Chromosomal Diversity in Scorpaenidae ( Teleostei

Total Page:16

File Type:pdf, Size:1020Kb

Chromosomal Diversity in Scorpaenidae ( Teleostei C 1997 The Japan Mendel Society Cytologia 62 : 397 - 404, 1997 Chromosomal Diversity in Scorpaenidae ( Teleostei, Scorpaeniformes ) : Cytogenetic Studies in Scorpaena brasiliensis and Scorpaena isthmensis from the Coast of Rio de Janeiro, Brazil Margaret Mariade OliveiraCorre1 and Pedro ManoelGaletti Junior2 1Universidade Federal doRio de Janeiro , DepartamentodeZoologia, IB-21941 -590, Rio de Janeiro, RJ,Brazil 2Universidade Federal deSao Carlos , DepartamentodeGenetica e Evolucao -13565 -905 , Sao Carlos, SP,Brazil Accepted October 15, 1997 The Scorpaeniformes are morphologically quite diverse representing the fifth largest order of fish, in which most of the species are marine (Nelson 1994). A bony suborbital stay extending pos- teriorly from the third infraorbital to the preopercle, has been reported as the unique morphological character defining this fish group (Washington et al. 1984a ). This order shows a confuse taxonomy and their phylogenetic relationships are poorly known. Among these fishes, the family Scor - paenidae has approximately 400 species widely distributed in shallow waters of tropical and tem- perate seas, living on rockies, corals, sandys and algae's bottoms (Nelson 1994). Although most of the cytogenetic works in this family describe only the gross karyotype structure, some others have described the heterochromatin distribution pattern (C-banding), the nucleolar organizer regions (Ag-NOR) (Thode et al. 1985, Yokoyama et al. 1992) and replication bands (Giles et al. 1988) in few species. The scorpaenids show a significative chromosome diversity, specially the subfamily Scorpaeninae, whose diploid numbers vary 34 to 48 (Nogusa 1960, Cataudella et al. 1973 , among others). In the present study the Giemsa staining karyotypes, the nucleolar organizer regions (Ag and mithramycin staining) and the C-banded heterochromatin of Scorpaena brasiliensis and S. isthmen - sis are described, and also showed a significant chromosome divergence observed between them which may be related to centric fusion and pericentric inversions. Materials and methods Two individuals (one female and one male) of Scorpaena brasiliensis and 21 of Scorpaena isthmensis (8 females, 12 males and one individual of sex undetermined) were studied. The speci- mens were collected in Guanabara Bay, in the coast of Rio de Janeiro State (Brazil), by scuba div- ing in Botafogo Creek (22•‹56'34"S-43•‹9'42"W) and with a trawlnet in Central Channel (22•‹49'24"S; 43•‹08'36"W-22•‹47'48"S; 43•‹08'36"W). The specimens were deposited in the Ichthyological Collection of the Museu Nacional, of Uni - versidade Federal do Rio de Janeiro, and registered with numbers MNRJ 13566—MNRJ 13567 (Scorpaena brasiliensis) and MNRJ 13568 to MNRJ13580—MNRJ 14263 to MNRJ 14266 (Scor - paena isthmensis). The chromosome preparations were made by direct method from the kidney cells as described by Brum et al. (1992) or sometimes a short term culture method for solid tissue was applied (Fenocchio et al. 1991). In order to improve the quality and quantity of metaphase cells, an yeast suspension was administered before the direct preparations (Lee and Elder 1980). The nucleolar or- ganizer regions were visualized by silver nitrate (Howell and Black 1980) and mithramycin A stain- ing (MM), which was carried out as described by Schmid (1980 ). The C-banding was performed 398 Margaret Maria de Oliveira Correa and Pedro Manoel Galetti Junior Cytologia 62 according to the method by Sumner (1972). Results Scorpaena brasiliensis showed 2n=46, consisting of 14 metacentric-submetacentrics (M-SM) and 32 subtelocentric and acrocentric (ST-A) chromosomes, fundamental number (FN)=60, in males and females (Fig. 1). S. isthmensis showed 2n=40 and FN=54, consisting of 14 M-SM and 26 ST-A in both sexes (Fig. 2). C-banding revealed the presence of small centromeric heterochomatin blocks in almost all chromosomes of both species (Figs. 3, 4). In S. brasiliensis, a conspicuous heterochromatic block was also observed on the short arm of a medium-sized submetacentric pair. The silver nitrate and Fig . 1 . Karyotype of Scorpaena brasiliensis. The bar equals 10ƒÊm. 1997 Chromosomal Diversity in Scorpaenids from Brazil 399 Fig . 2 . Karyotype of Scorpaena isthmensis. The bar equals 10ƒÊm. mithramycin A staining revealed two submetacentric chromosomes (pair 2) bearing telomeric NOR sites on the short arms in S. brasilensis, apparently coincident with the conspicuous telomeric hete- rochromatic blocks (Fig. 3A, B). In S. isthmensis these sites were identified in a comparable chro- mosome region, but in the chromosome pair 5 (Fig. 4A, B). Moreover, size heteromorphisms be- tween the homologous NOR were detected in S. brasiliensis (Fig. 3A, B). Discussion The results presented in this study, along with data from the literature, show the existence of a great karyotypical diversity in the family Scorpaenidae. This is specially true for the subfamily 400 Margaret Maria de Oliveira Correa and Pedro Manoel Galetti Junior Cytologia 62 A B Fig. 3. C-banding in Scorpaena brasiliensis; A) NOR-bearing chromosomes (Pair 2) through Ag stain- ing; B) NOR-bearing chromosomes through MM staining. Scorpaeninae. This subfamily has probably undergone a great number of chromosomal rearrange- ments during its evolution. However, some of its species still show a diploid number of 48 chromo- somes. On the other hand, in the subfamily Sebastinae, the chromosomal evolution has been appar- ently more conservative. In this subfamily, 90% of the species have 48 chromosomes, with FN of 50 in 80% of these species (Table 1). Ohno (1974), in a classic study on fish cytogenetics, suggested that the ancestral karyotype of the Teleostei has 48 acrocentric chromosomes. Recently, Brum (1995) observed that this karyotype could be an evolutionary novelty of the Clupeocephala shared by the Euteleostei. Among the latter, the Scorpaeniformes (Nogusa 1960, Arai and Fujiki 1978, Yokoyama et al. 1992, present study, among others) and the Perciformes (Denton 1973, Ohno 1974, Sola et al. 1981, Cano et al. 1982, Oliveira et al. 1988, Brum 1995, among others) have apparently maintained that basic structure in their karyotypes. According to Regan (1913), the family Scorpaenidae, which is the most generalized group in the Scorpaeniformes, is strictly related to the more generalized Perciformes (e.g. Serranidae), and it has been suggested that the families Scorpaenidae and Serranidae share a common ancestor (Frei- hofer 1963). Moreover, it has been suggested that the primitive, karyotype of the Serranidae has 48 acrocentric chromosomes (FN=48), with some species presenting 2n=48 and FN=50 (Aguilar and Galetti 1997, among others). Thus, up to now, the hypothesis of a 2n=48, FN=50 karyotype as the ancestral state in the Scorpaeniformes seems consistent. This karyotype has remained almost un- changed in the Sebastinae, undergoing more remarkable modifications in the Scorpaeninae. This difference corroborates the idea that Sebastinae is a more generalized group, while the Scorpaeni- nae is a more derived one (Matsubara apud Washington et al. 1984a). Chromosomal markers, other 1997 Chromosomal Diversity in Scorpaenids from Brazil 401 A B Fig. 4. C-banding in Scorpaena isthmensis; A) NOR-bearing chromosomes (pair 5) through Ag stain- ing; B) NOR-bearing chromosomes through MM staining. than 2n and FN, should be investigated in order to exclude thoroughly the possibility of convergent evolution in the karyotypes of Scorpaenidae and Serranidae. Taking into account the presumable primitive karyotye of the Scorpaeniformes (2n=48 and FN=50), the two species of Scorpaena here studied have diminished their karyotype structure through several chromosome rearrangements. In S. brasiliensis at least one centric fusion and six pericentric inversions have apparently taken place (Fig. 1). In S. isthmensis three centric fusions and at least three or four pericentric inversions may have occurred (Fig. 2). In the remaining subfamilies of Scorpaenidae which show wide divergence in the karyotype structure and diploid number almost invariable (Table 1), pericentric inversions must have mainly occurred. These three subfamilies are believed to be more specialized than the Sebastinae (Wash- ington et al. 1984b), and the occurrence of sexual chromosomes in Hypodytes rubripinnis (Ueno and Kong 1992) corroborates the hypothesis of derivation in their FN values. Silver nitrate staining in 10 scorpaenid species have demonstrated up to two NOR-bearing chromosomes per complement, although the NOR sites can be found in different chromosomes among species (Thode et al. 1985, Yokoyama et al. 1992). In both Scorpaena species here studied only two chromosomes were detected bearing NORs, and due to their morphological similarity, it is quite probable that they are homologous between both species. The size heteromorphism between homologous NORs detected in S. brasiliensis, have also been reported in S. porcus and S. notata (Thode et al. 1985) and is a widespread phenomenon among fishes (Foresti et al. 1981). Except to the Ag-NOR sites, no other chromosome regions showed positive bands after 402 Margaret Maria de Oliveira Correa and Pedro Manoel Galetti Junior Cytologia 62 Table 1 . Summary of the karyotypic data of the family Scorpaenidae mithramycin staining in both Scorpaena species. Similar results have been several times described in fishes (e.g. Schmid and Guttenbach 1988). Few heterochromatin segments were detected in both species and reductions of these segments also appear to have an important
Recommended publications
  • Eastslope Sculpin (Cottus Sp.) in Alberta
    COSEWIC Assessment and Status Report on the "Eastslope" Sculpin Cottus sp. in Canada St. Mary and Milk River populations THREATENED 2005 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2005. COSEWIC assessment and status report on the "eastslope" sculpin (St. Mary and Milk River population) Cottus sp. in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 30 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: This document is based on a report by Susan M. Pollard prepared for Alberta Sustainable Resource Development, Fish and Wildlife Division and the Alberta Conservation Association. The original report was published as Alberta Wildlife Status Report No. 51, February 2004, and is entitled Status of the St. Mary Shorthead Sculpin (provisionally Cottus bairdi punctulatus) in Alberta. Funding for the preparation of the original status report was provided by the Alberta Conservation Association and the Fish and Wildlife Division of Alberta Sustainable Resource Development. This document was overseen and edited by Bob Campbell, the COSEWIC Freshwater Fish Species Specialist Subcommittee Co- chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Ếgalement disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le chabot du versant est (populations des rivières St.
    [Show full text]
  • Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’H, F
    Ecography ECOG-01937 Hattab, T., Leprieur, F., Ben Rais Lasram, F., Gravel, D., Le Loc’h, F. and Albouy, C. 2016. Forecasting fine- scale changes in the food-web structure of coastal marine communities under climate change. – Ecography doi: 10.1111/ecog.01937 Supplementary material Forecasting fine-scale changes in the food-web structure of coastal marine communities under climate change by Hattab et al. Appendix 1 List of coastal exploited marine species considered in this study Species Genus Order Family Class Trophic guild Auxis rochei rochei (Risso, 1810) Auxis Perciformes Scombridae Actinopterygii Top predators Balistes capriscus Gmelin, 1789 Balistes Tetraodontiformes Balistidae Actinopterygii Macro-carnivorous Boops boops (Linnaeus, 1758) Boops Perciformes Sparidae Actinopterygii Basal species Carcharhinus plumbeus (Nardo, 1827) Carcharhinus Carcharhiniformes Carcharhinidae Elasmobranchii Top predators Dasyatis pastinaca (Linnaeus, 1758) Dasyatis Rajiformes Dasyatidae Elasmobranchii Top predators Dentex dentex (Linnaeus, 1758) Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Dentex maroccanus Valenciennes, 1830 Dentex Perciformes Sparidae Actinopterygii Macro-carnivorous Diplodus annularis (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Forage species Diplodus sargus sargus (Linnaeus, 1758) Diplodus Perciformes Sparidae Actinopterygii Macro-carnivorous (Geoffroy Saint- Diplodus vulgaris Hilaire, 1817) Diplodus Perciformes Sparidae Actinopterygii Basal species Engraulis encrasicolus (Linnaeus, 1758) Engraulis
    [Show full text]
  • Pacific Plate Biogeography, with Special Reference to Shorefishes
    Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review.
    [Show full text]
  • Edna Assay Development
    Environmental DNA assays available for species detection via qPCR analysis at the U.S.D.A Forest Service National Genomics Center for Wildlife and Fish Conservation (NGC). Asterisks indicate the assay was designed at the NGC. This list was last updated in June 2021 and is subject to change. Please contact [email protected] with questions. Family Species Common name Ready for use? Mustelidae Martes americana, Martes caurina American and Pacific marten* Y Castoridae Castor canadensis American beaver Y Ranidae Lithobates catesbeianus American bullfrog Y Cinclidae Cinclus mexicanus American dipper* N Anguillidae Anguilla rostrata American eel Y Soricidae Sorex palustris American water shrew* N Salmonidae Oncorhynchus clarkii ssp Any cutthroat trout* N Petromyzontidae Lampetra spp. Any Lampetra* Y Salmonidae Salmonidae Any salmonid* Y Cottidae Cottidae Any sculpin* Y Salmonidae Thymallus arcticus Arctic grayling* Y Cyrenidae Corbicula fluminea Asian clam* N Salmonidae Salmo salar Atlantic Salmon Y Lymnaeidae Radix auricularia Big-eared radix* N Cyprinidae Mylopharyngodon piceus Black carp N Ictaluridae Ameiurus melas Black Bullhead* N Catostomidae Cycleptus elongatus Blue Sucker* N Cichlidae Oreochromis aureus Blue tilapia* N Catostomidae Catostomus discobolus Bluehead sucker* N Catostomidae Catostomus virescens Bluehead sucker* Y Felidae Lynx rufus Bobcat* Y Hylidae Pseudocris maculata Boreal chorus frog N Hydrocharitaceae Egeria densa Brazilian elodea N Salmonidae Salvelinus fontinalis Brook trout* Y Colubridae Boiga irregularis Brown tree snake*
    [Show full text]
  • CARACANTHIDAE 2A. Body Covered with Numerous Black Spots ...Caracanthusmaculatus 2B. Body With
    click for previous page Scorpaeniformes: Caracanthidae 2353 CARACANTHIDAE Orbicular velvetfishes (coral crouchers) by S.G Poss iagnostic characters: Small fishes (typically under 4 cm standard length); body rounded, com- Dpressed, although not greatly so. Head moderate to large, 37 to 49% of standard length. Eyes small to moderate, 8 to 12% of standard length. Snout 8 to 13% of standard length. Mouth moderate to large, upper jaw 12 to 21% of standard length. Numerous small conical teeth present on upper and lower jaws, none on vomer or palatines. Lacrimal movable, with 2 spines, posteriormost largest directed ven- trally. All species with a narrow extension of the third infrarobital bone (second suborbital) extending backward and downward across the cheek and usually firmly bound to preopercle.No postorbital bones. Branchiostegal rays 7. Skin over gill covers strongly fused to isthmus. Dorsal fin with VII or VIII (rarely VI) short spines and 12 to 14 branched soft rays. Anal fin usually with II short spines, followed by 11 or 12 branched soft rays. Caudal fin rounded, never forked. Pelvic fins small, difficult to see, with I stout spine and 2 or 3 (rarely 1) rays. Pectoral fins with 14 or 15 thickened rays. Scales absent, except for lateral line, but body densely covered with tubercles. Lateral-line scales present; usually 11 to 19 tubed scales. All species possess extrinsic striated swimbladder musculature. Vertebrae 24. Colour: orbicular velvetfish are either pale pinkish white with numerous small black spots, or light brown or greenish and with orange spots or reticulations. Habitat, biology, and fisheries: Velvetfishes live within the branches of Acropora, Poecillopora, and Stylophora corals, rarely venturing far from the coral head.
    [Show full text]
  • Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha
    Research in Zoology 2014, 4(2): 29-42 DOI: 10.5923/j.zoology.20140402.01 Comparative Osteology of the Jaws in Representatives of the Eurypterygian Fishes Yazdan Keivany Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan, 84156-83111, Iran Abstract The osteology of the jaws in representatives of 49 genera in 40 families of eurypterygian fishes, including: Aulopiformes, Myctophiformes, Lampridiformes, Polymixiiformes, Percopsiformes, Mugiliformes, Atheriniformes, Beloniformes, Cyprinodontiformes, Stephanoberyciformes, Beryciformes, Zeiformes, Gasterosteiformes, Synbranchiformes, Scorpaeniformes (including Dactylopteridae), and Perciformes (including Elassomatidae) were studied. Generally, in this group, the upper jaw consists of the premaxilla, maxilla, and supramaxilla. The lower jaw consists of the dentary, anguloarticular, retroarticular, and sesamoid articular. In higher taxa, the premaxilla bears ascending, articular, and postmaxillary processes. The maxilla usually bears a ventral and a dorsal articular process. The supramaxilla is present only in some taxa. The dentary is usually toothed and bears coronoid and posteroventral processes. The retroarticular is small and located at the posteroventral corner of the anguloarticular. Keywords Acanthopterygii, Bone, Eurypterygii, Osteology, Percomprpha following method for clearing and staining bone and 1. Introduction cartilage provided in reference [18]. A camera lucida attached to a Wild M5 dissecting stereomicroscope was used Despite the introduction of modern techniques such as to prepare the drawings. The bones in the first figure of each DNA sequencing and barcoding, osteology, due to its anatomical section are arbitrarily shaded and labeled and in reliability, still plays an important role in the systematic the others are shaded in a consistent manner (dark, medium, study of fishes and comprises a major percent of today’s and clear) to facilitate comparison among the taxa.
    [Show full text]
  • "Validity of Scorpaena Jacksoniensis and a Redescription of S. Cardinalis, a Senior Synonym of S
    "Validity of Scorpaena jacksoniensis and a redescription of S. cardinalis, a senior synonym of S. cookii (Scorpaeniformes: Scorpaenidae)" 著者 "MOTOMURA Hiroyuki, STRUTHERS Carl D., McGROUTHER Mark A., STEWART Andrew L." journal or Ichthyological Research publication title volume 58 page range 315-332 URL http://hdl.handle.net/10232/21762 doi: 10.1007/s10228-011-0234-2 Ichthyol Res (2011) 58:315–332 DOI 10.1007/s10228-011-0234-2 FULL PAPER Validity of Scorpaena jacksoniensis and a redescription of S. cardinalis, a senior synonym of S. cookii (Scorpaeniformes: Scorpaenidae) Hiroyuki Motomura • Carl D. Struthers • Mark A. McGrouther • Andrew L. Stewart Received: 29 April 2011 / Revised: 14 June 2011 / Accepted: 14 June 2011 Ó The Ichthyological Society of Japan 2011 Abstract The Scorpaena cardinalis complex, including Introduction S. cardinalis, S. jacksoniensis and S. orgila, is defined. The genus Ruboralga (type species: S. jacksoniensis) is regar- During revisionary studies of the genus Scorpaena (Scor- ded as a junior synonym of Scorpaena. Scorpaena jack- paeniformes: Scorpaenidae) by the first author, examina- soniensis Steindachner 1866, previously treated as a junior tion of the holotype of Scorpaena jacksoniensis synonym of Scorpaena cardinalis Solander and Richardson Steindachner 1866a found this nominal species to be a 1842, is regarded here as a valid species. Scorpaena cookii valid species, although it has been treated as a junior Gu¨nther 1874, previously treated as a valid species, is synonym of Scorpaena cardinalis Solander and Richardson regarded here as a junior synonym of S. cardinalis. Thus, in Richardson (1842) by numerous authors (e.g., Macleay recent recognition of the two Australasian scorpionfishes, 1881; Allen and Cross 1989; Allen et al.
    [Show full text]
  • Expressed Sequence Tags in Venomous Tissue of Scorpaena Plumieri (Scorpaeniformes: Scorpaenidae)
    Neotropical Ichthyology, 12(4):871-878, 2014 Copyright © 2014 Sociedade Brasileira de Ictiologia DOI: 10.1590/1982-0224-20130149 Expressed sequence tags in venomous tissue of Scorpaena plumieri (Scorpaeniformes: Scorpaenidae) Fábio L. S. Costa1, Maria E. De Lima1, Adriano C. Pimenta1, Suely G. Figueiredo2, Evanguedes Kalapothakis3 and Carlos E. Salas4 Species of the family Scorpaenidae are responsible for accidents and sporadic casualties by the shore they inhabit. The species Scorpaena plumieri from this family populate the Northeastern and Eastern coast of Brazil causing human envenomation characterized by local and systemic symptoms. In experimental animals the venom induces cardiotoxic, hypotensive, and airway respiratory effects. As first step to identify the venom components we isolated gland mRNA to produce a cDNA library from the fish gland. This report describes the partial sequencing of 356 gland transcripts from S. plumieri. BLAST analysis of transcripts showed that 30% were unknown sequences, 17% hypothetical proteins, 17% related to metabolic enzymes, 14% belonged to signal transducing functions and the remaining groups (7-8%) composed by gene related with expressing proteins, regulatory proteins and structural proteins. A considerable number of these EST were not found in available databases suggesting the existence of new proteins and/or functions yet to be discovered. By screening the library with antibodies against a lectin fraction from S. plumieri venom we identified several clones whose DNA sequence showed similarities with lectins found in fish. In silico analysis of these clones confirm the identity of these molecules in the venom gland of S. plumieri. Espécies da família Scorpaenidae são responsáveis por acidentes e mortes esporádicas ao longo da costa que habitam.
    [Show full text]
  • The Recent Distribution and Abundance of Non-Native Neogobius Fishes in the Slovak Section of the River Danube
    J. Appl. Ichthyol. 21 (2005), 319–323 Received: January 30, 2005 Ó 2005 Blackwell Verlag, Berlin Accepted: June 15, 2005 ISSN 0175–8659 The recent distribution and abundance of non-native Neogobius fishes in the Slovak section of the River Danube By P. Jurajda1,J.Cˇ erny´2, M. Polacˇ ik1,3, Z. Valova´1,3, M. Jana´cˇ 1,3,R.Blazˇ ek3 and M. Ondracˇ kova´1 1Department of Fish Ecology, Institute of Vertebrate Biology AS CR, Brno, Czech Republic; 2Department of Hydrobiology, Institute of Zoology SAS, Bratislava, Slovak Republic; 3Department of Zoology and Ecology, Faculty of Science Masaryk University, Brno, Czech Republic Summary in the Sio´Channel (connecting Lake Balaton and the main The distributions of invasive Neogobius species were investi- Danube channel), and in the River Tisza and its tributary, gated in the Slovak section of the River Danube from the River Bodrog, both in Hungary (Ahnelt et al., 1998). Bratislava downstream to the village of Chl’aba. During More recently, monkey goby has been recorded in the October 2004, the main channel of the Danube was sampled, Slovakian Danube near Hungary (Stra´nˇ ai and Andreji, including by-pass, head-race and tail-race canals of the 2001) and a further upstream expansion of this species into Gabcˇ ı´kovo dam, backwaters and the lower-most sections of the Slovakian part of the River Bodrog can be expected the tributaries Maly´Dunaj, Hron, Va´h and IpelÕ. Three (Ahnelt et al., 1998; Kautman, 2001). Neogobius species already documented in Slovakia were An upstream expansion of racer goby has also been reported captured (monkey goby Neogobius fluviatilis, bighead goby in River Danube basin (summarized in Copp et al., 2005), N.
    [Show full text]
  • Fishes of Terengganu East Coast of Malay Peninsula, Malaysia Ii Iii
    i Fishes of Terengganu East coast of Malay Peninsula, Malaysia ii iii Edited by Mizuki Matsunuma, Hiroyuki Motomura, Keiichi Matsuura, Noor Azhar M. Shazili and Mohd Azmi Ambak Photographed by Masatoshi Meguro and Mizuki Matsunuma iv Copy Right © 2011 by the National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without prior written permission from the publisher. Copyrights of the specimen photographs are held by the Kagoshima Uni- versity Museum. For bibliographic purposes this book should be cited as follows: Matsunuma, M., H. Motomura, K. Matsuura, N. A. M. Shazili and M. A. Ambak (eds.). 2011 (Nov.). Fishes of Terengganu – east coast of Malay Peninsula, Malaysia. National Museum of Nature and Science, Universiti Malaysia Terengganu and Kagoshima University Museum, ix + 251 pages. ISBN 978-4-87803-036-9 Corresponding editor: Hiroyuki Motomura (e-mail: [email protected]) v Preface Tropical seas in Southeast Asian countries are well known for their rich fish diversity found in various environments such as beautiful coral reefs, mud flats, sandy beaches, mangroves, and estuaries around river mouths. The South China Sea is a major water body containing a large and diverse fish fauna. However, many areas of the South China Sea, particularly in Malaysia and Vietnam, have been poorly studied in terms of fish taxonomy and diversity. Local fish scientists and students have frequently faced difficulty when try- ing to identify fishes in their home countries. During the International Training Program of the Japan Society for Promotion of Science (ITP of JSPS), two graduate students of Kagoshima University, Mr.
    [Show full text]
  • Yellowfin Trawling Fish Images 2013 09 16
    Fishes captured aboard the RV Yellowfin in otter trawls: September 2013 Order: Aulopiformes Family: Synodontidae Species: Synodus lucioceps common name: California lizardfish Order: Gadiformes Family: Merlucciidae Species: Merluccius productus common name: Pacific hake Order: Ophidiiformes Family: Ophidiidae Species: Chilara taylori common name: spotted cusk-eel plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman plainfin specklefin Order: Batrachoidiformes Family: Batrachoididae Species: Porichthys notatus & P. myriaster common name: plainfin & specklefin midshipman Order: Gasterosteiformes Family: Syngnathidae Species: Syngnathus leptorynchus common name: bay pipefish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes semicinctus common name: halfbanded rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes dalli common name: calico rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes saxicola common name: stripetail rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes diploproa common name: splitnose rockfish Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes rosenblatti common name: greenblotched rockfish juvenile Order: Scorpaeniformes Family: Scorpaenidae Species: Sebastes levis common name: cowcod Order:
    [Show full text]
  • Southward Range Extension of the Goldeye Rockfish, Sebastes
    Acta Ichthyologica et Piscatoria 51(2), 2021, 153–158 | DOI 10.3897/aiep.51.68832 Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan Tak-Kei CHOU1, Chi-Ngai TANG2 1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan http://zoobank.org/5F8F5772-5989-4FBA-A9D9-B8BD3D9970A6 Corresponding author: Tak-Kei Chou ([email protected]) Academic editor: Ronald Fricke ♦ Received 18 May 2021 ♦ Accepted 7 June 2021 ♦ Published 12 July 2021 Citation: Chou T-K, Tang C-N (2021) Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan. Acta Ichthyologica et Piscatoria 51(2): 153–158. https://doi.org/10.3897/ aiep.51.68832 Abstract The goldeye rockfish,Sebastes thompsoni (Jordan et Hubbs, 1925), is known as a typical cold-water species, occurring from southern Hokkaido to Kagoshima. In the presently reported study, a specimen was collected from the local fishery catch off Keelung, northern Taiwan, which represents the first specimen-based record of the genus in Taiwan. Moreover, the new record ofSebastes thompsoni in Taiwan represented the southernmost distribution of the cold-water genus Sebastes in the Northern Hemisphere. Keywords cold-water fish, DNA barcoding, neighbor-joining, new recorded genus, phylogeny, Sebastes joyneri Introduction On an occasional survey in a local fish market (25°7.77′N, 121°44.47′E), a mature female individual of The rockfish genusSebastes Cuvier, 1829 is the most spe- Sebastes thompsoni (Jordan et Hubbs, 1925) was obtained ciose group of the Scorpaenidae, which comprises about in the local catches, which were caught off Keelung, north- 110 species worldwide (Li et al.
    [Show full text]