List of Arthropod Pests and Their Natural Enemies Identified Worldwide on Date Palm, Phoenix Dactylifera L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Apate Terebrans (Pallas) (Coleoptera: Bostrychidae) Atacando Árvores De Nim No Brasil
May - June 2009 437 SCIENTIFIC NOTE Apate terebrans (Pallas) (Coleoptera: Bostrychidae) Atacando Árvores de Nim no Brasil RODOLFO M DE SOUZA, NORIVALDO DOS ANJOS, SHEILA A MOURÃO Lab. de Manejo de Pragas Florestais, Depto. de Biologia Animal, Univ. Federal de Viçosa, Av. Peter Henry Rolfs, s/n. Campus Universitário, 36570-000, Viçosa, MG; [email protected]; [email protected]; [email protected] Edited by André L Lourenção – IAC Neotropical Entomology 38(3):437-439 (2009) Apate terebrans (Pallas) (Coleoptera: Bostrychidae) Attacking Neem Trees in Brazil ABSTRACT - This paper describes and records the attack of adults Apate terebrans (Pallas) to a neem plantation located in Guarani, State of Minas Gerais, Brazil, in March 2007. The damage was characterized by a hole in the trunk, from where the shot-hole-borer enters constructing tunnels and feeding on the wood. This is the fi rst record of A. terebrans attacking neem trees in Brazil. KEY WORDS: Insecta, shot-hole-borer, Azadirachta indica, Meliaceae, forest entomology RESUMO - Este trabalho registra e descreve o ataque de adultos de Apate terebrans (Pallas) a um plantio de nim, localizado em Guarani, MG, em março de 2007. O dano é caracterizado por um furo no tronco, por onde a broca entra, construindo túneis para se alimentar. Este é o primeiro registro de A. terebrans atacando árvores de nim no Brasil. PALAVRAS-CHAVE: Insecta, broca-do-tronco, Azadirachta indica, Meliaceae, entomologia fl orestal O nim, Azadirachta indica (Meliaceae), nativo da Índia, e transformam-se em pupas em árvores mortas ou doentes, possui valor comercial devido principalmente à presença de diferentes daquelas utilizadas pelos adultos que se alimentam princípios ativos em suas sementes, folhas, frutos e raízes, os de madeira viva em troncos e galhos de árvores jovens e quais são usados na medicina e como agrotóxicos naturais sadias (Browne 1968). -
ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116
ISSN: 2320-5407 Int. J. Adv. Res. 4(8), 2099-2116 Journal Homepage: - www.journalijar.com Article DOI: Article DOI: 10.21474/IJAR01/1427 DOI URL: http://dx.doi.org/10.21474/IJAR01/1427 RESEARCH ARTICLE INSECT PESTS OF FORESTRY PLANTS AND THEIR MANAGEMENT. Meeta Sharma Arid Forest Research Institute, Jodhpur (Rajasthan)-342005. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Indian arid zone covers 31.7 million ha hot desert and 0.78 million ha cold desert, which is about 12 percent of the country‟s total Received: 12 June 2016 geographical area. The mean annual rainfall in the region varies from Final Accepted: 19 July 2016 100 mm in the north- western sector of Jaisalmer to 550 mm in eastern Published: August 2016 districts of Rajasthan, Gujarat and Haryana. The rainfall is highly erratic having 65 percent coefficient of variability. The vegetation in Key words:- the Indian arid zone is very sparse , scanty and thorny. However, the Forest, Bruchid, Parasitoid.. forests and trees like many other plants, suffer from attack by insect pests and diseases which cause a lot of damage, resulting in poor tree growth, poor timber quality, and in some cases, complete destruction and reduction of forest cover in Indian arid zone also. Thus, trees and forests need to be protected from these agents of destruction. With the ever increasing human and livestock population, the amount of forest per capita is declining particularly in the less industrialized or developing areas of the world. It is estimated that the land under forest in developing countries is about 2100 million hectares, or more than half of the forested land on earth. -
Synergistic Mixtures for Controlling Invertebrate Pests Containing An
(19) TZZ ¥__T (11) EP 2 263 461 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: A01N 43/56 (2006.01) A01N 61/00 (2006.01) 12.12.2012 Bulletin 2012/50 (21) Application number: 10009776.5 (22) Date of filing: 30.06.2005 (54) Synergistic mixtures for controlling invertebrate pests containing an anthanilamide compound and a lip biosynthesis inhibitor Synergistische Mischungen zur Bekämpfung von wirbelosen Lästlingen enthaltend ein Anthranilamid und einen Lipidbiosynthese-Hemmer Mélanges synergiques pour la lutte contre les invertébrés comprenant une anthranilamide et un inhibiteur de la biosynthèse lipidique (84) Designated Contracting States: • Lahm, Philip George AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Wilmington, DE 19808 (US) HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR • Stevenson, Thomas Martin Newark, DE 19702 (US) (30) Priority: 01.07.2004 US 584601 P • Portillo, Hector Eduardo 29.03.2005 US 666073 P Newark, Delaware 19702 (US) • Flexner, John Lindsay (43) Date of publication of application: Landenberg, Pennsylvania 19350 (US) 22.12.2010 Bulletin 2010/51 (74) Representative: Beacham, Annabel Rose (62) Document number(s) of the earlier application(s) in Dehns accordance with Art. 76 EPC: St Bride’s House 09002571.9 / 2 060 179 10 Salisbury Square 05770891.9 / 1 778 012 London EC4Y 8JD (GB) (73) Proprietor: E. I. du Pont de Nemours and Company Wilmington, DE 19898 (US) (56) References cited: WO-A-03/015518 WO-A-03/015519 (72) Inventors: WO-A1-03/024222 • Annan, Isaac Billy Newark, Delaware 19711 (US) Remarks: • Selby, Thomas Paul Thefile contains technical information submitted after Hockessin, DE 19707 (US) the application was filed and not included in this specification Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. -
Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence
When the Body Hides the Ancestry: Phylogeny of Morphologically Modified Epizoic Earwigs Based on Molecular Evidence Petr Kocarek1*, Vaclav John2, Pavel Hulva2,3 1 Department of Biology and Ecology, Faculty of Science, University of Ostrava, Ostrava, Czech Republic, 2 Department of Zoology, Faculty of Science, Charles University in Prague, Prague, Czech Republic, 3 Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic Abstract Here, we present a study regarding the phylogenetic positions of two enigmatic earwig lineages whose unique phenotypic traits evolved in connection with ectoparasitic relationships with mammals. Extant earwigs (Dermaptera) have traditionally been divided into three suborders: the Hemimerina, Arixeniina, and Forficulina. While the Forficulina are typical, well-known, free-living earwigs, the Hemimerina and Arixeniina are unusual epizoic groups living on molossid bats (Arixeniina) or murid rodents (Hemimerina). The monophyly of both epizoic lineages is well established, but their relationship to the remainder of the Dermaptera is controversial because of their extremely modified morphology with paedomorphic features. We present phylogenetic analyses that include molecular data (18S and 28S ribosomal DNA and histone-3) for both Arixeniina and Hemimerina for the first time. This data set enabled us to apply a rigorous cladistics approach and to test competing hypotheses that were previously scattered in the literature. Our results demonstrate that Arixeniidae and Hemimeridae belong in the dermapteran suborder Neodermaptera, infraorder Epidermaptera, and superfamily Forficuloidea. The results support the sister group relationships of Arixeniidae+Chelisochidae and Hemimeridae+Forficulidae. This study demonstrates the potential for rapid and substantial macroevolutionary changes at the morphological level as related to adaptive evolution, in this case linked to the utilization of a novel trophic niche based on an epizoic life strategy. -
Evaluation Des Caractéristiques Biologiques D'ectomyelois Ceratoniae (Zeller, 1839) (Lepidoptera
ﺭﻤﺠ ﺭﺋﺠ ﻁﺭﻗﻤﺪ ﻌﺸ République Algérienne Démocratique et Populaire ﺭ ﻢﻌﺘ ﻌ ﺚﺤ ﻤﻌ Ministère de l’Enseignement Supérieur et de la Recherche Scientifique Université Mohamed Khider Biskra Faculté des sciences exactes et sciences de la nature et de la vie Département des Sciences Agronomiques THÈSE Pour l’obtention du Diplôme de Doctorat En Sciences Agronomiques Evaluation des caractéristiques biologiques d'Ectomyelois ceratoniae (Zeller, 1839) (Lepidoptera, pyralidae) dans les conditions naturelles et contrôlées. Stockage, conservation et lutte Présenté par : Mohamed Kamel BENSALAH Devant le jury composé de : Président Mr BELHAMRA M. Professeur Université Khider M. Biskra Promoteur Mr OUAKID M.L. Professeur Université Badji M. Annaba Examinateurs: Mme HABBACHI W. Maitre de conférences A Université Badji M. Annaba Mr TARAI N. Maitre de conférences A Université Khider M. Biskra Mr ADAMOU A. Maitre de conférences A Université Tledji A. Laghouat Année Universitaire : 2014 - 2015 REMERCIEMENTS REMERCIEMENTS Ces quelques lignes vont me permettre de remercier toutes les personnes qui m’ont beaucoup apporté au niveau scientifique mais aussi personnel, et sans qui, mon travail n’aurait pu aboutir. En tout premier lieu, je remercie, Monsieur BELHAMRA Mohamed Professeur à l’Université Mohamed KHIDER de m’avoir fait l’honneur de présider le jury de ma thèse. Malgré vos multiples occupations et responsabilités vous avez toujours su m'apporter les conseils scientifiques judicieux qui s'imposent. Vos conseils et remarques pertinents m'ont toujours poussé à faire mieux. A vrai dire je ne saurai assez vous exprimer ma reconnaissance et ma profonde gratitude. Je remercie vivement Madame HABBACHI Wafa maitre de conférences A à Université Badji Mokhtar. -
Chapter 15. Central and Eastern Africa: Overview
Chapter 15 Chapter 15 CENTRAL AND EASTERN AFRICA: OVERVIEW The region as treated here is comprised mainly of Angola, Cameroon, Central African Republic, Congo (Brazzaville), Congo (Kinshasa) (formerly Zaire), Kenya, Malawi, Tanzania, Uganda, and Zambia. The wide variety of insects eaten includes at least 163 species, 121 genera, 34 families and 10 orders. Of this group the specific identity is known for 128 species, only the generic identity for another 21, only the family identity of another 12 and only the order identity of one. Gomez et al (1961) estimated that insects furnished 10% of the animal proteins produced annually in Congo (Kinshasa). Yet, in this region, as in others, insect use has been greatly under-reported and under-studied. Until recently, for example, the specific identity was known for fewer than twenty species of insects used in Congo (Kinshasa), but, in a careful study confined only to caterpillars and only to the southern part of the country, Malaisse and Parent (1980) distinguished 35 species of caterpillars used as food. The extent of insect use throughout the region is probably similar to that in Congo (Kinshasa) and Zambia, the best-studied countries. Research is needed. Caterpillars and termites are the most widely marketed insects in the region, but many others are also important from the food standpoint, nutritionally, economically or ecologically. As stated by this author (DeFoliart 1989): "One can't help but wonder what the ecological and nutritional maps of Africa might look like today if more effort had been directed toward developing some of these caterpillar, termite, and other food insect resources." The inclusion of food insects in the Africa-wide Exhibition on Indigenous Food Technologies held in Nairobi, Kenya, in 1995 is indicative of the resurgence of interest in this resource by the scientific community of the continent. -
The Evolution and Genomic Basis of Beetle Diversity
The evolution and genomic basis of beetle diversity Duane D. McKennaa,b,1,2, Seunggwan Shina,b,2, Dirk Ahrensc, Michael Balked, Cristian Beza-Bezaa,b, Dave J. Clarkea,b, Alexander Donathe, Hermes E. Escalonae,f,g, Frank Friedrichh, Harald Letschi, Shanlin Liuj, David Maddisonk, Christoph Mayere, Bernhard Misofe, Peyton J. Murina, Oliver Niehuisg, Ralph S. Petersc, Lars Podsiadlowskie, l m l,n o f l Hans Pohl , Erin D. Scully , Evgeny V. Yan , Xin Zhou , Adam Slipinski , and Rolf G. Beutel aDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; bCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; cCenter for Taxonomy and Evolutionary Research, Arthropoda Department, Zoologisches Forschungsmuseum Alexander Koenig, 53113 Bonn, Germany; dBavarian State Collection of Zoology, Bavarian Natural History Collections, 81247 Munich, Germany; eCenter for Molecular Biodiversity Research, Zoological Research Museum Alexander Koenig, 53113 Bonn, Germany; fAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; gDepartment of Evolutionary Biology and Ecology, Institute for Biology I (Zoology), University of Freiburg, 79104 Freiburg, Germany; hInstitute of Zoology, University of Hamburg, D-20146 Hamburg, Germany; iDepartment of Botany and Biodiversity Research, University of Wien, Wien 1030, Austria; jChina National GeneBank, BGI-Shenzhen, 518083 Guangdong, People’s Republic of China; kDepartment of Integrative Biology, Oregon State -
Circularly Polarized Reflection from the Scarab Beetle Chalcothea Smaragdina: Rsfs.Royalsocietypublishing.Org Light Scattering by a Dual Photonic Structure
Circularly polarized reflection from the scarab beetle Chalcothea smaragdina: rsfs.royalsocietypublishing.org light scattering by a dual photonic structure Luke T. McDonald1,2, Ewan D. Finlayson1, Bodo D. Wilts3 and Pete Vukusic1 Research 1Department of Physics and Astronomy, University of Exeter, Stocker Road, Exeter EX4 4QL, UK 2School of Biological, Earth and Environmental Sciences, University College Cork, North Mall Campus, Cork, Cite this article: McDonald LT, Finlayson ED, Republic of Ireland Wilts BD, Vukusic P. 2017 Circularly polarized 3Adolphe Merkle Institute, University of Fribourg, Chemin des Verdiers 4, 1700 Fribourg, Switzerland reflection from the scarab beetle Chalcothea LTM, 0000-0003-0896-1415; EDF, 0000-0002-0433-5313; BDW, 0000-0002-2727-7128 smaragdina: light scattering by a dual photonic structure. Interface Focus 7: 20160129. Helicoidal architectures comprising various polysaccharides, such as chitin http://dx.doi.org/10.1098/rsfs.2016.0129 and cellulose, have been reported in biological systems. In some cases, these architectures exhibit stunning optical properties analogous to ordered cholesteric liquid crystal phases. In this work, we characterize the circularly One contribution of 17 to a theme issue polarized reflectance and optical scattering from the cuticle of the beetle ‘Growth and function of complex forms in Chalcothea smaragdina (Coleoptera: Scarabaeidae: Cetoniinae) using optical biological tissue and synthetic self-assembly’. experiments, simulations and structural analysis. The selective reflection of left-handed circularly polarized light is attributed to a Bouligand-type Subject Areas: helicoidal morphology within the beetle’s exocuticle. Using electron microscopy to inform electromagnetic simulations of this anisotropic strati- biomaterials fied medium, the inextricable connection between the colour appearance of C. -
Anza-Borrego Desert State Park Bibliography Compiled and Edited by Jim Dice
Steele/Burnand Anza-Borrego Desert Research Center University of California, Irvine UCI – NATURE and UC Natural Reserve System California State Parks – Colorado Desert District Anza-Borrego Desert State Park & Anza-Borrego Foundation Anza-Borrego Desert State Park Bibliography Compiled and Edited by Jim Dice (revised 1/31/2019) A gaggle of geneticists in Borrego Palm Canyon – 1975. (L-R, Dr. Theodosius Dobzhansky, Dr. Steve Bryant, Dr. Richard Lewontin, Dr. Steve Jones, Dr. TimEDITOR’S Prout. Photo NOTE by Dr. John Moore, courtesy of Steve Jones) Editor’s Note The publications cited in this volume specifically mention and/or discuss Anza-Borrego Desert State Park, locations and/or features known to occur within the present-day boundaries of Anza-Borrego Desert State Park, biological, geological, paleontological or anthropological specimens collected from localities within the present-day boundaries of Anza-Borrego Desert State Park, or events that have occurred within those same boundaries. This compendium is not now, nor will it ever be complete (barring, of course, the end of the Earth or the Park). Many, many people have helped to corral the references contained herein (see below). Any errors of omission and comission are the fault of the editor – who would be grateful to have such errors and omissions pointed out! [[email protected]] ACKNOWLEDGEMENTS As mentioned above, many many people have contributed to building this database of knowledge about Anza-Borrego Desert State Park. A quantum leap was taken somewhere in 2016-17 when Kevin Browne introduced me to Google Scholar – and we were off to the races. Elaine Tulving deserves a special mention for her assistance in dealing with formatting issues, keeping printers working, filing hard copies, ignoring occasional foul language – occasionally falling prey to it herself, and occasionally livening things up with an exclamation of “oh come on now, you just made that word up!” Bob Theriault assisted in many ways and now has a lifetime job, if he wants it, entering these references into Zotero. -
The Diversity of the Family Cetoniidae (Coleoptera: Scarabaeoidea) of Mountain Ozren (Bosnia and Herzegovina)
Acta entomologica serbica, 2013, 18(1/2): 55-67 UDC 595.764(497.6) THE DIVERSITY OF THE FAMILY CETONIIDAE (COLEOPTERA: SCARABAEOIDEA) OF MOUNTAIN OZREN (BOSNIA AND HERZEGOVINA) MIRZETA KAŠIĆ-LELO*, SUVAD LELO and ADI VESNIĆ Faculty of Natural Sciences and Mathematics, Biology Department Zmaja od Bosne 33 71000 Sarajevo, Bosnia and Herzegovina * E-mail: [email protected] Abstract From April to September of 2008 and 2009 samples of family Cetoniidae Leach, 1815 were collected on the vertical profile of the southern slopes of Mount Ozren near Sarajevo. Research was conducted at six selected localities: Orlovac, Nahorevo, Čavljak, Skakvac, Bukovik and Crepoljsko. After 41 field investigations, 594 individuals were collected and determined as representatives of seven species. Collected data were processed with statistical software Biodiversity Pro and with options Diversity/Compare diversities: Alpha index; Berger-Parker index; Simpsons index; Margaleff index; Mackintosh index; Bray-Curtis Cluster Analysis: Single Link. By comparison of data it was concluded that Skakavac represents the typical locality for southern slopes of Mount Ozren. The species Oxythyrea funesta (Poda, 1761) is the most numerous faunistic element that was found. KEY WORDS: Cetoniidae, fauna, biodiversity, Ozren, Sarajevo, Bosnia and Herzegovina Introduction After World War II the most important data on flower chafer Cetoniidae Leach, 1815 of Bosnia and Herzegovina were given by Rene MIKŠIĆ who investigated the area of Bosnia and Herzegovina, the entire Balkan Peninsula and most of the Palaearctic (MIKŠIĆ, 1950, 1953, 1956, 1958, 1962, 1965, 1970, 1976, 1977, 1980, 1982, 1987, e.g.). What little research done on this group after the war events in Bosnia and Herzegovina from 1992-1995 was undertaken mostly by authors of this paper (LELO, 2000, 2003; LELO & KAŠIĆ-LELO, 2006a, 2006b, 2007; LELO & ŠKRIJELJ, 2001; KAŠIĆ-LELO, 2005, 2011; KAŠIĆ-LELO & LELO, 2005, 2006, 2007, 2009a, 2009b; KAŠIĆ-LELO et al., 2006), but it has been so little that it can be said that no 56 M. -
(Coleoptera) from European Eocene Ambers
geosciences Review A Review of the Curculionoidea (Coleoptera) from European Eocene Ambers Andrei A. Legalov 1,2 1 Institute of Systematics and Ecology of Animals, Siberian Branch, Russian Academy of Sciences, Frunze Street 11, 630091 Novosibirsk, Russia; [email protected]; Tel.: +7-9139471413 2 Biological Institute, Tomsk State University, Lenina Prospekt 36, 634050 Tomsk, Russia Received: 16 October 2019; Accepted: 23 December 2019; Published: 30 December 2019 Abstract: All 142 known species of Curculionoidea in Eocene amber are documented, including one species of Nemonychidae, 16 species of Anthribidae, six species of Belidae, 10 species of Rhynchitidae, 13 species of Brentidae, 70 species of Curcuionidae, two species of Platypodidae, and 24 species of Scolytidae. Oise amber has eight species, Baltic amber has 118 species, and Rovno amber has 16 species. Nine new genera and 18 new species are described from Baltic amber. Four new synonyms are noted: Palaeometrioxena Legalov, 2012, syn. nov. is synonymous with Archimetrioxena Voss, 1953; Paleopissodes weigangae Ulke, 1947, syn. nov. is synonymous with Electrotribus theryi Hustache, 1942; Electrotribus erectosquamata Rheinheimer, 2007, syn. nov. is synonymous with Succinostyphlus mroczkowskii Kuska, 1996; Protonaupactus Zherikhin, 1971, syn. nov. is synonymous with Paonaupactus Voss, 1953. Keys for Eocene amber Curculionoidea are given. There are the first records of Aedemonini and Camarotini, and genera Limalophus and Cenocephalus in Baltic amber. Keywords: Coleoptera; Curculionoidea; fossil weevil; new taxa; keys; Palaeogene 1. Introduction The Curculionoidea are one of the largest and most diverse groups of beetles, including more than 62,000 species [1] comprising 11 families [2,3]. They have a complex morphological structure [2–7], ecological confinement, and diverse trophic links [1], which makes them a convenient group for characterizing modern and fossil biocenoses. -
Coleoptera) 69 Doi: 10.3897/Zookeys.481.8294 RESEARCH ARTICLE Launched to Accelerate Biodiversity Research
A peer-reviewed open-access journal ZooKeys 481: 69–108 (2015) The Bostrichidae of the Maltese Islands( Coleoptera) 69 doi: 10.3897/zookeys.481.8294 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research The Bostrichidae of the Maltese Islands (Coleoptera) Gianluca Nardi1, David Mifsud2 1 Centro Nazionale per lo Studio e la Conservazione della Biodiversità Forestale “Bosco Fontana”, Sede di Bosco Fontana – Corpo Forestale dello Stato, Strada Mantova 29, I-46045 Marmirolo (MN), Italy 2 Institute of Earth Systems, Division of Rural Sciences and Food Systems, University of Malta, Msida MSD 2080, Malta Corresponding author: Gianluca Nardi ([email protected]) Academic editor: C. Majka | Received 17 June 2014 | Accepted 6 January 2015 | Published 4 February 2015 http://zoobank.org/4AB90367-FE56-41C0-8825-16E953E46CEC Citation: Nardi G, Mifsud D (2015) The Bostrichidae of the Maltese Islands (Coleoptera). ZooKeys 481: 69–108. doi: 10.3897/zookeys.481.8294 Abstract The Bostrichidae of the Maltese Islands are reviewed. Ten species are recorded with certainty from this Archipelago, of which 6 namely, Trogoxylon impressum (Comolli, 1837), Amphicerus bimaculatus (A.G. Olivier, 1790), Heterobostrychus aequalis (Waterhouse, 1884), Sinoxylon unidentatum (Fabricius, 1801), Xyloperthella picea (A.G. Olivier, 1790) and Apate monachus Fabricius, 1775 are recorded for the first time. Two of the mentioned species (H. aequalis and S. unidentatum) are alien and recorded only on the basis of single captures and the possible establishment of these species is discussed. Earlier records of Scobicia pustulata (Fabricius, 1801) from Malta are incorrect and should be attributed to S. chevrieri (A. Villa & J.B. Villa, 1835).