Phototaxis, Host Cues, and Host-Plant Finding in a Monophagous Weevil, Rhinoncomimus Latipes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Rhinoncomimus Latipes) Response to Varying Moisture and Temperature Conditions ⇑ Scott H
Biological Control 83 (2015) 68–74 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Mile-a-minute weed (Persicaria perfoliata) and weevil (Rhinoncomimus latipes) response to varying moisture and temperature conditions ⇑ Scott H. Berg a, Judith Hough-Goldstein a, , Ellen C. Lake b, Vincent D’Amico c a Department of Entomology and Wildlife Ecology, University of Delaware, 531 S. College Ave., Newark, DE 19716, USA b USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA c US Forest Service, Northern Research Station, Department of Entomology and Wildlife Ecology, 531 S. College Ave., Newark, DE 19716, USA highlights graphical abstract Effectiveness of a biocontrol agent can vary with different abiotic conditions. Herbivory and moisture effects on mile-a-minute weed were tested in a greenhouse. Both water limitation and herbivory reduced mile-a-minute reproduction and growth. Results are consistent with observed resurging plant populations with high rainfall. article info abstract Article history: The combined effects of herbivory and water stress on growth and reproduction of mile-a-minute weed Received 30 September 2014 (Persicaria perfoliata (L.) H. Gross) were investigated in greenhouse trials over two years, with Accepted 13 January 2015 well-watered or water-limited plants either exposed or not exposed to herbivory by the mile-a-minute Available online 19 January 2015 weevil (Rhinoncomimus latipes Korotyaev). Moisture limitation and weevil herbivory significantly reduced the number of seeds produced by P. perfoliata, with the fewest seeds produced when both factors Keywords: were present. Seed weight was reduced by moisture limitation and weevil herbivory the second year, and Water stress seed viability was reduced by herbivory both years. -
Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil. -
Host Specificity of the Asian Weevil, Rhinoncomimus
Biological Control 30 (2004) 511–522 www.elsevier.com/locate/ybcon Host specificity of the Asian weevil, Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae), a potential biological control agent of mile-a-minute weed, Polygonum perfoliatum L. (Polygonales: Polygonaceae) Keith Colpetzer,a,1 Judith Hough-Goldstein,a,* Jianqing Ding,b,2 and Weidong Fub a Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE 19716-2160, USA b Institute of Biological Control, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China Received 5 November 2003; accepted 4 March 2004 Abstract The annual vine Polygonum perfoliatum L. (mile-a-minute weed) is an invasive weed in natural areas and has been targeted for biological control in the United States. Host specificity of the Asian weevil Rhinoncomimus latipes Korotyaev, a potential biological control agent of mile-a-minute weed, was evaluated in China using qualitative laboratory choice and no-choice tests on 28 plant species in 18 families outside of the Polygonaceae and on 21 species within the Polygonaceae. An open-field choice-test was also conducted in China. In addition, quantitative assessments of adult and larval no-choice tests and adult-choice tests were conducted in a quarantine laboratory in the United States on 23 species of Polygonaceae (including five also tested in China) and five species in three other plant families. Adult weevils did not eat any plant species in families outside of the Polygonaceae in choice or no-choice tests. In no-choice tests with Polygonaceae, adults fed and survived for up to 30 days on a few species in the tribes Persicarieae, Polygoneae, and Rumiceae, but females did not oviposit on any plant except P. -
The Biology of Casmara Subagronoma (Lepidoptera
insects Article The Biology of Casmara subagronoma (Lepidoptera: Oecophoridae), a Stem-Boring Moth of Rhodomyrtus tomentosa (Myrtaceae): Descriptions of the Previously Unknown Adult Female and Immature Stages, and Its Potential as a Biological Control Candidate Susan A. Wineriter-Wright 1, Melissa C. Smith 1,* , Mark A. Metz 2 , Jeffrey R. Makinson 3 , Bradley T. Brown 3, Matthew F. Purcell 3, Kane L. Barr 4 and Paul D. Pratt 5 1 USDA-ARS Invasive Plant Research Laboratory, Fort Lauderdale, FL 33314, USA; [email protected] 2 USDA-ARS Systematic Entomology Lab, Beltsville, MD 20013-7012, USA; [email protected] 3 USDA-ARS Australian Biological Control Laboratory, CSIRO Health and Biosecurity, Dutton Park QLD 4102, Australia; jeff[email protected] (J.R.M.); [email protected] (B.T.B.); [email protected] (M.F.P.) 4 USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, FL 32608, USA; [email protected] 5 USDA-ARS, Western Regional Research Center, Invasive Species and Pollinator Health Research Unit, 800 Buchanan Street, Albany, CA 94710, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-954-475-6549 Received: 27 August 2020; Accepted: 16 September 2020; Published: 23 September 2020 Simple Summary: Rhodomyrtus tomentosa is a perennial woody shrub throughout Southeast Asia. Due to its prolific flower and fruit production, it was introduced into subtropical areas such as Florida and Hawai’i, where it is now naturalized and invasive. In an effort to find sustainable means to control R. tomentosa, a large-scale survey was mounted for biological control organisms. -
Fecundity of a Native Herbivore on Its Native and Exotic Host Plants and Relationship to Plant Chemistry
Aquatic Invasions (2017) Volume 12, Issue 3: 355–369 DOI: https://doi.org/10.3391/ai.2017.12.3.09 Open Access © 2017 The Author(s). Journal compilation © 2017 REABIC Special Issue: Invasive Species in Inland Waters Research Article Fecundity of a native herbivore on its native and exotic host plants and relationship to plant chemistry Michelle D. Marko1,2,* and Raymond M. Newman1 1Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, St. Paul, MN, 55108, USA 2Biology Department, Concordia College, Moorhead, MN 56562, USA *Corresponding author E-mail: [email protected] Received: 2 November 2016 / Accepted: 28 August 2017 / Published online: 20 September 2017 Handling editor: Liesbeth Bakker Editor’s note: This study was first presented at the special session on aquatic invasive species at the 33rd Congress of the International Society of Limnology (SIL) (31 July – 5 August 2016, Torino, Italy) (http://limnology.org/meetings/past-sil-congress/). This special session has provided a venue for the exchange of information on ecological impacts of non-native species in inland waters. Abstract The host range expansion of the specialist milfoil weevil, Euhrychiopsis lecontei, from the native Myriophyllum sibiricum (northern watermilfoil) to invasive M. spicatum (Eurasian watermilfoil) is one of the few examples of a native insect herbivore preferring, growing and surviving better on a nonindigenous host plant than it does on its native host plant. The milfoil weevil’s preference for the nonindigenous plant can be induced during juvenile development or through exposure to Eurasian watermilfoil as an adult. We evaluated how the fecundity of the milfoil weevil was affected over time by juvenile and adult exposure to the native, invasive and invasive × native hybrid milfoils and whether fecundity was correlated with host plant quality. -
Exploring the Potential for Control of Eurasian Watermilfoil by the Milfoil Weevil in Christina Lake, British Columbia
University of Lethbridge Research Repository OPUS https://opus.uleth.ca Theses Arts and Science, Faculty of Frew, Cara Patricia 2016 Exploring the potential for control of Eurasian watermilfoil by the milfoil weevil in Christina Lake, British Columbia Department of Geography https://hdl.handle.net/10133/4773 Downloaded from OPUS, University of Lethbridge Research Repository EXPLORING THE POTENTIAL FOR CONTROL OF EURASIAN WATERMILFOIL BY THE MILFOIL WEEVIL IN CHRISTINA LAKE, BRITISH COLUMBIA CARA FREW Bachelor of Science, University of Lethbridge, 2003 A Thesis Submitted to the School of Graduate Studies of the University of Lethbridge in Partial Fulfilment of the Requirements for the Degree MASTER OF SCIENCE Department of Geography University of Lethbridge LETHBRIDGE, ALBERTA, CANADA © Cara Frew, 2016 EXPLORING THE POTENTIAL FOR CONTROL OF EURASIAN WATERMILFOIL BY THE MILFOIL WEEVIL IN CHRISTINA LAKE, BRITISH COLUMBIA CARA FREW Date of Defence: October 12, 2016 Dr. Dan Johnson Professor Ph.D. Supervisor Dr. Craig Coburn Associate Professor Ph.D. Thesis Examination Committee Member Dr. Joseph Rasmussen Professor Ph.D. Thesis Examination Committee Member Dr. Stefan Kienzle Professor Ph.D. Chair, Thesis Examination Committee ABSTRACT Aquatic invasive plants present a growing risk to the environment and the economy. One of the most problematic invasive plants found in North American waterbodies is Eurasian watermilfoil, Myriophyllum spicatum. Eurasian watermilfoil was inadvertently introduced into Christina Lake, British Columbia, Canada, in the early 1980’s. Physical control methods have been utilized since the plant was first identified in the Lake, but regular intensive management is required to meet control objectives. Variable success has been reported in Ontario lakes and waterbodies in the United States using the milfoil weevil, Euhrychiopsis lecontei as a biological control agent. -
Monitored Releases of Rhinoncomimus Latipes (Coleoptera: Curculionidae), a Biological Control Agent of Mile-A-Minute Weed (Persicaria Perfoliata), 2004–2008
Biological Control 51 (2009) 450–457 Contents lists available at ScienceDirect Biological Control journal homepage: www.elsevier.com/locate/ybcon Monitored releases of Rhinoncomimus latipes (Coleoptera: Curculionidae), a biological control agent of mile-a-minute weed (Persicaria perfoliata), 2004–2008 Judith Hough-Goldstein a,*, Mark A. Mayer b, Wayne Hudson b, George Robbins b, Patricia Morrison c, Richard Reardon d a Department of Entomology & Wildlife Ecology, University of Delaware, Newark, DE 19716-2160, USA b Phillip Alampi Beneficial Insect Laboratory, N.J. Dept. Agric., Trenton, NJ 08625, USA c Ohio River Islands National Wildlife Refuge, Williamstown, WV 26187, USA d USDA Forest Health Technology Enterprise Team, Morgantown, WV 26505, USA article info abstract Article history: Mile-a-minute weed, Persicaria perfoliata (L.) H. Gross, is an invasive annual vine of Asian origin that has Received 2 April 2009 developed extensive monocultures, especially in disturbed open areas in the Mid-Atlantic region of the Accepted 13 August 2009 United States. A host-specific Asian weevil, Rhinoncomimus latipes Korotyaev, was approved for release Available online 19 August 2009 in North America in 2004, and weevils have been reared at the New Jersey Department of Agriculture Beneficial Insect Laboratory since then. By the end of 2007 more than 53,000 weevils had been reared Keywords: and released, mostly in New Jersey, but also in Delaware, Maryland, Pennsylvania, and West Virginia. Persicaria perfoliata The beetles established at 63 out of 65 sites (96.9%) where they were released between 2004 and Polygonum perfoliatum 2007, with successful releases consisting of as few as 200 weevils. -
Forest Health Technology Enterprise Team Biological Control of Invasive
Forest Health Technology Enterprise Team TECHNOLOGY TRANSFER Biological Control Biological Control of Invasive Plants in the Eastern United States Roy Van Driesche Bernd Blossey Mark Hoddle Suzanne Lyon Richard Reardon Forest Health Technology Enterprise Team—Morgantown, West Virginia United States Forest FHTET-2002-04 Department of Service August 2002 Agriculture BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES BIOLOGICAL CONTROL OF INVASIVE PLANTS IN THE EASTERN UNITED STATES Technical Coordinators Roy Van Driesche and Suzanne Lyon Department of Entomology, University of Massachusets, Amherst, MA Bernd Blossey Department of Natural Resources, Cornell University, Ithaca, NY Mark Hoddle Department of Entomology, University of California, Riverside, CA Richard Reardon Forest Health Technology Enterprise Team, USDA, Forest Service, Morgantown, WV USDA Forest Service Publication FHTET-2002-04 ACKNOWLEDGMENTS We thank the authors of the individual chap- We would also like to thank the U.S. Depart- ters for their expertise in reviewing and summariz- ment of Agriculture–Forest Service, Forest Health ing the literature and providing current information Technology Enterprise Team, Morgantown, West on biological control of the major invasive plants in Virginia, for providing funding for the preparation the Eastern United States. and printing of this publication. G. Keith Douce, David Moorhead, and Charles Additional copies of this publication can be or- Bargeron of the Bugwood Network, University of dered from the Bulletin Distribution Center, Uni- Georgia (Tifton, Ga.), managed and digitized the pho- versity of Massachusetts, Amherst, MA 01003, (413) tographs and illustrations used in this publication and 545-2717; or Mark Hoddle, Department of Entomol- produced the CD-ROM accompanying this book. -
An Alfalfa-Related Compound for the Spring Attraction of the Pest Weevil Sitona Humeralis
Patron: Her Majesty The Queen Rothamsted Research Harpenden, Herts, AL5 2JQ Telephone: +44 (0)1582 763133 WeB: http://www.rothamsted.ac.uk/ Rothamsted Repository Download A - Papers appearing in refereed journals Lohonyai, Zs., Vuts, J., Karpati, Zs., Koczor, S., Domingue, M.J., Fail, J., Birkett, M. A., Toth, M. and Imrei, Z. 2019. Benzaldehyde: an alfalfa- related compound for the spring attraction of the pest weevil Sitona humeralis (Coleoptera: Curculionidae). Pest Management Science. 75, p. 3153–3159. The publisher's version can be accessed at: • https://dx.doi.org/10.1002/ps.5431 The output can be accessed at: https://repository.rothamsted.ac.uk/item/96z30/benzaldehyde-an-alfalfa-related- compound-for-the-spring-attraction-of-the-pest-weevil-sitona-humeralis-coleoptera- curculionidae. © 7 May 2019, Please contact [email protected] for copyright queries. 21/11/2019 13:05 repository.rothamsted.ac.uk [email protected] Rothamsted Research is a Company Limited by Guarantee Registered Office: as above. Registered in England No. 2393175. Registered Charity No. 802038. VAT No. 197 4201 51. Founded in 1843 by John Bennet Lawes. Research Article Received: 16 November 2018 Revised: 16 January 2019 Accepted article published: 30 March 2019 Published online in Wiley Online Library: (wileyonlinelibrary.com) DOI 10.1002/ps.5431 Benzaldehyde: an alfalfa-related compound for the spring attraction of the pest weevil Sitona humeralis (Coleoptera: Curculionidae) Zsófia Lohonyai,a,b József Vuts,a,c Zsolt Kárpáti,a Sándor Koczor,a Michael J Domingue,d József Fail,b Michael A Birkett,c Miklós Tótha and Zoltán Imreia* Abstract BACKGROUND: Sitona weevils (Coleoptera: Curculionidae) are a species complex comprising pests of many leguminous crops worldwide, causing damage to young plants as adults and to rootlets as larvae, resulting in significant yield losses. -
Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada
143 Chapter 4 Weevils (Coleoptera: Dryophthoridae, Brachyceridae, Curculionidae) of the Prairies Ecozone in Canada Robert S. Anderson Canadian Museum of Nature, P.O. Box 3443, Station D, Ottawa, Ontario, Canada, K1P 6P4 Email: [email protected] Patrice Bouchard* Canadian National Collection of Insects, Arachnids and Nematodes, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, Canada, K1A 0C6 Email: [email protected] *corresponding author Hume Douglas Entomology, Ottawa Plant Laboratories, Canadian Food Inspection Agency, Building 18, 960 Carling Avenue, Ottawa, ON, Canada, K1A 0C6 Email: [email protected] Abstract. Weevils are a diverse group of plant-feeding beetles and occur in most terrestrial and freshwater ecosystems. This chapter documents the diversity and distribution of 295 weevil species found in the Canadian Prairies Ecozone belonging to the families Dryophthoridae (9 spp.), Brachyceridae (13 spp.), and Curculionidae (273 spp.). Weevils in the Prairies Ecozone represent approximately 34% of the total number of weevil species found in Canada. Notable species with distributions restricted to the Prairies Ecozone, usually occurring in one or two provinces, are candidates for potentially rare or endangered status. Résumé. Les charançons forment un groupe diversifié de coléoptères phytophages et sont présents dans la plupart des écosystèmes terrestres et dulcicoles. Le présent chapitre décrit la diversité et la répartition de 295 espèces de charançons vivant dans l’écozone des prairies qui appartiennent aux familles suivantes : Dryophthoridae (9 spp.), Brachyceridae (13 spp.) et Curculionidae (273 spp.). Les charançons de cette écozone représentent environ 34 % du total des espèces de ce groupe présentes au Canada. Certaines espèces notables, qui ne se trouvent que dans cette écozone — habituellement dans une ou deux provinces — mériteraient d’être désignées rares ou en danger de disparition. -
Feeding and Oviposition Behavior of Rhinoncomimus
BIOLOGICAL CONTROLÐWEEDS Feeding and Oviposition Behavior of Rhinoncomimus latipes Korotyaev (Coleoptera: Curculionidae) and Its Predicted Effectiveness as a Biological Control Agent for Polygonum perfoliatum L. (Polygonales: Polygonaceae) 1 2 K. COLPETZER, J. HOUGH-GOLDSTEIN, K. R. HARKINS, AND M. T. SMITH Delaware Agricultural Experiment Station, Department ofEntomology and WildlifeEcology, College ofAgriculture and Natural Resources, University ofDelaware, Newark, DE 19716Ð2160 Environ. Entomol. 33(4): 990Ð996 (2004) ABSTRACT Feeding and oviposition on different parts of mile-a-minute weed, Polygonum perfo- liatum L. (Polygonales: Polygonaceae), by Rhinoncomimus latipes Korotyaev (Coleoptera: Curcu- lionidae), a potential biological control agent for the weed, were studied in quarantine. An additional experiment was conducted to test the effects of different levels of simulated damage by R. latipes on P. perfoliatum growth, survival, and reproduction. Female weevils consumed more P. perfoliatum overall than males and selectively fed on capitula more than on ocreae or leaves, whereas males fed more on ocreae than on leaves or capitula. More eggs were also laid on capitula than on other plant parts. Female feeding preference is probably because of the high protein content of the capitula, because protein is required for continued egg production, whereas males may maximize their reproductive success by feeding low and close to P. perfoliatum stems to intercept females as they emerge from pupation in the soil and ascend the plants to feed. The feeding and oviposition preferences of female R. latipes for plant capitula suggest that host speciÞcity tests for this species should be conducted with plants that are ßowering. Damage that simulated the effect of R. -
Resume Wizard
Department of Entomology, Rutgers University Blueberry & Cranberry Research Center, Chatsw orth, NJ 08019 USA e-mail: [email protected]; Phone: (609) 726-1590 Ext. 4412; Fax: (609) 726-1593 César R. Rodríguez-Saona PROGRAM GOALS AND AREAS OF EXPERTISE Program Goals : The goal of my Research Program is the development and implementation of cost-effective reduced-risk Integrated Pest Management (IPM) practices for blueberries and cranberries. This goal is achieved through the integration of chemic al, behavioral, and biological methods in insect control and by gaining, through empirically anchored research, a better understanding on the ecology of pe sts and their natural enemies. M y Extension Program delivers IPM information to growers by conducting on-farm demonstration trials, presentations, and extension publications. Areas of Expertise include IPM, Tritrophic Interactions, Biological Control, Insect Chemical Ecology, Insect-Plant Interactions, and Host -Plant Resistance. PROGRAM BY THE NUMBERS PUBLICATIONS = 231 REFEREED JOURNALS = 128 BOOK CHAPTERS AND INVITED PUBLICATIONS = 16 ARTHROPOD MANAGEMENT TESTS (EDITOR-REVIEWED JOURNAL) = 32 NON-REFEREED AND EXTENSION PUBLICATIONS = 55 PRESENTATIONS = 354 INVITED TALKS = 96 PROFESSIONAL MEETINGS (SINCE 2006) = 118 EXTENSION TALKS = 140 POST-DOCS/VISITING SCHOLARS/STUDENT ME NTORING = 68 GRANTS = $ 7,850,397 COMPETITIVE EXTERNAL = $ 4,750,085 COMPETITIVE INTERNAL = $ 143,103 NON-COMPETITIVE = $ 1,957,563 GRANTS-IN-AID AND SERVICE FEES = $ 894,574 h-Index (AS OF NOVEMBER 2020) W EB OF SCIENCE 29 SCOPUS 30 GOOGLE SCHOLAR 38 RG SCORE (AS OF NOVEMBER 2020) RESEARCH GATE 38.34 (h-index = 35) ORCID 0000-0001-5888-1769 W eb sites https://sites.rutgers.edu/cesar-rodriguez -saona/ https://entomology.rutgers.edu/personnel/cesar-rodriguez-saona.html https://pemaruccicenter.rutgers.edu/entomology/ EDUCATION Ph.D.