, earthquake of 1946 M 6.3 to 6.9, 201 Aguilera, J., vii, 79, 138, 189 Ancón fault, Venezuela, 166 Airy, G. -
Bedrock Geologic Map of the Monmouth Junction Quadrangle, Water Resources Management U.S
DEPARTMENT OF ENVIRONMENTAL PROTECTION Prepared in cooperation with the BEDROCK GEOLOGIC MAP OF THE MONMOUTH JUNCTION QUADRANGLE, WATER RESOURCES MANAGEMENT U.S. GEOLOGICAL SURVEY SOMERSET, MIDDLESEX, AND MERCER COUNTIES, NEW JERSEY NEW JERSEY GEOLOGICAL AND WATER SURVEY NATIONAL GEOLOGIC MAPPING PROGRAM GEOLOGICAL MAP SERIES GMS 18-4 Cedar EXPLANATION OF MAP SYMBOLS cycle; lake level rises creating a stable deep lake environment followed by a fall in water level leading to complete Cardozo, N., and Allmendinger, R. W., 2013, Spherical projections with OSXStereonet: Computers & Geosciences, v. 51, p. 193 - 205, doi: 74°37'30" 35' Hill Cem 32'30" 74°30' 5 000m 5 5 desiccation of the lake. Within the Passaic Formation, organic-rick black and gray beds mark the deep lake 10.1016/j.cageo.2012.07.021. 32 E 33 34 535 536 537 538 539 540 541 490 000 FEET 542 40°30' 40°30' period, purple beds mark a shallower, slightly less organic-rich lake, and red beds mark a shallow oxygenated 6 Contacts 100 M Mettler lake in which most organic matter was oxidized. Olsen and others (1996) described the next longer cycle as the Christopher, R. A., 1979, Normapolles and triporate pollen assemblages from the Raritan and Magothy formations (Upper Cretaceous) of New 6 A 100 I 10 N Identity and existance certain, location accurate short modulating cycle, which is made up of five Van Houten cycles. The still longer in duration McLaughlin cycles Jersey: Palynology, v. 3, p. 73-121. S T 44 000m MWEL L RD 0 contain four short modulating cycles or 20 Van Houten cycles (figure 1). -
Universite Du Quebec a Chicoutimi
UNIVERSITE DU QUEBEC A CHICOUTIMI CHRONOSTRATIGRAPHÏE ET PETROGRAPHIE DU COMPLEXE GNEISSIQUE DE CHICOUTIMI EN BORDURE DU COMPLEXE ANORTHOSITIQUE DU LAC ST-JEAN par MICHEL HERVET Département des Sciences Appliquées MEMOIRE PRESENTE EN VUE DE L'OBTENTION DE LA MAITRISE EN SCIENCES APPLIQUEES EN GEOLOGIE SEPTEMBRE 1986 UIUQAC bibliothèque Paul-Emile-Bouletj Mise en garde/Advice Afin de rendre accessible au plus Motivated by a desire to make the grand nombre le résultat des results of its graduate students' travaux de recherche menés par ses research accessible to all, and in étudiants gradués et dans l'esprit des accordance with the rules règles qui régissent le dépôt et la governing the acceptation and diffusion des mémoires et thèses diffusion of dissertations and produits dans cette Institution, theses in this Institution, the l'Université du Québec à Université du Québec à Chicoutimi (UQAC) est fière de Chicoutimi (UQAC) is proud to rendre accessible une version make a complete version of this complète et gratuite de cette œuvre. work available at no cost to the reader. L'auteur conserve néanmoins la The author retains ownership of the propriété du droit d'auteur qui copyright of this dissertation or protège ce mémoire ou cette thèse. thesis. Neither the dissertation or Ni le mémoire ou la thèse ni des thesis, nor substantial extracts from extraits substantiels de ceux-ci ne it, may be printed or otherwise peuvent être imprimés ou autrement reproduced without the author's reproduits sans son autorisation. permission. RESUME Le Complexe -
Chapter 6: Geological Activity and Earthquakes
CK-12 Earth Science for Middle School FlexBook® 2.0 Answer Key Chapter 6: Geological Activity and Earthquakes 6.1 Geological Stresses Review Questions 1. What type of stress would you find at a transform fault? 2. What type of stress would you find at a subduction zone? 3. Under what conditions will a rock fracture? Answers 1. Shear 2. Compression 3. There is so much stress that the rock can’t deform elastically or plastically. 6.2 Principle of Horizontality Review Questions 1. Why are sediments laid down horizontally? 2. Why are sediments laid down from oldest to youngest? 3. Why are sedimentary rocks so good for studying the geology of a region? Answers 1. Gravity brings them into horizontal position. 2. For B to be above A, A had to have been there first. 3. They reveal the history of the area; e.g. if there was deformation or not. Explore More Questions 1. How is rock laid down? 2. What is the law of superposition? 3. Why is the law of superposition important? CK-12 Earth Science Middle School Answer Keys - updated July 2019 1 4. Where is the oldest rock found? 5. Where is the youngest rock found? 6. Why do we know that the fault is younger than the three rock layers? 7. Is the intrusion the youngest rock in the section? How do you know? Answers 1. Horizontally 2. The law that says that the oldest rock is on the bottom and the rocks get younger going upward if the section is not deformed. -
Advanced Geodynamics: Fourier Transform Methods
Advanced Geodynamics: Fourier Transform Methods David T. Sandwell January 13, 2021 To Susan, Katie, Melissa, Nick, and Cassie Eddie Would Go Preprint for publication by Cambridge University Press, October 16, 2020 Contents 1 Observations Related to Plate Tectonics 7 1.1 Global Maps . .7 1.2 Exercises . .9 2 Fourier Transform Methods in Geophysics 20 2.1 Introduction . 20 2.2 Definitions of Fourier Transforms . 21 2.3 Fourier Sine and Cosine Transforms . 22 2.4 Examples of Fourier Transforms . 23 2.5 Properties of Fourier transforms . 26 2.6 Solving a Linear PDE Using Fourier Methods and the Cauchy Residue Theorem . 29 2.7 Fourier Series . 32 2.8 Exercises . 33 3 Plate Kinematics 36 3.1 Plate Motions on a Flat Earth . 36 3.2 Triple Junction . 37 3.3 Plate Motions on a Sphere . 41 3.4 Velocity Azimuth . 44 3.5 Recipe for Computing Velocity Magnitude . 45 3.6 Triple Junctions on a Sphere . 45 3.7 Hot Spots and Absolute Plate Motions . 46 3.8 Exercises . 46 4 Marine Magnetic Anomalies 48 4.1 Introduction . 48 4.2 Crustal Magnetization at a Spreading Ridge . 48 4.3 Uniformly Magnetized Block . 52 4.4 Anomalies in the Earth’s Magnetic Field . 52 4.5 Magnetic Anomalies Due to Seafloor Spreading . 53 4.6 Discussion . 58 4.7 Exercises . 59 ii CONTENTS iii 5 Cooling of the Oceanic Lithosphere 61 5.1 Introduction . 61 5.2 Temperature versus Depth and Age . 65 5.3 Heat Flow versus Age . 66 5.4 Thermal Subsidence . 68 5.5 The Plate Cooling Model . -
Data for Quaternary Faults, Liquefaction Features, and Possible Tectonic Features in the Central and Eastern United States, East of the Rocky Mountain Front
U.S. Department of the Interior U.S. Geological Survey Data for Quaternary faults, liquefaction features, and possible tectonic features in the Central and Eastern United States, east of the Rocky Mountain front By Anthony J. Crone and Russell L. Wheeler Open-File Report 00-260 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. 2000 Contents Abstract........................................................................................................................................1 Introduction..................................................................................................................................2 Strategy for Quaternary fault map and database .......................................................................10 Synopsis of Quaternary faulting and liquefaction features in the Central and Eastern United States..........................................................................................................................................14 Overview of Quaternary faults and liquefaction features.......................................................14 Discussion...............................................................................................................................15 Summary.................................................................................................................................18 -
The Way the Earth Works: Plate Tectonics
CHAPTER 2 The Way the Earth Works: Plate Tectonics Marshak_ch02_034-069hr.indd 34 9/18/12 2:58 PM Chapter Objectives By the end of this chapter you should know . > Wegener's evidence for continental drift. > how study of paleomagnetism proves that continents move. > how sea-floor spreading works, and how geologists can prove that it takes place. > that the Earth’s lithosphere is divided into about 20 plates that move relative to one another. > the three kinds of plate boundaries and the basis for recognizing them. > how fast plates move, and how we can measure the rate of movement. We are like a judge confronted by a defendant who declines to answer, and we must determine the truth from the circumstantial evidence. —Alfred Wegener (German scientist, 1880–1930; on the challenge of studying the Earth) 2.1 Introduction In September 1930, fifteen explorers led by a German meteo- rologist, Alfred Wegener, set out across the endless snowfields of Greenland to resupply two weather observers stranded at a remote camp. The observers had been planning to spend the long polar night recording wind speeds and temperatures on Greenland’s polar plateau. At the time, Wegener was well known, not only to researchers studying climate but also to geologists. Some fifteen years earlier, he had published a small book, The Origin of the Con- tinents and Oceans, in which he had dared to challenge geologists’ long-held assumption that the continents had remained fixed in position through all of Earth history. Wegener thought, instead, that the continents once fit together like pieces of a giant jigsaw puzzle, to make one vast supercontinent. -
MAGNITUDE of DRIVING FORCES of PLATE MOTION Since the Plate
J. Phys. Earth, 33, 369-389, 1985 THE MAGNITUDE OF DRIVING FORCES OF PLATE MOTION Shoji SEKIGUCHI Disaster Prevention Research Institute, Kyoto University, Uji, Kyoto, Japan (Received February 22, 1985; Revised July 25, 1985) The absolute magnitudes of a variety of driving forces that could contribute to the plate motion are evaluated, on the condition that all lithospheric plates are in dynamic equilibrium. The method adopted here is to solve the equations of torque balance of these forces for all plates, after having estimated the magnitudes of the ridge push and slab pull forces from known quantities. The former has been estimated from the age of ocean floors, the depth and thickness of oceanic plates and hence lateral density variations, and the latter from the density con- trast between the downgoing slab and the surrounding mantle, and the thickness and length of the slab. The results from the present calculations show that the magnitude of the slab pull forces is about five times larger than that of the ridge push forces, while the North American and South American plates, which have short and shallow slabs but long oceanic ridges, appear to be driven by the ridge push force. The magnitude of the slab pull force exerted on the Pacific plate exceeds to 40 % of the total slab pull forces, and that of the ridge push force working on the Pacific plate is the largest among the ridge push forces exerted on the plates. The high cor- relation that exists between the mantle drag force and the sum of the slab pull and ridge push forces makes it difficult to evaluate the absolute net driving forces. -
Observations and Tectonic Setting of Historic and Instrumentally Located Earthquakes in the Greater New York City–Philadelphia Area by Lynn R
Bulletin of the Seismological Society of America, Vol. 98, No. 4, pp. 1696–1719, August 2008, doi: 10.1785/0120070167 Ⓔ Observations and Tectonic Setting of Historic and Instrumentally Located Earthquakes in the Greater New York City–Philadelphia Area by Lynn R. Sykes, John G. Armbruster, Won-Young Kim, and Leonardo Seeber Abstract A catalog of 383 earthquakes in southeastern New York, southwestern Connecticut, northern New Jersey, and eastern Pennsylvania, including metropolitan New York City and Philadelphia, is compiled from historical and instrumental data from 1677 through 2006. A magnitude-felt area relationship is used to calculate the equivalent magnitude mbLg prior to the advent of abundant instrumental data in 1974. Revised locations are computed for a number of historic earthquakes. Most hypo- centers are concentrated in older terranes bordering the Mesozoic Newark basin in the Reading, Manhattan, and Trenton prongs and in similar rocks found at a shallow depth beneath the coastal plain from south of New York City across central New Jersey. Historic shocks of mbLg 3 and larger were most numerous in the latter zone. The largest known event, mbLg 5.25, occurred just offshore of New York City in 1884. Many earthquakes have occurred beneath the 12-km wide Ramapo seismic zone (RSZ) in the eastern part of the Reading prong, where station coverage was the most ex- tensive since 1974. The southeastern boundary of the RSZ, which is nearly vertical, extends from near the surface trace of the Mesozoic Ramapo fault to depths of 12–15 km. Because the Mesozoic border fault dips about 50°–60° southeast, earth- quakes of the RSZ are occurring within middle Proterozoic through early Paleozoic rocks. -
An Evidence-Based Approach to Teaching Plate Tectonics in High School
An evidence-based approach to teaching plate tectonics in high school COLIN PRICE ABSTRACT 5. relating the extreme age and stability of a large part of the Australian continent to its plate tectonic This article proposes an evidence-based and engaging history. approach to teaching the mechanisms driving the movement of tectonic plates that should lead high The problem with this list is the fourth elaboration, school students towards the prevalent theories because the idea that convection currents in the used in peer-reviewed science journals and taught mantle drive the movement of tectonic plates is a in universities. The methods presented replace the myth. This convection is presented as whole mantle inaccurate and outdated focus on mantle convection as or whole asthenosphere cells with hot material rising the driving mechanism for plate motion. Students frst under the Earth’s divergent plate boundaries and examine the relationship between the percentages of cooler material sinking at the convergent boundaries plate boundary types of the 14 largest plates with their with the lithosphere dragged along by the horizontal GPS-determined plate speeds to then evaluate the fow of the asthenosphere (Figure 1). This was the three possible driving mechanisms: mantle convection, preferred explanation for plate motion until the ridge push and slab pull. A classroom experiment early 1990s but it does not stand up to a frequent measuring the densities of igneous and metamorphic deduction made by Year 9 students: how can there be rocks associated with subduction zones then provides large-scale mantle convection if hotspots (like Hawaii) a plausible explanation for slab pull as the dominant don’t move? Most science teachers quickly cover driving mechanism. -
The Relation Between Mantle Dynamics and Plate Tectonics
The History and Dynamics of Global Plate Motions, GEOPHYSICAL MONOGRAPH 121, M. Richards, R. Gordon and R. van der Hilst, eds., American Geophysical Union, pp5–46, 2000 The Relation Between Mantle Dynamics and Plate Tectonics: A Primer David Bercovici , Yanick Ricard Laboratoire des Sciences de la Terre, Ecole Normale Superieure´ de Lyon, France Mark A. Richards Department of Geology and Geophysics, University of California, Berkeley Abstract. We present an overview of the relation between mantle dynam- ics and plate tectonics, adopting the perspective that the plates are the surface manifestation, i.e., the top thermal boundary layer, of mantle convection. We review how simple convection pertains to plate formation, regarding the aspect ratio of convection cells; the forces that drive convection; and how internal heating and temperature-dependent viscosity affect convection. We examine how well basic convection explains plate tectonics, arguing that basic plate forces, slab pull and ridge push, are convective forces; that sea-floor struc- ture is characteristic of thermal boundary layers; that slab-like downwellings are common in simple convective flow; and that slab and plume fluxes agree with models of internally heated convection. Temperature-dependent vis- cosity, or an internal resistive boundary (e.g., a viscosity jump and/or phase transition at 660km depth) can also lead to large, plate sized convection cells. Finally, we survey the aspects of plate tectonics that are poorly explained by simple convection theory, and the progress being made in accounting for them. We examine non-convective plate forces; dynamic topography; the deviations of seafloor structure from that of a thermal boundary layer; and abrupt plate- motion changes. -
Whole Lotta Shakin' Goin' On
www.PDHcenter.com 9/23/2015 Whole Lotta Shakin’ Goin’ On Table of Contents Slide/s Part Description 1N/ATitle 2 N/A Table of Contents 3~108 1 Know Your Enemy 109~199 2 Predicting the Future 200~323 3 The Land of Fruit & Nuts 324~451 4 The Big One 452~584 5 How Safe? 585~626 6 The Jesuit Science 627~704 7 The Waiting Game 705~827 8 Quake-Proof Construction 828~961 9 The Delicate Balance 962~1000 10 Out of This World A History of Seismicity 1 2 Part 1 Since Ancient Times Know Your Enemy 3 4 “…Several cataclysmic events re- ported in the Old Testament may have been connected with earth- quakes, according to two scien- tists who have found tentative ev- idence of a fault line in the Holy “…Since ancient times man has wondered at earthquakes. Land. Geophysics Prof. Amos Nur of Stanford and geologist Ze’ev According to one primitive belief, the earth was disk-shaped Reches of Israel’s Weizmann In- and rested on the horns of an enormous bull. In turn, the bull stitute said frequent earthquakes balanced ppyrecariously on a largeegg which lay on the back may have occurred along the of a giant fish. When the bull was pestered by cosmological north-south ground fracture over insects, he shook his head or wiggled an ear – thus causing the past several thousand years, including major events every two earthquakes…” centuries or so. The last such Popular Mechanics, October 1939 quake shook the area July 11, 1927, measuring 6.5 on the Richter scale…” Popular Mechanics, September 1979 Left: caption: “The Jericho Earthquake 5 of 11 July 1927 (Isoseismic Map 6 in Sieberg Mercalli Scale)” © J.M.