An Alfalfa-Related Compound for the Spring Attraction of the Pest Weevil Sitona Humeralis

Total Page:16

File Type:pdf, Size:1020Kb

An Alfalfa-Related Compound for the Spring Attraction of the Pest Weevil Sitona Humeralis Patron: Her Majesty The Queen Rothamsted Research Harpenden, Herts, AL5 2JQ Telephone: +44 (0)1582 763133 WeB: http://www.rothamsted.ac.uk/ Rothamsted Repository Download A - Papers appearing in refereed journals Lohonyai, Zs., Vuts, J., Karpati, Zs., Koczor, S., Domingue, M.J., Fail, J., Birkett, M. A., Toth, M. and Imrei, Z. 2019. Benzaldehyde: an alfalfa- related compound for the spring attraction of the pest weevil Sitona humeralis (Coleoptera: Curculionidae). Pest Management Science. 75, p. 3153–3159. The publisher's version can be accessed at: • https://dx.doi.org/10.1002/ps.5431 The output can be accessed at: https://repository.rothamsted.ac.uk/item/96z30/benzaldehyde-an-alfalfa-related- compound-for-the-spring-attraction-of-the-pest-weevil-sitona-humeralis-coleoptera- curculionidae. © 7 May 2019, Please contact [email protected] for copyright queries. 21/11/2019 13:05 repository.rothamsted.ac.uk [email protected] Rothamsted Research is a Company Limited by Guarantee Registered Office: as above. Registered in England No. 2393175. Registered Charity No. 802038. VAT No. 197 4201 51. Founded in 1843 by John Bennet Lawes. Research Article Received: 16 November 2018 Revised: 16 January 2019 Accepted article published: 30 March 2019 Published online in Wiley Online Library: (wileyonlinelibrary.com) DOI 10.1002/ps.5431 Benzaldehyde: an alfalfa-related compound for the spring attraction of the pest weevil Sitona humeralis (Coleoptera: Curculionidae) Zsófia Lohonyai,a,b József Vuts,a,c Zsolt Kárpáti,a Sándor Koczor,a Michael J Domingue,d József Fail,b Michael A Birkett,c Miklós Tótha and Zoltán Imreia* Abstract BACKGROUND: Sitona weevils (Coleoptera: Curculionidae) are a species complex comprising pests of many leguminous crops worldwide, causing damage to young plants as adults and to rootlets as larvae, resulting in significant yield losses. Timely detection of migrating adult weevils is needed to determine when deployment of control measures becomes necessary. With the aim of developing plant volatile-based lures for Sitona spp. detection, we investigated the responses of S. humeralis to host plant-related aromatic compounds. RESULTS: In olfactometer studies, both male and female S.humeralis responded positively to the odour of alfalfa flowers, a source of aromatic volatiles. In single sensillum recordings, basiconic sensilla located on the third and fourth terminal segments of the antennal club of both sexes were found to respond to benzaldehyde at doses of 10−5 and 10−4 g, suggesting that the weevil is able to detect this compound at the peripheral sensory level. In field studies, S. humeralis was attracted to benzaldehyde in the spring, but not in the autumn. CONCLUSION: Benzaldehyde, as described in this study, may be a suitable candidate for the development of monitoring tools for S. humeralis. © 2019 Society of Chemical Industry Keywords: Sitona; Curculionidae; plant volatile; chemical communication; benzaldehyde 1 INTRODUCTION The objective of this study was to develop aromatic host Sitona spp. weevils (Coleoptera: Curculionidae), which include volatile compound-based lures for the model species, S. humeralis. ∼ 100 species,1 are pests of legumes worldwide. Adults dam- Such lures may become a basis for the development of more age the foliage, which can weaken or kill the plant.2 Further- effective attractant combinations. In a previous report, alfalfa more, soil-dwelling developing larvae chew on rootlets and thicker flowers – which emit aromatic compounds characteristic of their root parts, which leads to primary damage to the nitrogen-fixing volatile profile – were tested for attractiveness to S. humeralis in olfactometer studies. We tested known synthetic aromatic nodules.3,4 Sitona humeralis Stephens is an important pest and alfalfa compounds (benzaldehyde, methyl-salicylate, 2-phenethyl a dominant species of its genus in alfalfa, Medicago sativa L. alcohol and phenylacetaldehyde)12,13 for their behavioural activity (Fabaceae), fields in Europe, Asia Minor, Iran and Central Asia; it is in the field. We tested the electroantennography (EAG) activity also present in several other leguminous crops as a member of the Sitona spp. complex.5 S. humeralis overwinters as an adult, becom- ing active again in early spring. Until recently, the only known field attractant for Sitona spp. ∗ Correspondence to: Z Imrei, Plant Protection Institute, Centre for Agricultural was 4-methyl-3,5-heptanedione, a male-produced aggregation Research, Hungarian Academy of Sciences, H-1022 Budapest, Hungary. E-mail: [email protected] pheromone component of S. lineatus L.6 The compound attracted S. macularis Herbst and S. humeralis in a preliminary study.7 a PlantProtectionInstitute,CentreforAgriculturalResearch,HungarianAcademy More recently, a bean-derived (Vicia faba L.) attractant blend of Sciences, Budapest, Hungary was described for S. lineatus, which in some cases increased trap b Faculty of Horticultural Science, SZIU, Budapest, Hungary catches in combination with 4-methyl-3,5-heptanedione in the autumn, but not in the spring.8 This and other findings9–11 suggest c Biointeractions and Crop Protection Department, Rothamsted Research, that within the genus Sitona there is scope for the development of Harpenden, UK both single- and multiple-species monitoring systems based on d Department of Entomology, Pennsylvania State University, University Park, PA, plant-derived attractants. USA Pest Manag Sci (2019) www.soci.org © 2019 Society of Chemical Industry www.soci.org Z Lohonyai et al. Table 1. Legume-related aromatic compounds field-tested for the attraction of Sitonahumeralis, and their known electrophysiological or behavioural activity in other weevil species Compound Species Type of response Reference 2-Phenethyl alcohol Ceutorhychus assimilis Payk. Electrophysiological Evans and Allen-Williams14 Phenylacetaldehyde Ceutorhychus assimilis Payk. Electrophysiological Blight et al.15 Evans and Allen-Williams14 Tanymecus dilaticollis Gyllenhal Electrophysiological Toshova et al.16 Benzaldehyde Ceutorhychus assimilis Payk. Electrophysiological Blight et al.15 Myllocerinus aurolineatus Voss Behavioural in olfactometer Sun et al.17 Tanymecus dilaticollis Gyllenhal Electrophysiological Toshova et al.16 Methyl salicylate Ceutorhychus assimilis Payk. Electrophysiological Blight et al.15 Evans and Allen-Williams14 Anthonomus musculus Say Electrophysiological Szendrei and Rodriguez-Saona18 Tanymecus dilaticollis Gyllenhal Electrophysiological Toshova et al.16 Eugenol Anthonomus grandis grandis Boheman Behavioural in field Armstrong19 of benzaldehyde (the only compound with field activity) using chances of accidental positive results, strengthening the statistics. whole-antenna EAG and single sensillum recordings (SSR) to Prior to each experiment, all glassware was washed with Teepol™ confirm its sensory detection. A legume-related volatile com- detergent, rinsed with acetone and distilled water, and baked in an pound, eugenol,13 was also included in the study, because it oven overnight at 130 ∘C. Perspex components were washed with elicited behavioural responses from other weevil species (Table 1) Teepol™ solution, rinsed with 80% ethanol solution and distilled and evoked electrophysiological responses in S. humeralis (Zs. water, and left to air dry. The olfactometer was surrounded by Lohonyai, unpublished). Further field trapping tests were carried black paper and illuminated from above using diffuse uniform out to determine the level of attraction to particular candidate lighting from two 18 W/35 white fluorescent light bulbs shaded compounds. with a piece of red acetate. A single beetle was introduced into the middle of the olfactometer at each test period. Charcoal-filtered air was pumped into the glass chambers at a rate of 100 mL min−1, 2 MATERIALS AND METHODS then drawn through the central hole of the olfactometer at a 2.1 Four-arm olfactometry rate of 300 mL min−1 using another vacuum pump (Charles Austen A Perspex four-arm olfactometer was used to determine beetle Pumps Ltd, Byfleet, UK), and thereby pulled through each of the behavioural responses to alfalfa floral headspace (Fig. 1),20 which four side arms (75 mL min−1 arm−1), and subsequently exhausted consisted of three layers held together with plastic nuts and bolts. from the laboratory. Each beetle was given 2 min to acclimatise, ∘ Both the top and bottom discs had a diameter of 156 mm and after which the experiment was run for 16 min at 24 C, the ∘ a thickness of 5 mm, and were fitted with a filter paper base olfactometer being rotated by 90 every 4 min to control for any to provide traction for the walking insect. The middle part was directional bias. The olfactometer was divided into four regions 180 mm in diameter, 7 mm thick and was manufactured to include corresponding to each of the four arms, and the time spent in each four side areas or arms (each 55 mm long × 5 mm high) situated arm by a single beetle was recorded (N = 10/sex). at 90∘ to each other. The areas narrowed towards the perimeter and were connected to glass chambers with Teflon™ tubing, via 2.2 Electroantennography a 3 mm diameter hole at the end of each of the four arms. One Feral S. humeralis weevils were collected at Biatorbágy and Tököl, of the glass chambers contained four flower heads on a live M. (Pest County, Hungary). An antenna from a live female or male sativa (treatment) and the other three were empty and acted adult S. humeralis was excised at the base and mounted between as controls. The use of three empty control arms reduced the two glass capillaries containing 0.1 M KCl solution. A constant humidified airflow of ∼ 0.7 L min−1 was directed towards the antenna, which was placed at ∼ 3 mm from the exiting airflow from a Teflon™-coated steel tube. One of the electrodes was grounded, and the other was connected to a high-impedance DC amplifier (IDAC-232; Ockenfels Syntech GmbH, Kirchzarten, Germany). Test compounds dissolved in 10 μL hexane were administered to a 5 × 5 mm piece of filter paper inside a Pasteur pipette. Stimulus treatments consisted of pushing 1 mL of air through the Pasteur pipette into the air stream flowing towards the antenna.
Recommended publications
  • Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
    insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil.
    [Show full text]
  • Yam Beetle (Heteroligus Meles) and Palm Weevil
    9782 Adesina Adeolu Jonathan/ Elixir Food Science 49 (2012) 9782-9786 Available online at www.elixirpublishers.com (Elixir International Journal) Food Science Elixir Food Science 49 (2012) 9782-9786 Proximate and anti-nutritional composition of two common edible insects: yam beetle ( Heteroligus meles ) and palm weevil ( Rhynchophorus phoenicis ) Adesina Adeolu Jonathan Department of Chemistry, Ekiti State University, PMB 5363, Ado Ekiti. Nigeria. ARTICLE INFO ABSTRACT Article history: Determination of the proximate and anti-nutritional composition of two common edible Received: 12 June 2012; insects: yam beetle ( Heteroligus meles ) and palm weevil ( Rhynchophorus phoenicis ) was Received in revised form: carried out and the results showed that they both contained an appreciable levels of protein 23 July 2012; (38.10 and 50.01% respectvely), with moisture, ash, fibre, lipid, carbohydrate and gross Accepted: 30 July 2012; energy levels being:(1.01, 5.78, 3.00, 32.01, 20.10% and 521.41Kcal/kg) and (1.16, 4.92, 2.56, 21.12, 20.23% and 480.02Kcal/kg) respectively. The results of the anti-nutritional Keywords analysis revealed that oxalate (total and soluble) were (29.00 and 19.32mg/100g) and (21.72 Heteroligus meles, and 14.01mg/100g) for yam beetles and palm weevils respectively. These results were fairly Rhynchophorus phoenicis, high compared to other anti-nutritional components of the studied insects but generally fall Proximate and anti-nutrients within nutritionally accepted values. The lower values of phytic acid, HCN and tannins Compositions. (0.311, 2.651 and 0.42mg/100g) and (0.276, 2.531 and 0.481 mg/100g) respectively for yam beetle and palm weevils.
    [Show full text]
  • Mass Trapping and Biological Control of Rhynchophorus Palmarum L. A
    ISSN 1983-0572 Publicação do Projeto Entomologistas do Brasil www.ebras.bio.br Mass Trapping and Biological Control of Rhynchophorus palmarum L.: A hypothesis based on morphological evidences Flávio Costa Miguens¹, Jorge André Sacramento de Magalhães¹, Livia Melo de Amorim¹, Viviane Rossi Goebel¹, Nicola Le Coustour², Marie Lummerzheim², José Inácio Lacerda Moura³ & Rosane Motta Costa¹ 1. Universidade Estadual do Norte Fluminense Darci Ribeiro. Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Campos dos Goytacazes, Rio de Janeiro, Brasil, e-mail: [email protected] (Autor para correspondência), [email protected], [email protected], [email protected], [email protected]. 2. Ecole Superiereure d’ Agriculture Purpan, e-mail: lummerzheim@ purpan.fr, [email protected]. 3. Estação Experimental Lemos Maia CEPEC CEPLAC, e-mail: [email protected]. AL _____________________________________ EntomoBrasilis 4 (2): 49-55 (2011) ER Abstract. Palm weevils have been reported as a pest and red ring nematode vectors for several palms of the Arecaceae family. Rhynchophorus palmarum L (Coleoptera: Curculionidae) is a pest for coconut crop and other palms. It is vector of Bursaphelenchus cocophilus (Cobb) Baujard (Nematoda) etiological agent of Red Ring disease and other nematodes. Current methods recommended use of enemies and parasites in integrated pest management of Rhynchophorinae. In addition, mass trap reduce environmental damage. The objectives of our study on coconut plantations were: (1) to determine the efficiency of low expensive kariomones traps and (2) low expensive kariomones and pheromones traps using adult males; and (3) to examine R. palmarum using light and scanning electron microscopy searching for ectoparasites which can be proposed in integrated pest management.
    [Show full text]
  • Improving Rural Livelihoods Through Participative Research on the Domestication and Breeding of the Palm Weevil Larvae (Rhynchophorus Phoenicis Fabr.)
    Improving rural livelihoods through participative research on the domestication and breeding of the palm weevil larvae (Rhynchophorus phoenicis Fabr.)- The African palm weevil project FINAL PROJECT REPORT Presented by Fogoh John MUAFOR Philippe LE GALL Patrice LEVANG April 2014 ABSTRACT As part of efforts to fight against food insecurity, poverty and biodiversity erosion, this project was elaborated to initiate the breeding and domestication of the palm weevil grubs (edible larvae of the African palm weevil: Rhynchophorus phoenicis Fabricius, 1801). The project was aimed at determining an appropriate technique and feed formula for the domestication of the larvae, as well as training local people on acquired multiplication and breeding techniques. In order to meet this objective, an experimental system was established in the village of Ntoung, Abong-Mbang Division, East Cameroon. The experimental system was made up of a hut and seven boxes in which the domestication attempts were made. Four feed formulas were introduced in the boxes as substrates to which adult palm weevils were added after being coupled. The feed formulas included: i) only fresh stems of raffia; ii) A mixture of fresh and decayed raffia tissues; iii) Only decayed raffia tissues; and iv) A mixture of decayed raffia tissues and chicken feed. Water was sprinkled on the substrate on a daily basis to maintain the humidity of the milieu. In total, 13 grown individuals of palm weevil grubs were harvested in the domestication attempt, with only two of the feed formulas being efficient for the production of the grubs. However, young maggots were noticed in all the three food formulas within the first two weeks of the experiment, most of which died within the third week.
    [Show full text]
  • The Red Palm Weevil, Rhynchophorus Ferrugineus Olivier, As Edible Insects for Food and Feed a Case Study in Egypt
    ISSN: 0975-8585 Research Journal of Pharmaceutical, Biological and Chemical Sciences The Red Palm Weevil, Rhynchophorus ferrugineus Olivier, As Edible Insects for Food and Feed a Case Study in Egypt. Abdel-Moniem ASH1, 2, El-Kholy MY 2, 3 and Elshekh WEA1. 1Department of Plant Protection, Faculty of Agricultural, Beni Suef University, Egypt 2National Research Centre, Dept. of pests and Plant Protection, Dokki, Cairo, Egypt. 3Department of Biology, College of Science, Aljouf University, Sakaka, Aljouf, Kingdom of Saudi Arabia ABSTRACT Edible insects, a traditional food all over the world, are highly nutritious with high fat, protein and mineral contents depending on the species and thus represent a noteworthy alternative food and feed source and a potential substitute e. g. for fishmeal in feed formulae. Research is required to develop and automatize cost effective, energy efficient and microbially safe rearing, harvest and post harvest processing technologies as well as sanitation procedures to ensure food and feed safety and produce safe insect products at a reasonable price on an industrial scale especially in comparison to meat products. In addition, consumer acceptance needs to be established. Insects are important as items of aesthetic values, pests and as food. R. ferrugineus is an economically important insect. It is an edible insect that is eaten in the tropics. Both the larval and the pupal stages of R. ferrugineus were analyzed for their nutrient composition, protein solubility, mineral, functional and anti-nutritional factors. The pupal stage had higher protein content (32.27%) than the larval stage which had 30.46%. The fat content of the larva was 22.24% while that of the pupa was 19.48%.
    [Show full text]
  • Phototaxis, Host Cues, and Host-Plant Finding in a Monophagous Weevil, Rhinoncomimus Latipes
    J Insect Behav (2013) 26:109–119 DOI 10.1007/s10905-012-9343-7 Phototaxis, Host Cues, and Host-Plant Finding in a Monophagous Weevil, Rhinoncomimus latipes Jeffrey R. Smith & Judith Hough-Goldstein Revised: 21 May 2012 /Accepted: 24 May 2012 / Published online: 5 June 2012 # Springer Science+Business Media, LLC 2012 Abstract Rhinoncomimus latipes is a monophagous weevil used as a biological control agent for Persicaria perfoliata in the eastern United States. Density of adult R. latipes and resulting feeding damage has been shown to be higher in the sun than in the shade. This study aimed to determine whether phototaxis, sensitivity to enhanced host cues from healthier sun-grown plants, or a combination is driving this behavior by the weevil. A series of greenhouse choice tests between various combi- nations of plant and light conditions showed that R. latipes is positively phototactic, responsive to host cues, and preferentially attracted to sun-grown plants over shade- grown plants. From our experiments, we hypothesize two phases of dispersal and host finding in R. latipes. The initial stage is controlled primarily by phototaxis, whereas the later stage is controlled jointly by host cues and light conditions. Keywords Host-plant finding . phototaxis . host plant cues . Curculionidae . Rhinoncomimus latipes . Persicaria perfoliata Introduction A major goal in the study of plant-herbivore interactions is to determine the mech- anisms governing insect host-plant finding and selection. It is generally accepted that host-plant selection is a catenary process consisting of a sequence of behavioral phases or “reaction chains” (Tinbergin 1951;Atkins1980; Schoonhoven et al.
    [Show full text]
  • Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada
    143 Chapter 4 Weevils (Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada Robert S. Anderson Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada, K1P 6P4 Email: [email protected] Patrice Bouchard* Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6 Email: [email protected] *corresponding author Hume Douglas Entomology, Ottawa Plant Laboratories, Canadian Food Inspection Agency, Building 18, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6 Email: [email protected] Abstract. Weevils are a diverse group of plant-feeding beetles and occur in most terrestrial and freshwater ecosystems. This chapter documents the diversity and distribution of 295 weevil species found in the Canadian Prairies Ecozone belonging to the families Dryophthoridae (9 spp.), Brachyceridae (13 spp.), and Curculionidae (273 spp.). Weevils in the Prairies Ecozone represent approximately 34% of the total number of weevil species found in Canada. Notable species with distributions restricted to the Prairies Ecozone, usually occurring in one or two provinces, are candidates for potentially rare or endangered status. Résumé. Les charançons forment un groupe diversifié de coléoptères phytophages et sont présents dans la plupart des écosystèmes terrestres et dulcicoles. Le présent chapitre décrit la diversité et la répartition de 295 espèces de charançons vivant dans l’écozone des prairies qui appartiennent aux familles suivantes : Dryophthoridae (9 spp.), Brachyceridae (13 spp.) et Curculionidae (273 spp.). Les charançons de cette écozone représentent environ 34 % du total des espèces de ce groupe présentes au Canada. Certaines espèces notables, qui ne se trouvent que dans cette écozone — habituellement dans une ou deux provinces — mériteraient d’être désignées rares ou en danger de disparition.
    [Show full text]
  • Alternative Feed Resource for Growing African Palm Weevil (Rhynchophorus Phoenicis) Larvae in Commercial Production
    American Scientific Research Journal for Engineering, Technology, and Sciences (ASRJETS) ISSN (Print) 2313-4410, ISSN (Online) 2313-4402 © Global Society of Scientific Research and Researchers http://asrjetsjournal.org/ Alternative Feed Resource for Growing African Palm Weevil (Rhynchophorus phoenicis) Larvae in Commercial Production Bernard Quayea, Comfort Charity Atuaheneb, Armstrong Donkohc, Benjamin Mensah Adjeid*, Obed Opokue, Michael Adu Amankrahf a,b,c,d,e,fDepartment of Animal Science, Faculty of Agriculture, Kwame Nkrumah University of Science and Technology (KNUST), Kumasi, Ghana. aEmail: [email protected] Abstract A six (6)-week long experiment was undertaken to develop an alternative feed resource for the production of African palm weevil (Rhynchophorus phoenicis) larvae and to evaluate the performance of the larvae raised on the different diets. After two weeks, four-hundred (400) young larvae (hatchlings) which weighed between 0.6 – 1.6 g were selected and randomly grouped into 40 sets, each group comprising ten (10) larvae of similar weights and then randomly allocated to four (4) dietary treatments, using a completely randomized design (CRD) with ten (10) replications of 10 larvae. The four treatments designated as T1, T2, T3 and T4 had varying inclusion levels of oil palm yolk at 100%, 50%, 50% and 25% respectively with various combinations of agro-waste materials including fruit waste of banana and pineapple and millet waste. Three (3) kilograms of each diet was formulated and fed every two weeks of the four weeks feeding trial period; with feed being provided ad libitum. Results of the feeding trial revealed that parameters such as total feed intake and mean total feed intake per larva, feed conversion efficiency, pH of larvae and feed cost per kilogram showed significant (p<0.05) differences among treatments.
    [Show full text]
  • Coleóptera: Curculionidae: Rhynchophorinae)
    Bol. San. Veg. Plagas, 24: 23-40, 1998 Curculiónidos exóticos susceptibles de ser introducidos en España y otros países de la Unión Europea a través de vegetales importados (Coleóptera: Curculionidae: Rhynchophorinae) J. ESTEBAN-DURÁN, J. L. YELA, F. BEITIA-CRESPO y A. JIMÉNEZ-ÁLVAREZ En función de observaciones de laboratorio y de campo, de una exhaustiva revisión bibliográfica y de la comparación subsiguiente de sus características biológicas y bio- geográficas, se mencionan diferentes especies de escarabajos curculiónidos, integrables en la subfamilia Rhynchophorinae (Coleóptera), que potencialmente podrían constituir- se en fenómeno plaga en España y algunos otros países de la Comunidad Europea, sobre todo en los más meridionales. Se exponen una serie de datos básicos sobre el grupo, incluyéndose algunos comentarios sobre la preparación de adultos para su ade- cuada conservación en colección. De cada especie se proporciona una breve descrip- ción de adulto, huevo, larva y pupa, una relación de las plantas hospedantes conocidas, su área de distribución original y aquellas áreas donde se ha introducido. Del examen comparado de estos datos se concluye que las dos especies potencialmente más peli- grosas son Rhynchophorus ferrugineus (Olivier) y R. palmarum (L.). Por contra, Dyna- mis borassi (F.), R. quadrangulus (Qued.) y Metamasius cinnamominus (L.) parecen, en principio, poco importantes como potenciales productores de plaga. El resto de las especies estudiadas tiene un riesgo intermedio, si bien es importante señalar que R. phoenicis (F.), R. vulneratus (Panz.) y R. bilineatus (Mont.) causan daños muy se- rios en sus palmeras hospedantes en Africa subsahariana, Asia y Papua-Nueva Guinea, respectivamente. Se añade una descripción más detallada del ciclo biológico de Rhyn- chophorus palmarum, estudiado en la Guayana Francesa, como representativo del ciclo de los rincoforinos.
    [Show full text]
  • Resume Wizard
    Department of Entomology, Rutgers University Blueberry & Cranberry Research Center, Chatsw orth, NJ 08019 USA e-mail: [email protected]; Phone: (609) 726-1590 Ext. 4412; Fax: (609) 726-1593 César R. Rodríguez-Saona PROGRAM GOALS AND AREAS OF EXPERTISE Program Goals : The goal of my Research Program is the development and implementation of cost-effective reduced-risk Integrated Pest Management (IPM) practices for blueberries and cranberries. This goal is achieved through the integration of chemic al, behavioral, and biological methods in insect control and by gaining, through empirically anchored research, a better understanding on the ecology of pe sts and their natural enemies. M y Extension Program delivers IPM information to growers by conducting on-farm demonstration trials, presentations, and extension publications. Areas of Expertise include IPM, Tritrophic Interactions, Biological Control, Insect Chemical Ecology, Insect-Plant Interactions, and Host -Plant Resistance. PROGRAM BY THE NUMBERS PUBLICATIONS = 231 REFEREED JOURNALS = 128 BOOK CHAPTERS AND INVITED PUBLICATIONS = 16 ARTHROPOD MANAGEMENT TESTS (EDITOR-REVIEWED JOURNAL) = 32 NON-REFEREED AND EXTENSION PUBLICATIONS = 55 PRESENTATIONS = 354 INVITED TALKS = 96 PROFESSIONAL MEETINGS (SINCE 2006) = 118 EXTENSION TALKS = 140 POST-DOCS/VISITING SCHOLARS/STUDENT ME NTORING = 68 GRANTS = $ 7,850,397 COMPETITIVE EXTERNAL = $ 4,750,085 COMPETITIVE INTERNAL = $ 143,103 NON-COMPETITIVE = $ 1,957,563 GRANTS-IN-AID AND SERVICE FEES = $ 894,574 h-Index (AS OF NOVEMBER 2020) W EB OF SCIENCE 29 SCOPUS 30 GOOGLE SCHOLAR 38 RG SCORE (AS OF NOVEMBER 2020) RESEARCH GATE 38.34 (h-index = 35) ORCID 0000-0001-5888-1769 W eb sites https://sites.rutgers.edu/cesar-rodriguez -saona/ https://entomology.rutgers.edu/personnel/cesar-rodriguez-saona.html https://pemaruccicenter.rutgers.edu/entomology/ EDUCATION Ph.D.
    [Show full text]
  • Palm Weevil Diversity in Indonesia: Description of Phenotypic Variability in Asiatic Palm Weevil, Rhynchophorus Vulneratus (Coleoptera: Curculionidae)
    J. Entomol. Res. Soc., 20(3): 01-22, 2018 Research Article Print ISSN:1302-0250 Online ISSN:2651-3579 Palm Weevil Diversity in Indonesia: Description of Phenotypic Variability in Asiatic Palm Weevil, Rhynchophorus vulneratus (Coleoptera: Curculionidae) Sukirno SUKIRNO1, 2* Muhammad TUFAIL1,3 Khawaja Ghulam RASOOL1 Abdulrahman Saad ALDAWOOD1 1Economic Entomology Research Unit, Plant Protection Department, College of Food and Agriculture Sciences, King Saud University, Riyadh 11451, KINGDOM OF SAUDI ARABIA. *Correspondence author’s e-mail: [email protected] 2Entomology Laboratory, Faculty of Biology, Gadjah Mada University, Yogyakarta 55281, INDONESIA 3Organization of Advanced Science and Technology, Kobe University, Kobe 657-8501, JAPAN ABSTRACT Palm weevils (Coleoptera: Curculionidae) are the most destructive pest of many palm species worldwide, including Indonesia. Accurate species identification and knowledge of their diversity is crucial for implementing management strategies. Some samples of palm weevils from six main islands of Indonesia were found exhibiting intermediate color and markings between those of Asiatic palm weevil (APW), Rhynchophorus vulneratus Panzer and red palm weevil (RPW), R. ferrugineus (Olivier). To test the hypothesis that intermediate occurring phenotypes in Indonesia are only phenotypic color variations of APW, morphometric analyses, mating trials, and the analysis of cytochrome b (CyB) and random amplified polymorphism DNA (RAPD-PCR) were carried out. Additionally, RPW from the Kingdom of Saudi Arabia (KSA) and Pakistan were compared to Indonesian samples. Morphology-based identification of Indonesian palm weevils recognized three putative taxa: R. ferrugineus, R. vulneratus, and the black palm weevil, R. bilineatus (Montrouzier). It was suspected that intermediate color phenotypes of APW from Indonesia had been ambiguously considered RPW.
    [Show full text]
  • Download Download
    Trapping-a major tactic of BIPM strategy of palm weevils S. P. Singh¹ and P. Rethinam¹ Abstract Several species of curculionid weevils such as Amerrhinus ynca Sahlberg, Cholus annulatus Linnaeus, C. martiniquensis Marshall, C. zonatus (Swederus), Diocalandra frumenti (Fabricius), Dynamis borassi Fabricius, Homalinotus coriaceus Gyllenhal, Metamasius hemipterus Linnaeus, Paramasius distortus (Gemminger & Horold), Rhabdoscelus obscurus (Boisduval), Rhinostomus barbirostris (Fabricius), R. afzelii (Gyllenhal), Rhynchophorus bilineatus (Montrouzier), R. cruentatus Fabricius, R. ferrugineus (Olivier), R. palmarum (Linnaeus) and R. phoenicis (Fabricius) are associated with palms. Some of these have become a major constraint in the successful cultivation of coconut palm (Cocos nucifera L.), date palm (Phoenix dactylifera L.) and oil palm (Elaeis guineensis L.). R. ferrugineus is distributed in over 33 countries and attacks more than two dozen palm species. In the recent past, it has spread to Middle Eastern countries, Mediterranean region of Africa and southern Europe (Spain) causing tremendous economic losses. The yield of date palm has decreased from 10 to 0.7 tons/ha. Coconut palms in India are infested upto 6.9 per cent in Kerala and 11.65 per cent in Tamil Nadu. R. palmarum is a major pest of oil and coconut palms in the tropical Americas and, vectors the nematode, Bursaphelenchus cocophilus (Cobb) Baujard which causes red ring disease (RRD). Palm losses due to RRD are commonly between 0.1 to 15% which amounts to tens of millions dollars. The status of other species is briefed. The grubs of weevils that develop in the stems, bud, rachis of leaves and inflorescence of cultivated, ornamental or wild palms cause direct damage.
    [Show full text]