HALOGAS: the Properties of Extraplanar HI in Disc Galaxies A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Herschel Sprint PHOTO ILLUSTRATION: PATRICIA GILLIS-COPPOLA, HERSCHEL IMAGE: WIKIMEDIA S&T
The Herschel Sprint PHOTO ILLUSTRATION: PATRICIA GILLIS-COPPOLA, HERSCHEL IMAGE: WIKIMEDIA S&T 34 April 2015 sky & telescope William Herschel’s Extraordinary Night of DiscoveryMark Bratton Recreating the legendary sweep of April 11, 1785 There’s little doubt that William Herschel was the most clearly with his instruments. As we will see, he did make signifi cant astronomer of the 18th century. His accom- occasional errors in interpretation, despite the superior plishments included the discovery of Uranus, infrared optics; for instance, he thought that the planetary nebula radiation, and four planetary satellites, as well as the M57 was a ring of stars. compilation of two extensive catalogues of double and The other factor contributing to Herschel’s interest multiple stars. His most lasting achievement, however, was the success of his sister, Caroline, in her study of the was his exhaustive search for undiscovered star clusters sky. He had built her a small telescope, encouraging her and nebulae, a key component in his quest to understand to search for double stars and comets. She located Messier what he called “the construction of the heavens.” In Her- objects and more, occasionally fi nding star clusters and schel’s time, astronomers were concerned principally with nebulae that had escaped the French astronomer’s eye. the study of solar system objects. The search for clusters Over the course of a year of observing, she discovered and nebulae was, up to that point, a haphazard aff air, with about a dozen star clusters and galaxies, occasionally not- a total of only 138 recorded by all the observers in history. -
SAC's 110 Best of the NGC
SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog. -
Evidence for Connecting Them to Boxy/Peanut Bulges M
A&A 599, A43 (2017) Astronomy DOI: 10.1051/0004-6361/201628849 & c ESO 2017 Astrophysics Colors of barlenses: evidence for connecting them to boxy/peanut bulges M. Herrera-Endoqui1, H. Salo1, E. Laurikainen1, and J. H. Knapen2; 3 1 Astronomy Research Unit, University of Oulu, 90014 Oulu, Finland e-mail: [email protected] 2 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 3 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain Received 3 May 2016 / Accepted 7 September 2016 ABSTRACT Aims. We aim to study the colors and orientations of structures in low and intermediate inclination barred galaxies. We test the hy- pothesis that barlenses, roundish central components embedded in bars, could form part of the bar in a similar manner to boxy/peanut bulges in the edge-on view. Methods. A sample of 79 barlens galaxies was selected from the Spitzer Survey of Stellar Structure in Galaxies (S4G) and the Near IR S0 galaxy Survey (NIRS0S), based on previous morphological classifications at 3.6 µm and 2.2 µm wavelengths. For these galaxies the sizes, ellipticities, and orientations of barlenses were measured, parameters which were used to define the barlens regions in the color measurements. In particular, the orientations of barlenses were studied with respect to those of the “thin bars” and the line-of- nodes of the disks. For a subsample of 47 galaxies color index maps were constructed using the Sloan Digital Sky Survey (SDSS) images in five optical bands, u, g, r, i, and z. Colors of bars, barlenses, disks, and central regions of the galaxies were measured using two different approaches and color−color diagrams sensitive to metallicity, stellar surface gravity, and short lived stars were constructed. -
190 Index of Names
Index of names Ancora Leonis 389 NGC 3664, Arp 005 Andriscus Centauri 879 IC 3290 Anemodes Ceti 85 NGC 0864 Name CMG Identification Angelica Canum Venaticorum 659 NGC 5377 Accola Leonis 367 NGC 3489 Angulatus Ursae Majoris 247 NGC 2654 Acer Leonis 411 NGC 3832 Angulosus Virginis 450 NGC 4123, Mrk 1466 Acritobrachius Camelopardalis 833 IC 0356, Arp 213 Angusticlavia Ceti 102 NGC 1032 Actenista Apodis 891 IC 4633 Anomalus Piscis 804 NGC 7603, Arp 092, Mrk 0530 Actuosus Arietis 95 NGC 0972 Ansatus Antliae 303 NGC 3084 Aculeatus Canum Venaticorum 460 NGC 4183 Antarctica Mensae 865 IC 2051 Aculeus Piscium 9 NGC 0100 Antenna Australis Corvi 437 NGC 4039, Caldwell 61, Antennae, Arp 244 Acutifolium Canum Venaticorum 650 NGC 5297 Antenna Borealis Corvi 436 NGC 4038, Caldwell 60, Antennae, Arp 244 Adelus Ursae Majoris 668 NGC 5473 Anthemodes Cassiopeiae 34 NGC 0278 Adversus Comae Berenices 484 NGC 4298 Anticampe Centauri 550 NGC 4622 Aeluropus Lyncis 231 NGC 2445, Arp 143 Antirrhopus Virginis 532 NGC 4550 Aeola Canum Venaticorum 469 NGC 4220 Anulifera Carinae 226 NGC 2381 Aequanimus Draconis 705 NGC 5905 Anulus Grahamianus Volantis 955 ESO 034-IG011, AM0644-741, Graham's Ring Aequilibrata Eridani 122 NGC 1172 Aphenges Virginis 654 NGC 5334, IC 4338 Affinis Canum Venaticorum 449 NGC 4111 Apostrophus Fornac 159 NGC 1406 Agiton Aquarii 812 NGC 7721 Aquilops Gruis 911 IC 5267 Aglaea Comae Berenices 489 NGC 4314 Araneosus Camelopardalis 223 NGC 2336 Agrius Virginis 975 MCG -01-30-033, Arp 248, Wild's Triplet Aratrum Leonis 323 NGC 3239, Arp 263 Ahenea -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
Ngc Catalogue Ngc Catalogue
NGC CATALOGUE NGC CATALOGUE 1 NGC CATALOGUE Object # Common Name Type Constellation Magnitude RA Dec NGC 1 - Galaxy Pegasus 12.9 00:07:16 27:42:32 NGC 2 - Galaxy Pegasus 14.2 00:07:17 27:40:43 NGC 3 - Galaxy Pisces 13.3 00:07:17 08:18:05 NGC 4 - Galaxy Pisces 15.8 00:07:24 08:22:26 NGC 5 - Galaxy Andromeda 13.3 00:07:49 35:21:46 NGC 6 NGC 20 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 7 - Galaxy Sculptor 13.9 00:08:21 -29:54:59 NGC 8 - Double Star Pegasus - 00:08:45 23:50:19 NGC 9 - Galaxy Pegasus 13.5 00:08:54 23:49:04 NGC 10 - Galaxy Sculptor 12.5 00:08:34 -33:51:28 NGC 11 - Galaxy Andromeda 13.7 00:08:42 37:26:53 NGC 12 - Galaxy Pisces 13.1 00:08:45 04:36:44 NGC 13 - Galaxy Andromeda 13.2 00:08:48 33:25:59 NGC 14 - Galaxy Pegasus 12.1 00:08:46 15:48:57 NGC 15 - Galaxy Pegasus 13.8 00:09:02 21:37:30 NGC 16 - Galaxy Pegasus 12.0 00:09:04 27:43:48 NGC 17 NGC 34 Galaxy Cetus 14.4 00:11:07 -12:06:28 NGC 18 - Double Star Pegasus - 00:09:23 27:43:56 NGC 19 - Galaxy Andromeda 13.3 00:10:41 32:58:58 NGC 20 See NGC 6 Galaxy Andromeda 13.1 00:09:33 33:18:32 NGC 21 NGC 29 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 22 - Galaxy Pegasus 13.6 00:09:48 27:49:58 NGC 23 - Galaxy Pegasus 12.0 00:09:53 25:55:26 NGC 24 - Galaxy Sculptor 11.6 00:09:56 -24:57:52 NGC 25 - Galaxy Phoenix 13.0 00:09:59 -57:01:13 NGC 26 - Galaxy Pegasus 12.9 00:10:26 25:49:56 NGC 27 - Galaxy Andromeda 13.5 00:10:33 28:59:49 NGC 28 - Galaxy Phoenix 13.8 00:10:25 -56:59:20 NGC 29 See NGC 21 Galaxy Andromeda 12.7 00:10:47 33:21:07 NGC 30 - Double Star Pegasus - 00:10:51 21:58:39 -
Arxiv:1207.4189V1 [Astro-Ph.CO] 17 Jul 2012 N a Osdrtrefnaetlpyia Parame- Physical Fundamental Mass Three Alternatively, Ters: Consider Color
The Astrophysical Journal Supplement Series, in press, 17 July 2012 A Preprint typeset using LTEX style emulateapj v. 5/2/11 ANGULAR MOMENTUM AND GALAXY FORMATION REVISITED Aaron J. Romanowsky1, S. Michael Fall2 1University of California Observatories, Santa Cruz, CA 95064, USA 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA The Astrophysical Journal Supplement Series, in press, 17 July 2012 ABSTRACT Motivated by a new wave of kinematical tracers in the outer regions of early-type galaxies (ellipticals and lenticulars), we re-examine the role of angular momentum in galaxies of all types. We present new methods for quantifying the specific angular momentum j, focusing mainly on the more challenging case of early-type galaxies, in order to derive firm empirical relations between stellar j⋆ and mass M⋆ (thus extending the work by Fall 1983). We carry out detailed analyses of eight galaxies with kinematical data extending as far out as ten effective radii, and find that data at two effective radii are generally sufficient to estimate total j⋆ reliably. Our results contravene suggestions that ellipticals could harbor large reservoirs of hidden j⋆ in their outer regions owing to angular momentum transport in major mergers. We then carry out a comprehensive analysis of extended kinematic data from the literature for a sample of 100 nearby bright galaxies of all types, placing them on a diagram of ∼ j⋆ versus M⋆. The ellipticals and spirals form two parallel j⋆–M⋆ tracks, with log-slopes of 0.6, which for the spirals is closely related to the Tully-Fisher relation, but for the ellipticals derives from∼ a remarkable conspiracy between masses, sizes, and rotation velocities. -
Dust Temperatures in the Infrared Space Observatory1atlas of Bright Spiral Galaxies
Dust Temperatures in the Infrared Space Observatory1Atlas of Bright Spiral Galaxies George J. Bendo,2;3;4 Robert D. Joseph,3 Martyn Wells,5 Pascal Gallais,6 Martin Haas,7 Ana M. Heras,8;9 Ulrich Klaas,7 Ren´eJ.Laureijs,8;9 Kieron Leech,9;10 Dietrich Lemke,7 Leo Metcalfe,8 Michael Rowan-Robinson,11 Bernhard Schulz,9;12 and Charles Telesco13 ABSTRACT We examine far-infrared and submillimeter spectral energy distributions for galaxies in the Infrared Space Observatory Atlas of Bright Spiral Galaxies. For the 71 galaxies where we had complete 60 - 180 µm data, 1 2 we fit blackbodies with λ− emissivities and average temperatures of 31 K or λ− emissivities and average temperatures of 22 K. Except for high temperatures determined in some early-type galaxies, the temperatures show no dependence on any galaxy characteristic. For the 60 - 850 µm range in eight galaxies, we fit blackbodies 1 2 β β with λ− , λ− ,andλ− (with β variable) emissivities to the data. The best results were with the λ− emissivities, where the temperatures were 30 K and the emissivity coefficient β ranged from 0.9 to 1.9. These results produced gas to dust ratios that∼ ranged from 150 to 580, which were consistent with the ratio for the Milky Way and which exhibited relatively little dispersion compared to fits with fixed emissivities. Subject headings: galaxies: ISM | galaxies: spiral | dust 1. Introduction 2Steward Observatory, 933 North Cherry Ave, Tucson, AZ 85721 USA; [email protected] The far-infrared emission from galaxies is emitted by 3University of Hawaii, Institute for Astronomy, 2680 Woodlawn interstellar dust heated by a variety of energy sources. -
A Classical Morphological Analysis of Galaxies in the Spitzer Survey Of
Accepted for publication in the Astrophysical Journal Supplement Series A Preprint typeset using LTEX style emulateapj v. 03/07/07 A CLASSICAL MORPHOLOGICAL ANALYSIS OF GALAXIES IN THE SPITZER SURVEY OF STELLAR STRUCTURE IN GALAXIES (S4G) Ronald J. Buta1, Kartik Sheth2, E. Athanassoula3, A. Bosma3, Johan H. Knapen4,5, Eija Laurikainen6,7, Heikki Salo6, Debra Elmegreen8, Luis C. Ho9,10,11, Dennis Zaritsky12, Helene Courtois13,14, Joannah L. Hinz12, Juan-Carlos Munoz-Mateos˜ 2,15, Taehyun Kim2,15,16, Michael W. Regan17, Dimitri A. Gadotti15, Armando Gil de Paz18, Jarkko Laine6, Kar´ın Menendez-Delmestre´ 19, Sebastien´ Comeron´ 6,7, Santiago Erroz Ferrer4,5, Mark Seibert20, Trisha Mizusawa2,21, Benne Holwerda22, Barry F. Madore20 Accepted for publication in the Astrophysical Journal Supplement Series ABSTRACT The Spitzer Survey of Stellar Structure in Galaxies (S4G) is the largest available database of deep, homogeneous middle-infrared (mid-IR) images of galaxies of all types. The survey, which includes 2352 nearby galaxies, reveals galaxy morphology only minimally affected by interstellar extinction. This paper presents an atlas and classifications of S4G galaxies in the Comprehensive de Vaucouleurs revised Hubble-Sandage (CVRHS) system. The CVRHS system follows the precepts of classical de Vaucouleurs (1959) morphology, modified to include recognition of other features such as inner, outer, and nuclear lenses, nuclear rings, bars, and disks, spheroidal galaxies, X patterns and box/peanut structures, OLR subclass outer rings and pseudorings, bar ansae and barlenses, parallel sequence late-types, thick disks, and embedded disks in 3D early-type systems. We show that our CVRHS classifications are internally consistent, and that nearly half of the S4G sample consists of extreme late-type systems (mostly bulgeless, pure disk galaxies) in the range Scd-Im. -
The Westerbork Hydrogen Accretion in Local Galaxies \(HALOGAS\)
A&A 526, A118 (2011) Astronomy DOI: 10.1051/0004-6361/201015938 & c ESO 2011 Astrophysics The Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) survey I. Survey description and pilot observations G. Heald1, G. Józsa1, P. Serra1, L. Zschaechner2,R.Rand2, F. Fraternali3, T. Oosterloo1,4, R. Walterbos5, E. Jütte6, and G. Gentile7 1 Netherlands Institute for Radio Astronomy (ASTRON), Postbus 2, 7990 AA Dwingeloo, The Netherlands e-mail: [email protected] 2 University of New Mexico, 800 Yale Blvd, Albuquerque, NM, USA 3 Astronomy Department, Bologna University, via Ranzani 1, 40127 Bologna, Italy 4 Kapteyn Astronomical Institute, Postbus 800, 9700 AV Groningen, The Netherlands 5 Department of Astronomy, New Mexico State University, PO Box 30001, MSC 4500, Las Cruces, NM 88003, USA 6 Astronomisches Institut der Ruhr-Universität Bochum, Universitätsstr. 150, 44780 Bochum, Germany 7 Sterrenkundig Observatorium, Ghent University, Krijgslaan 281, S9, 9000 Ghent, Belgium Received 15 October 2010 / Accepted 27 November 2010 ABSTRACT We introduce a new, very deep neutral hydrogen (H i) survey being performed with the Westerbork Synthesis Radio Telescope (WSRT). The Westerbork Hydrogen Accretion in LOcal GAlaxieS (HALOGAS) Survey is producing an archive of some of the most sensitive H i observations available, on the angular scales which are most useful for studying faint, diffuse gas in and around nearby galaxies. The survey data are being used to perform careful modeling of the galaxies, characterizing their gas content, mor- phology, and kinematics, with the primary goal of revealing the global characteristics of cold gas accretion onto spiral galaxies in the local Universe. In this paper, we describe the survey sample selection, the data acquisition, reduction, and analysis, and present the data products obtained during our pilot program, which consists of UGC 2082, NGC 672, NGC 925, and NGC 4565. -
Light Speed Expansion and Rotation of a Primordial Black Hole Universe Having Internal Acceleration
International Astronomy and Astrophysics Research Journal 2(2): 9-27, 2020; Article no.IAARJ.57955 Light Speed Expansion and Rotation of a Primordial Black Hole Universe having Internal Acceleration U. V. S. Seshavatharam1* and S. Lakshminarayana2 1Honorary Faculty, I-SERVE, Survey no-42, Hitech City, Hyderabad-84, Telangana, India. 2Department of Nuclear Physics, Andhra University, Visakhapatnam-03, Andhra Pradesh, India. Authors’ contributions This work was carried out in collaboration between both authors. Author UVSS designed the study, performed the statistical analysis, wrote the protocol and wrote the first draft of the manuscript. Author SL managed the analyses of the study. Both authors read and approved the final manuscript. Article Information Editor(s): (1) Dr. Swarniv Chandra, Techno India University, India. (2) Dr. Hadia Hassan Selim, National Research Institute of Astronomy and Geophysics, Cairo, Egypt. Reviewers: (1) Hidirova Mohiniso Bahromovna, Tashkent University of Information Technologies named after Muhammad Al-Khwarizmi, Uzbekistan. (2) Valery Timkov, Institute of Telecommunications and Global Information Space, The National Academy of Sciences of Ukraine, Ukraine. (3) Alesandro Ferreira dos Santos, Instituto de Física, Universidade Federal de Mato Grosso, Brasil. (4) Maliki Olaniyi Sadik, Michael Okpara Federal University Umudike, Nigeria. (5) Tritos Ngampitipan, Chandrakasem Rajabhat University, Thailand. Complete Peer review History: http://www.sdiarticle4.com/review-history/57955 Received 23 April 2020 Accepted 29 June 2020 Review Article Published 07 July 2020 ABSTRACT With reference to primordial black holes, an attempt has been made to develop a practical model of cosmology. Main features of this integrated model are: Eternal role of Planck scale, light speed expansion and rotation of a primordial cosmic black hole, slow thermal cooling, internal acceleration and anisotropy. -
The WSRT HALOGAS Survey Main Results and Public Data Release George Heald and the HALOGAS Team
The WSRT HALOGAS Survey Main Results and Public Data Release George Heald and the HALOGAS team CSIRO ASTRONOMY AND SPACE SCIENCE Outline • Recap of science case and galaxy sample • HALOGAS observations and ancillary data • Results and publications • Main outcomes • Public data releases • DR1 (12 February 2019) - WSRT HI cubes and moment maps • DR2 (31 May 2019) - Ancillary data • Timeline for final publications, and moving forward ... 2 | George Heald | HALOGAS Results and Data Release Motivation Motivation for HALOGAS project was similar to the MHONGOOSE science case • How common are thick HI disks and what are their properties? • What is the origin of thick disks, and how are they related to star formation and/or the gas accretion process? • How much cool neutral hydrogen surrounds spiral galaxies, in what form is it typically found, and what is its contribution to the gas accretion process? • Is accreting neutral hydrogen a substantial contributor to the gas mass budget in the star formation process? 3 | George Heald | HALOGAS Results and Data Release HALOGAS team past & present George Heald, Björn Adebahr, Nadya Ben Bekhti, Bob Benjamin, Erwin de Blok, Ralf-Jürgen Dettmar, Lars Flöer, Filippo Fraternali, Gianfranco Gentile, Mark Gorski, Noelia Herrera-Ruiz, Gyula Jozsa, Eva Jütte, Peter Kamphuis, Antonino Marasco, Tom Oosterloo, Maria Patterson, Nick Pingel, Rich Rand, Renzo Sancisi, Paolo Serra, Carlos Vargas, Rene Walterbos, Benjamin Winkel, Cat Wu, Laura Zschaechner 2010 (Dwingeloo, The Netherlands) 2011 (Bochum, Germany) 4 | George