Entomological Aspects of Yellow-Leaf Disease of Phormium

Total Page:16

File Type:pdf, Size:1020Kb

Entomological Aspects of Yellow-Leaf Disease of Phormium January-February, 1952 NEW ZEALAND SCIENCE REVIEW Entomological Aspects of Yellow-Leaf Disease of THE yellow-leaf disease of Phor­ Phormium the insects belonging to the vector mium has been recognized for at group one in particular fell under least forty years. In many areas, it R. A. CUMBER suspicion because of its almost com­ has been responsible for the termina­ which might cause the condition by plete restriction to Phormium as a tion of fibre production, and half of indirect means or through toxic host plant and because of its preval­ those remaining in the North Island effects. ence in the badly affected areas. are seriously threatened by inroads of the disease. In the South Island Oliarus atkinsoni Myers—Vector the outbreaks have been much less of the Yellow-leaf Disease extensive. Both Phormium tenax J. G. Myers (1924) described a Forst, and P. colensoi Hook. f.. are Cixiid bug, O. atkinsoni, from a affected. series of specimens collected at Wai- There have been numerous at- kanae and Wellington, stating: "This temps to discover the cause of the large and sluggish species has gone yellow-leaf condition. Physiological a step further than Oliarus oppositus factors and the question of fungal, in its preference for ground herbage bacterial, and virus pathogens have as distinct from bushes, and is found been studied. A. H. Cockayne, in the only in flax swamps, apparently at­ early stages of his association with tached to the flax itself, where it may the problem, reached the conclusion he found sitting ... on the shaded that the condition was a physiologi­ side of the leaf." Myers dedicated cal one, but later the rapid spread the species to its discoverer E. H. ol yellow-leaf in some areas con­ Atkinson who was engaged on Phor­ vinced him that a pathogen was at mium research at this time. But the work. study of virus diseases was very much Only recently has it been shown in its infancy then, and no import­ that the condition is due to a virus ance was attached to the insect. which is transmitted by an insect. O. atkinsoni has been observed in Mechanical transmission using the the high country at Mangamuka. carborundum abrasion technique, North Auckland, feeding as adults and transmission by means of root on the leaves of Arundo sp., and the Adults of O. atkinsoni on a blade of grafting have also been obtained, and absence of Phormium in the vicinity Phormium tenax. The lining up of suggests that there may be host it is suspected that seed transmission individuals (males on each side of the may occur (Boyce et al. 1951). female) is a very characteristic beha­ plants in addition to that from which viour prutr to mating. As many as five the species was originally described. Entomological Surveys individuals (four males and one female) have been observed in this in November, 1949, adults of O. Kirk and Cockavne (1909), Coc­ attitude. atkinsoni were discovered at Moutoa. kayne (1915), and'Miller (1916, 17. and soon they appeared in consider­ 18, 20, 30) carried out surveys of The Phormium areas at Moutoa able numbers—especially in the Phormium areas, studying the insects were selected for special study. badly affected yellow-leaf areas. Pre­ which caused direct injury to stands. These include plantation and, in liminary experiments showed that More recently (1947), Boyce studied addition, what have been termed bugs caged on 7-8 months old seed­ the Cicada populations and attempted "induced areas." These latter com­ lings (in pots) fed readily, and the transmission of the condition by prise those through which Phormium transmission trials were set up early transferring Cicada nymphs from the has spread following the draining of in December. These first trials were roots of diseased plants to roots of stagnant swamps. Associated with the entirely successful in incriminating healthy ones. Phormium, more especially in the in­ 0. atkinsoni as a vector of the yel­ An intensive survey of the insect duced areas, are a large number of low-leaf disease (Cumber, 1952). A pop illations of Phormium areas was plant species—both native and intro­ high percentage of transmissions was commenced in June, 1949. The pur­ duced. The accompanying insect obtained; excessive yellowing was pose of this survey was to ascertain species are likewise of a high order apparent in from 4 to 7 weeks, and if the yellow-leaf condition might be and run to at least 500. Included in on final examination (May. 24, 1951) due to mechanical injury, and also these are approximately fifty species 16 of the 20 test plants, were diseased. to determine possible vector species of true bugs (Hemiptera) of which and none of the 20 control planis about twenty could be considered as si 10wed any symptoms. Dr. R. A. Cumber, F.R.E.S.. graduated possible vector species. B.Sc. from Victoria University College in 1942, subsequently gained his doctorate at The survey gave no grounds for The Ecology of the Vector and the University of London. He is at present suspecting that direct injury might Its Relation to the Spread Entomologist, Entomological Research Sta­ be the main causal factor of the yel­ of the Disease tion, D.S.I.R., and has been attached to the Phormium Research Station at Moutoa, low-leaf condition, and at an early The incrimination of the vector- where he carried out the important work stage attention was directed to the species and the subsequent study of described in the article. field of insect transmission. Amongst its biology have thrown light on the 4 NEW ZEALAND SCIENCE REVIEW January-February, 1952 history of yellow-leaf outbreaks. It has been common knowledge for many years that over-draining and stop-banking of rivers have resulted in outbreaks of the disease, and this more especially in those areas which no longer receive the periodical inun­ dations. Adults of 0. atkinsoni are present on the upper portions of the plants from November to March. For the remaining months the bugs occur in the nymphal stages only, and as such are restricted to the basal por­ rf-%r tions of the plants. Here they live in galleries amongst the dead leaf mate­ rial, feeding upon the roots which pass through or ramify therein. The nymphs secrete a filamentous mealy Flood ivatqrs covering the Phormium bushes to a depth of two feet promise some measure of control of the bug. The nymphal stages, which are restricted fluff which issues dorsally from the to the base of the plant, are killed by a submergence lasting 14 days. three posterior abdominal segments. This material is brushed off by the history study of 0. atkinsoni is provest­ . The rate of expression of symp­ walls of the spaces in wrhich the ing of considerable interest. Itomt s may well be affected by geneti- nymphs live, producing white, fluff- appears to occupy two years of whichca l constitution and the physiological lined galleries where the bugs alarl ebu t one month is spent in conditionthe s under which the plant is protected from predators and also egg and nymphal stages hidden away growing. from the weather—the fluff possess­ in complete darkness at the base of Experimental transmission work ing anti-wetting properties. the plant, reminding one somewhat with 0. atkinsoni to determine virus- Laboratory tests have shown that of the life-cycle of the cicada. This vector relationships is being con­ the nymphs possess considerable relon­ g nymphal cycle will be an ad tinued. In addition, seven other insect vantage in any attempt to control sistance to submergence, a small per­ species are being tested to ascertain the bug by flooding, but likewise a centage being able to survive this for if they play any part in the transmis­ disadvantage in any attempt to con­ a period of a week. When this period sion of the disease. These include trol the bug by the insecticidal spray­ •of submergence is doubled, however, the other New Zealand Cixiid species, ing of adults. a complete kill of all nymphs present Oliarus oppositus (Walk.), which is is obtained. It is known that the plant The yellow-leaf disease, as stated commonly found on Phormium and can withstand flooding to a depth previously of , is present both in thoccure s throughout both North and 2 to 3 feet for periods of up to Nort4 h and South Islands, but is moreSout h Islands on a very wide variety weeks during the winter months. prevalent in the North. 0. atkinsonio f host plants. 0. atkinsoni has become adapted is very widespread in the North to the conditions under which Phor­ Island, but has not been reported Acknowledgment mium tenax occurs naturally—i.e., from the South Island. marginal river and swamp areas— Miss D. Oakley, Grasslands Divi­ and is able to withstand the periodic sion, D.S.I.R., Palmerston North, Some Additional Points of floodings which these places receive, kindly prepared the photographs. Interest and Further Research provided they are not of too long a duration. Since the plant is able The toCixiida e or plant-hoppers References withstand considerably more inunda­ have only once (and this since the BOYCE, S. W., et al. (1951) : Prelim­ tion than the nymphal populations present work commenced) been in­ inary Note on Yellow-leaf Disease of the bug, it is anticipated that criminatea d as a disease-transmitting of Phormium. N.Z. Jour. Sci. & satisfactory measure of control ofgrou the p of insects. Thus, although the Tech., 33 (A), 76-7. bug may be obtained by flooding. prevalence of the bug in the diseased Thus a basis for the long-held belief areas immediately suggested that iCOCKAYNEt , A.
Recommended publications
  • Plants for Landscapes
    Plus 10 Water-Saving Tips for your Garden your for Tips Water-Saving 10 Plus 5 Printed on recycled paper recycled on Printed © 2014 San Diego County Water Authority Water County Diego San 2014 © sdbgarden.org sdbgarden.org thegarden.org tted landscape that looks beautiful and saves water. saves and beautiful looks that landscape tted retrofi or new a for ideas get Landscapes ese gardens are excellent places to to places excellent are gardens Th ese Cajon. El in Garden Conservation Water the and Encinitas Many of the plants in this guide are labeled and on display at the San Diego Botanic Garden in in Garden Botanic Diego San the at display on and labeled are guide this in plants the of Many 0 WaterSmartSD.org Plants for for Plants Nifty agencies member 24 its and hese Nift y 50 plants have been selected because they are attractive, T oft en available in nurseries, non-invasive, easy to maintain, long- term performers, scaled for residential landscapes and, once estab- lished, drought-tolerant. In fact, these plants thrive in San Diego’s semi- arid climate and can help restore regional authenticity to your home. What’s exciting is that authentic also means sustainable. Plants native to Mediterranean climate zones love it here as much as you do. Th ey adapted over thousands of years, and the animal species that depend on them for food and habitat adapted, too. In fact, there are thousands of ground cov- ers, grasses, succulents, perennials, shrubs, vines and trees to choose from. For more information, go to WaterSmartSD.org.
    [Show full text]
  • Outline of Angiosperm Phylogeny
    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
    [Show full text]
  • Leafing Through History
    Leafing Through History Leafing Through History Several divisions of the Missouri Botanical Garden shared their expertise and collections for this exhibition: the William L. Brown Center, the Herbarium, the EarthWays Center, Horticulture and the William T. Kemper Center for Home Gardening, Education and Tower Grove House, and the Peter H. Raven Library. Grateful thanks to Nancy and Kenneth Kranzberg for their support of the exhibition and this publication. Special acknowledgments to lenders and collaborators James Lucas, Michael Powell, Megan Singleton, Mimi Phelan of Midland Paper, Packaging + Supplies, Dr. Shirley Graham, Greg Johnson of Johnson Paper, and the Campbell House Museum for their contributions to the exhibition. Many thanks to the artists who have shared their work with the exhibition. Especial thanks to Virginia Harold for the photography and Studiopowell for the design of this publication. This publication was printed by Advertisers Printing, one of only 50 U.S. printing companies to have earned SGP (Sustainability Green Partner) Certification, the industry standard for sustainability performance. Copyright © 2019 Missouri Botanical Garden 2 James Lucas Michael Powell Megan Singleton with Beth Johnson Shuki Kato Robert Lang Cekouat Léon Catherine Liu Isabella Myers Shoko Nakamura Nguyen Quyet Tien Jon Tucker Rob Snyder Curated by Nezka Pfeifer Museum Curator Stephen and Peter Sachs Museum Missouri Botanical Garden Inside Cover: Acapulco Gold rolling papers Hemp paper 1972 Collection of the William L. Brown Center [WLBC00199] Previous Page: Bactrian Camel James Lucas 2017 Courtesy of the artist Evans Gallery Installation view 4 Plants comprise 90% of what we use or make on a daily basis, and yet, we overlook them or take them for granted regularly.
    [Show full text]
  • Bio 308-Course Guide
    COURSE GUIDE BIO 308 BIOGEOGRAPHY Course Team Dr. Kelechi L. Njoku (Course Developer/Writer) Professor A. Adebanjo (Programme Leader)- NOUN Abiodun E. Adams (Course Coordinator)-NOUN NATIONAL OPEN UNIVERSITY OF NIGERIA BIO 308 COURSE GUIDE National Open University of Nigeria Headquarters 14/16 Ahmadu Bello Way Victoria Island Lagos Abuja Office No. 5 Dar es Salaam Street Off Aminu Kano Crescent Wuse II, Abuja e-mail: [email protected] URL: www.nou.edu.ng Published by National Open University of Nigeria Printed 2013 ISBN: 978-058-434-X All Rights Reserved Printed by: ii BIO 308 COURSE GUIDE CONTENTS PAGE Introduction ……………………………………......................... iv What you will Learn from this Course …………………............ iv Course Aims ……………………………………………............ iv Course Objectives …………………………………………....... iv Working through this Course …………………………….......... v Course Materials ………………………………………….......... v Study Units ………………………………………………......... v Textbooks and References ………………………………........... vi Assessment ……………………………………………….......... vi End of Course Examination and Grading..................................... vi Course Marking Scheme................................................................ vii Presentation Schedule.................................................................... vii Tutor-Marked Assignment ……………………………….......... vii Tutors and Tutorials....................................................................... viii iii BIO 308 COURSE GUIDE INTRODUCTION BIO 308: Biogeography is a one-semester, 2 credit- hour course in Biology. It is a 300 level, second semester undergraduate course offered to students admitted in the School of Science and Technology, School of Education who are offering Biology or related programmes. The course guide tells you briefly what the course is all about, what course materials you will be using and how you can work your way through these materials. It gives you some guidance on your Tutor- Marked Assignments. There are Self-Assessment Exercises within the body of a unit and/or at the end of each unit.
    [Show full text]
  • GENOME EVOLUTION in MONOCOTS a Dissertation
    GENOME EVOLUTION IN MONOCOTS A Dissertation Presented to The Faculty of the Graduate School At the University of Missouri In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy By Kate L. Hertweck Dr. J. Chris Pires, Dissertation Advisor JULY 2011 The undersigned, appointed by the dean of the Graduate School, have examined the dissertation entitled GENOME EVOLUTION IN MONOCOTS Presented by Kate L. Hertweck A candidate for the degree of Doctor of Philosophy And hereby certify that, in their opinion, it is worthy of acceptance. Dr. J. Chris Pires Dr. Lori Eggert Dr. Candace Galen Dr. Rose‐Marie Muzika ACKNOWLEDGEMENTS I am indebted to many people for their assistance during the course of my graduate education. I would not have derived such a keen understanding of the learning process without the tutelage of Dr. Sandi Abell. Members of the Pires lab provided prolific support in improving lab techniques, computational analysis, greenhouse maintenance, and writing support. Team Monocot, including Dr. Mike Kinney, Dr. Roxi Steele, and Erica Wheeler were particularly helpful, but other lab members working on Brassicaceae (Dr. Zhiyong Xiong, Dr. Maqsood Rehman, Pat Edger, Tatiana Arias, Dustin Mayfield) all provided vital support as well. I am also grateful for the support of a high school student, Cady Anderson, and an undergraduate, Tori Docktor, for their assistance in laboratory procedures. Many people, scientist and otherwise, helped with field collections: Dr. Travis Columbus, Hester Bell, Doug and Judy McGoon, Julie Ketner, Katy Klymus, and William Alexander. Many thanks to Barb Sonderman for taking care of my greenhouse collection of many odd plants brought back from the field.
    [Show full text]
  • Patterns of Flammability Across the Vascular Plant Phylogeny, with Special Emphasis on the Genus Dracophyllum
    Lincoln University Digital Thesis Copyright Statement The digital copy of this thesis is protected by the Copyright Act 1994 (New Zealand). This thesis may be consulted by you, provided you comply with the provisions of the Act and the following conditions of use: you will use the copy only for the purposes of research or private study you will recognise the author's right to be identified as the author of the thesis and due acknowledgement will be made to the author where appropriate you will obtain the author's permission before publishing any material from the thesis. Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum A thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy at Lincoln University by Xinglei Cui Lincoln University 2020 Abstract of a thesis submitted in partial fulfilment of the requirements for the Degree of Doctor of philosophy. Abstract Patterns of flammability across the vascular plant phylogeny, with special emphasis on the genus Dracophyllum by Xinglei Cui Fire has been part of the environment for the entire history of terrestrial plants and is a common disturbance agent in many ecosystems across the world. Fire has a significant role in influencing the structure, pattern and function of many ecosystems. Plant flammability, which is the ability of a plant to burn and sustain a flame, is an important driver of fire in terrestrial ecosystems and thus has a fundamental role in ecosystem dynamics and species evolution. However, the factors that have influenced the evolution of flammability remain unclear.
    [Show full text]
  • Insights from Microsporogenesis in Asparagales
    EVOLUTION & DEVELOPMENT 9:5, 460–471 (2007) Constraints and selection: insights from microsporogenesis in Asparagales Laurent Penet,a,1,Ã Michel Laurin,b Pierre-Henri Gouyon,a,c and Sophie Nadota aLaboratoire Ecologie, Syste´matique et Evolution, Batiment 360, Universite´ Paris-Sud, 91405 Orsay Ce´dex, France bUMR CNRS 7179, Universite´ Paris 6FPierre & Marie Curie, 2 place Jussieu, Case 7077, 75005 Paris, France cMuse´um National d’Histoire Naturelle, De´partement de Syste´matique et Evolution Botanique, 12 rue Buffon, 75005 Paris CP 39, France ÃAuthor for correspondence (email: [email protected]) 1Current address: Department of Biological Sciences, University of Pittsburgh, 4249 Fifth & Ruskin, Pittsburgh, PA 15260, USA. SUMMARY Developmental constraints have been proposed different characteristics of microsporogenesis, only cell to interfere with natural selection in limiting the available wall formation appeared as constrained. We show that set of potential adaptations. Whereas this concept has constraints may also result from biases in the correlated long been debated on theoretical grounds, it has been occurrence of developmental steps (e.g., lack of successive investigated empirically only in a few studies. In this article, cytokinesis when wall formation is centripetal). We document we evaluate the importance of developmental constraints such biases and their potential outcomes, notably the during microsporogenesis (male meiosis in plants), with an establishment of intermediate stages, which allow emphasis on phylogenetic patterns in Asparagales. Different development to bypass such constraints. These insights are developmental constraints were tested by character discussed with regard to potential selection on pollen reshuffling or by simulated distributions. Among the morphology. INTRODUCTION 1991) also hindered tests using the concept (Pigliucci and Kaplan 2000).
    [Show full text]
  • Adaptation and Agronomic Studies with Phormium, Phormium Tenax
    ADAPTATION AND AGRONCIIIC S'IUDIES WITH PHORKIUM, PHORKIUM TENAX FORSTER, IN WESTERN OREGOB Cecil Richard Stanton A THESIS submitted to r CllEGC.tl STATE COLLEGE in partial tull'Ulaent of the requirement& tor the degree ot MASTER OF SC:mlCE Jme 1960 • Itil!r Redacted for Privacy Redacted for Privacy Redacted for Privacy Redacted for Privacy il}r tldt,fi hdEHrftdr AGKllOWLEOOEMENTS The 'Writer wishes to express sincere apprec:iation to Dr. w. H. Foo~ for his guidance and encouragement during the atudy and in the preparation of the thesis. Gratitude is extended to Ik's. J. R. Cowan and F. H. Smith for their advice and suggestions in the preparation of thistmsis.. A spacial acknowledgement is due Hr. D • .w. Fishler and Mr. E. G. Nelson of the Agricultural Research Service of the United States Department of Agriculture for the initial planning and establishment of the experiments in the study. In addition I am indebted to Mr. J. A. Meyers aDd Mr. Y. P. Puri for their help in the .field and laborat017 work. TABLE OF CONTENTS Page Acknowledgements Introduction•••••••••••••••••••••••••••••••••••••••••••••••• , 1 Review of Literature••••••••••••••••••••••••••••·•••••••••••• ·) Kethoda and Kateriala•••••••••••••••••••••••••••• ~••••••••••• 9 Locationa••••••••••••••••••••••••••••••••••••••••••••••••• 9 Cottma.n Nu.raeriea. ••••• , • • • • • • • • • • • • • • • • • • • • • • • • • • • • • •.• • 9 Wollam Nurseey... • •••• ".-. •• .••••••••••••••••••••••• ,. _. ••12 Adaptational Plantings•••••••••••••••••••••••••••••••••!) Geaney Hurser.r•••••••··-···•••·••••••••••••••••••••••••14
    [Show full text]
  • ENNZ: Environment and Nature in New Zealand
    ISSN: 1175-4222 ENNZ: Environment and Nature in New Zealand Volume 10, Number 1, September 2016 2 ENNZ: Environment and Nature in New Zealand Vol 10, No 1, Sep 2016 About us ENNZ provides a forum for debate on environmental topics through the acceptance of peer reviewed and non-peer reviewed articles, as well as book and exhibition reviews and postings on upcoming events, including conferences and seminars. Contact If you wish to contribute articles or reviews of exhibitions or books, please contact: Dr. Vaughan Wood, 16a Hillcrest Place, Christchurch 8042, New Zealand. Ph: 03 342 8291 [email protected] Chief editor Dr. Vaughan Wood Founding editor Dr. James Beattie Associate editors Dr. Charles Dawson Dr. Catherine Knight Dr. Julian Kuzma Dr. Robert Peden Dr. Paul Star Dr. Jonathan West Dr. Joanne Whittle 3 ENNZ: Environment and Nature in New Zealand Vol 10, No 1, Sep 2016 ENNZ website http://environmentalhistory-au-nz.org/category/ennz Publisher History Programme, University of Waikato, Private Bag 3105, Hamilton 3240, New Zealand. Thanks Thanks to Libby Robin and Cameron Muir, both of the Australian National University, and the Fenner School of Environment and Society for hosting this site. ISSN: 1175-4222. 4 ENNZ: Environment and Nature in New Zealand Vol 10, No 1, Sep 2016 Contents 5 Vaughan Wood, “Editor’s Introduction” 7 Linda Tyler, “Illustrating the Grasses and the Transactions: John Buchanan’s Development of Technologies for Lithography in Natural History” 23 Julia Wells, “A Physician to the Sultan’: The East African Environment in the Writings of a New Zealand Doctor” 40 Vaughan Wood, “The History of the Phormium Flax Industry in Canterbury” 52 Paul Star, “Review: Alan F.
    [Show full text]
  • The Recipe: Thrillers, Fillers and Spillers
    The Recipe: Thrillers, Fillers and Spillers Planters look best when you combine plants with three different habits: • Thrillers are usually vertical, such as phormium, canna, calla pennisetum or upright fuchsia (Fuchsia triphylla 'Gartenmeister Bonstedt') • Fillers tend to be horizontal or weaving, such as heliotrope, osteospermum, petunia, coleus or impatiens • Spillers are cascading, such as helichrysum, ipomea or callibrachoa. THRILLERS • Agave • Angelonia • Bamboo • Banana • Canna • Corydalis • Dahlia (upright varieties) • Dracena • Elephant ear (taro) • Fuchsia (upright varieties) • Grasses • Hibiscus • Millet • Papyrus • Phormium (New Zealand flax) FILLERS • Argyranthemum (Marguerite daisy) • Begonia • Caladium • Coleus • Diascia (twinspur) • Euphorbia (especially Diamond Frost) • Impatiens • Nasturtium (mounding types) • Nemesia • Osteospermum (African daisy osteospermum) • Pelargonium (geranium) • Petunia • Salvia (small-flowered types) • Verbena SPILLERS • Callibrachoa • Dichondra • Helichrysum (licorice plant) • Ipomoea (sweet potato vine) • Lobelia • Torenia (wishbone flower) Choosing the Best Plants For sun • African daisy (osteospermum) • Alyssum • Argyranthemum (chrysanthemum) • Brugmansia (angel's trumpet) • Calendula • Dahlias • Geranium • Heliotrope • Petunia • Salvia • Scaveola • Verbena • Zinnia For shade • Flowering maple (abutilon) • Impatiens • Begonia • Hosta • Caladium • Persian shield (Strobilanthes dyeranus) • Coleus Plants that tolerate hot, dry sites • Aeonium • Echeveria • Gomphrena • Geranium (ivy-leaf and
    [Show full text]
  • Journal of the RNZIH
    The 2006 Banks Memorial Lecture: Cultural uses of New Zealand native plants Sue Scheele1 In this talk I examine those plants of that early period, but as the essential to human survival in climate changed it all but died out. Aotearoa – those of importance It was also inadequate for winter to Mäori before the arrival of warmth. By the time Cook arrived, Europeans, for food, clothing, there were only a few plants left, shelter, and medicine. Despite all with small pieces used for purposes the knowledge that has been lost, such as ear ornaments for people of there is a vast amount one could high status. explore on any of these subjects. I can imagine the relief of those So this is a selective overview, early settlers at fi nding the large once over lightly, but I hope enough Fig. 1 Phormium tenax ‘Maeneene’, a acreages of harakeke, common to enrich your appreciation of our harakeke selected for its weaving properties. in many places, especially as fantastic fl ora. Photo: Sue Scheele. they experimented and exploited And because this presentation is And there’s that word ‘fl ax’ being its properties. The very name a memorial to Joseph Banks, what used which has caused no end of harakeke comes from the proto- better place to start than with his confusion since. Our New Zealand Polynesian, fara meaning Pandanus remarks on Cook’s fi rst voyage in fl ax bears no relationship to the fl ax – the strappy leaved plant used for 1769. Banks kept a good journal used in Europe or elsewhere, the plaiting containers in Polynesia – of his observations of New Zealand perennial herb Linum, except that and keke meaning strong.
    [Show full text]
  • Phylogeny, Genome Size, and Chromosome Evolution of Asparagales J
    Aliso: A Journal of Systematic and Evolutionary Botany Volume 22 | Issue 1 Article 24 2006 Phylogeny, Genome Size, and Chromosome Evolution of Asparagales J. Chris Pires University of Wisconsin-Madison; University of Missouri Ivan J. Maureira University of Wisconsin-Madison Thomas J. Givnish University of Wisconsin-Madison Kenneth J. Systma University of Wisconsin-Madison Ole Seberg University of Copenhagen; Natural History Musem of Denmark See next page for additional authors Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Pires, J. Chris; Maureira, Ivan J.; Givnish, Thomas J.; Systma, Kenneth J.; Seberg, Ole; Peterson, Gitte; Davis, Jerrold I.; Stevenson, Dennis W.; Rudall, Paula J.; Fay, Michael F.; and Chase, Mark W. (2006) "Phylogeny, Genome Size, and Chromosome Evolution of Asparagales," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 22: Iss. 1, Article 24. Available at: http://scholarship.claremont.edu/aliso/vol22/iss1/24 Phylogeny, Genome Size, and Chromosome Evolution of Asparagales Authors J. Chris Pires, Ivan J. Maureira, Thomas J. Givnish, Kenneth J. Systma, Ole Seberg, Gitte Peterson, Jerrold I. Davis, Dennis W. Stevenson, Paula J. Rudall, Michael F. Fay, and Mark W. Chase This article is available in Aliso: A Journal of Systematic and Evolutionary Botany: http://scholarship.claremont.edu/aliso/vol22/iss1/ 24 Asparagales ~£~2COTSgy and Evolution Excluding Poales Aliso 22, pp. 287-304 © 2006, Rancho Santa Ana Botanic Garden PHYLOGENY, GENOME SIZE, AND CHROMOSOME EVOLUTION OF ASPARAGALES 1 7 8 1 3 9 J. CHRIS PIRES, • • IVAN J. MAUREIRA, THOMAS J. GIVNISH, 2 KENNETH J. SYTSMA, 2 OLE SEBERG, · 9 4 6 GITTE PETERSEN, 3· JERROLD I DAVIS, DENNIS W.
    [Show full text]