Circulatory System with Skeleton Model 骨格付き血液循環系模型
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Splenic Artery Embolization for the Treatment of Gastric Variceal Bleeding Secondary to Splenic Vein Thrombosis Complicated by Necrotizing Pancreatitis: Report of a Case
Hindawi Publishing Corporation Case Reports in Medicine Volume 2016, Article ID 1585926, 6 pages http://dx.doi.org/10.1155/2016/1585926 Case Report Splenic Artery Embolization for the Treatment of Gastric Variceal Bleeding Secondary to Splenic Vein Thrombosis Complicated by Necrotizing Pancreatitis: Report of a Case Hee Joon Kim, Eun Kyu Park, Young Hoe Hur, Yang Seok Koh, and Chol Kyoon Cho Department of Surgery, Chonnam National University Medical School, Gwangju, Republic of Korea Correspondence should be addressed to Chol Kyoon Cho; [email protected] Received 11 August 2016; Accepted 1 November 2016 Academic Editor: Omer Faruk Dogan Copyright © 2016 Hee Joon Kim et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Splenic vein thrombosis is a relatively common finding in pancreatitis. Gastric variceal bleeding is a life-threatening complication of splenic vein thrombosis, resulting from increased blood flow to short gastric vein. Traditionally, splenectomy is considered the treatment of choice. However, surgery in necrotizing pancreatitis is dangerous, because of severe inflammation, adhesion, and bleeding tendency. In the Warshaw operation, gastric variceal bleeding is rare, even though splenic vein is resected. Because the splenic artery is also resected, blood flow to short gastric vein is not increased problematically. Herein, we report a case of gastric variceal bleeding secondary to splenic vein thrombosis complicated by necrotizing pancreatitis successfully treated with splenic artery embolization. Splenic artery embolization could be the best treatment option for gastric variceal bleeding when splenectomy is difficult such as in case associated with severe acute pancreatitis or associated with severe adhesion or in patients withhigh operation risk. -
Diagnosis and Treatment of Pelvic Congestion Syndrome: UIP Consensus Document
International Angiology ANTIGNANI August 2019 PELVIC CONGESTION SYNDROME Vol. 38 - No. 4 © 2019 EDIZIONI MINERVA MEDICA International Angiology 2019 August;38(4):265-83 Online version at http://www.minervamedica.it DOI: 10.23736/S0392-9590.19.04237-8 GUIDELINES AND CONSENSUS ITOR D ’S E VENOUS DISEASE C E H O I C Diagnosis and treatment of pelvic congestion syndrome: UIP consensus document Pier-Luigi ANTIGNANI 1 *, Zaza LAZARASHVILI 2, Javier L. MONEDERO 3, Santiago Z. EZPELETA 4, Mark S. WHITELEY 5, Neil M. KHILNANI 6, Mark H. MEISSNER 7, Cees H. WITTENS 8, Ralph L. KURSTJENS 9, Ludmila BELOVA 10, Mamuka BOKUCHAVA 11, Wassila T. ELKASHISHI 12, 13, Christina JEANNERET-GRIS 14, George GEROULAKOS 15, Sergio GIANESINI 16, Rick De GRAAF 17, Marek KRZANOWSKI 18, Louay AL TARAZI 19, Lorenzo TESSARI 20, Marald WIKKELING 21 1Vascular Center, Nuova Villa Claudia, Rome, Italy; 2Chapidze Emergency Cardiovascular Center, Tbilisi, Georgia; 3Unity of Vascular Pathology, Ruber Internacional Hospital, Madrid, Spain; 4Unity of Radiology for Vascular Diseases, Ruber Internacional Hospital, Madrid, Spain; 5The Whiteley Clinic, London, UK; 6Division of Interventional Radiology, Weill Cornell Medicine, New York Presbyterian Hospital, New York, USA; 7University of Washington School of Medicine, Seattle, Washington, USA; 8Department of Venous Surgery, Maastricht University Medical Center, Maastricht, the Netherlands; 9Department of Obstetrics and Gynecology, Haga Teaching Hospital, The Hague, the Netherlands; 10Faculty of Medicine, Ulyanovsk State University, -
Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers
ORIGINAL ARTICLE Corona Mortis: the Abnormal Obturator Vessels in Filipino Cadavers Imelda A. Luna Department of Anatomy, College of Medicine, University of the Philippines Manila ABSTRACT Objectives. This is a descriptive study to determine the origin of abnormal obturator arteries, the drainage of abnormal obturator veins, and if any anastomoses exist between these abnormal vessels in Filipino cadavers. Methods. A total of 54 cadaver halves, 50 dissected by UP medical students and 4 by UP Dentistry students were included in this survey. Results. Results showed the abnormal obturator arteries arising from the inferior epigastric arteries in 7 halves (12.96%) and the abnormal communicating veins draining into the inferior epigastric or external iliac veins in 16 (29.62%). There were also arterial anastomoses in 5 (9.25%) with the inferior epigastric artery, and venous anastomoses in 16 (29.62%) with the inferior epigastric or external iliac veins. Bilateral abnormalities were noted in a total 6 cadavers, 3 with both arterial and venous, and the remaining 3 with only venous anastomoses. Conclusion. It is important to be aware of the presence of these abnormalities that if found during surgery, must first be ligated to avoid intraoperative bleeding complications. Key Words: obturator vessels, abnormal, corona mortis INtroDUCTION The main artery to the pelvic region is the internal iliac artery (IIA) with two exceptions: the ovarian/testicular artery arises directly from the aorta and the superior rectal artery from the inferior mesenteric artery (IMA). The internal iliac or hypogastric artery is one of the most variable arterial systems of the human body, its parietal branches, particularly the obturator artery (OBA) accounts for most of its variability. -
The Anatomy of Th-E Blood Vascular System of the Fox ,Squirrel
THE ANATOMY OF TH-E BLOOD VASCULAR SYSTEM OF THE FOX ,SQUIRREL. §CIURUS NlGER. .RUFIVENTEB (OEOEEROY) Thai: for the 009m of M. S. MICHIGAN STATE COLLEGE Thomas William Jenkins 1950 THulS' ifliillifllfllilllljllljIi\Ill\ljilllHliLlilHlLHl This is to certifg that the thesis entitled The Anatomy of the Blood Vascular System of the Fox Squirrel. Sciurus niger rufiventer (Geoffroy) presented by Thomas William Jenkins has been accepted towards fulfillment of the requirements for A degree in MEL Major professor Date May 23’ 19500 0-169 q/m Np” THE ANATOMY OF THE BLOOD VASCULAR SYSTEM OF THE FOX SQUIRREL, SCIURUS NIGER RUFIVENTER (GEOFFROY) By THOMAS WILLIAM JENKINS w L-Ooffi A THESIS Submitted to the School of Graduate Studies of Michigan State College of Agriculture and Applied Science in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Department of Zoology 1950 \ THESlSfi ACKNOWLEDGMENTS Grateful acknowledgment is made to the following persons of the Zoology Department: Dr. R. A. Fennell, under whose guidence this study was completed; Mr. P. A. Caraway, for his invaluable assistance in photography; Dr. D. W. Hayne and Mr. Poff, for their assistance in trapping; Dr. K. A. Stiles and Dr. R. H. Manville, for their helpful suggestions on various occasions; Mrs. Bernadette Henderson (Miss Mac), for her pleasant words of encouragement and advice; Dr. H. R. Hunt, head of the Zoology Department, for approval of the research problem; and Mr. N. J. Mizeres, for critically reading the manuscript. Special thanks is given to my wife for her assistance with the drawings and constant encouragement throughout the many months of work. -
Arteries and Veins) of the Gastrointestinal System (Oesophagus to Anus)
2021 First Sitting Paper 1 Question 07 2021-1-07 Outline the anatomy of the blood supply (arteries and veins) of the gastrointestinal system (oesophagus to anus) Portal circulatory system + arterial blood flow into liver 1100ml of portal blood + 400ml from hepatic artery = 1500ml (30% CO) Oxygen consumption – 20-35% of total body needs Arterial Supply Abdominal Aorta • It begins at the aortic hiatus of the diaphragm, anterior to the lower border of vertebra T7. • It descends to the level of vertebra L4 it is slightly to the left of midline. • The terminal branches of the abdominal aorta are the two common iliac arteries. Branches of Abdominal Aorta Visceral Branches Parietal Branches Celiac. Inferior Phrenics. Superior Mesenteric. Lumbars Inferior Mesenteric. Middle Sacral. Middle Suprarenals. Renals. Internal Spermatics. Gonadal Anterior Branches of The Abdominal Aorta • Celiac Artery. Superior Mesenteric Artery. Inferior Mesenteric Artery. • The three anterior branches supply the gastrointestinal viscera. Basic Concept • Fore Gut - Coeliac Trunk • Mid Gut - Superior Mesenteric Artery • Hind Gut - Inferior Mesenteric Artery Celiac Trunk • It arises from the abdominal aorta immediately below the aortic hiatus of the diaphragm anterior to the upper part of vertebra LI. • It divides into the: left gastric artery, splenic artery, common hepatic artery. o Left gastric artery o Splenic artery ▪ Short gastric vessels ▪ Lt. gastroepiploic artery o Common hepatic artery ▪ Hepatic artery proper JC 2019 2021 First Sitting Paper 1 Question 07 • Left hepatic artery • Right hepatic artery ▪ Gastroduodenal artery • Rt. Gastroepiploic (gastro-omental) artery • Sup pancreatoduodenal artery • Supraduodenal artery Oesophagus • Cervical oesophagus - branches from inferior thyroid artery • Thoracic oesophagus - branches from bronchial arteries and aorta • Abd. -
Anomalies of the Portal Venous System in Dogs and Cats As Seen on Multidetector-Row Computed Tomography: an Overview and Systematization Proposal
veterinary sciences Review Anomalies of the Portal Venous System in Dogs and Cats as Seen on Multidetector-Row Computed Tomography: An Overview and Systematization Proposal Giovanna Bertolini San Marco Veterinary Clinic and Laboratory, via dell’Industria 3, 35030 Veggiano, Padova, Italy; [email protected]; Tel.: +39-049-856-1098 Received: 29 November 2018; Accepted: 16 January 2019; Published: 22 January 2019 Abstract: This article offers an overview of congenital and acquired vascular anomalies involving the portal venous system in dogs and cats, as determined by multidetector-row computed tomography angiography. Congenital absence of the portal vein, portal vein hypoplasia, portal vein thrombosis and portal collaterals are described. Portal collaterals are further discussed as high- and low-flow connections and categorized in hepatic arterioportal malformation, arteriovenous fistula, end-to-side and side-to-side congenital portosystemic shunts, acquired portosystemic shunts, cavoportal and porto-portal collaterals. Knowledge of different portal system anomalies helps understand the underlying physiopathological mechanism and is essential for surgical and interventional approaches. Keywords: portal system; portal vein; portosystemic shunt; portal hypertension; computed tomography 1. Introduction The portal venous system is essential for the maintenance of the liver mass and function in mammals. The portal system collects blood from major abdominal organs (i.e., gastrointestinal tract, pancreas, spleen) delivering nutrients, bacteria and toxins from the intestine to the liver. In addition, the portal blood carries approximately from one-half to two-thirds of the oxygen supply to the liver and specific hepatotrophic factors [1,2]. The portal blood is detoxified by the hepatocytes and then delivered into the systemic circulation via the hepatic veins and caudal vena cava [3]. -
EDS Awareness in the TMJ Patient
EDS Awareness in the TMJ Patient TMJ and CCI with the EDS Patient “The 50/50” Myofascial Pain Syndrome EDNF, Baltimore, MD August 14,15, 2015 Generation, Diagnosis and Treatment of Head Pain of Musculoskeletal Origin Head pain generated by: • Temporomandibular joint dysfunction • Cervicocranial Instability • Mandibular deviation • Deflection of the Pharyngeal Constrictor Structures Parameters & Observations . The Myofascial Pain Syndrome (MPS) is a description of pain tracking in 200 Ehlers-Danlos patients. Of the 200 patients, 195 were afflicted with this pain referral syndrome pattern. The MPS is in direct association and correlation to Temporomandibular Joint dysfunction and Cervico- Cranial Instability syndromes. Both syndromes are virtually and always correlated. Evaluation of this syndrome was completed after testing was done to rule out complex or life threatening conditions. The Temporomandibular Joint TMJ Dysfunction Symptoms: Deceptively Simple, with Complex Origins 1) Mouth opening, closing with deviation of mandibular condyles. -Menisci that maybe subluxated causing mandibular elevation. -Jaw locking “open” or “closed”. -Inability to “chew”. 2) “Headaches”/”Muscles spasms” (due to decreased vertical height)generated in the temporalis muscle, cheeks areas, under the angle of the jaw. 3) Osseous distortion Pain can be generated in the cheeks, floor of the orbits and/or sinuses due to osseous distortion associated with “bruxism”. TMJ dysfunction cont. (Any of the following motions may produce pain) Pain With: . Limited opening(closed lock): . Less than 33 mm of rotation in either or both joints . Translation- or lack of . Deviations – motion of the mandible to the affected side or none when both joints are affected . Over joint pain with or without motion around or . -
Transabdominal Pelvic Venous Duplex Evaluation
VASCULAR TECHNOLOGY PROFESSIONAL PERFORMANCE GUIDELINES Transabdominal Pelvic Venous Duplex Evaluation This Guideline was prepared by the Professional Guidelines Subcommittee of the Society for Vascular Ultrasound (SVU) as a template to aid the vascular technologist/sonographer and other interested parties. It implies a consensus of those substantially concerned with its scope and provisions. The guidelines contain recommendations only and should not be used as a sole basis to make medical practice decisions. This SVU Guideline may be revised or withdrawn at any time. The procedures of SVU require that action be taken to reaffirm, revise, or withdraw this Guideline no later than three years from the date of publication. Suggestions for improvement of this Guideline are welcome and should be sent to the Executive Director of the Society for Vascular Ultrasound. No part of this Guideline may be reproduced in any form, in an electronic retrieval system or otherwise, without the prior written permission of the publisher. Sponsored and published by: Society for Vascular Ultrasound 4601 Presidents Drive, Suite 260 Lanham, MD 20706-4831 Tel.: 301-459-7550 Fax: 301-459-5651 E-mail: [email protected] Internet: www.svunet.org Transabdominal Pelvic Venous Duplex Ultrasound PURPOSE Transabdominal pelvic venous duplex examinations are performed to assess for abnormal blood flow in the abdominal and pelvic veins (excluding the portal venous system). The evaluation includes the assessment of abdominal and pelvic venous compressions, abdominal and pelvic venous insufficiency and evaluation of the presence or absence of pelvic varicosities. Note: Abdominal and pelvic venous disorders can be previously referred to as pelvic congestion syndrome or PCS; however, with the expansion of research into the abdominal and pelvic venous system updated nomenclature is imperative to the proper diagnosis and treatment of these conditions. -
Dr. ALSHIKH YOUSSEF Haiyan
Dr. ALSHIKH YOUSSEF Haiyan General features The peritoneum is a thin serous membrane Consisting of: 1- Parietal peritoneum -lines the ant. Abdominal wall and the pelvis 2- Visceral peritoneum - covers the viscera 3- Peritoneal cavity - the potential space between the parietal and visceral layer of peritoneum - in male, is a closed sac - but in the female, there is a communication with the exterior through the uterine tubes, the uterus, and the vagina ▪ Peritoneum cavity divided into Greater sac Lesser sac Communication between them by the epiploic foramen The peritoneum The peritoneal cavity is the largest one in the body. Divided into tow sac : .Greater sac; extends from diaphragm down to the pelvis. Lesser Sac .Lesser sac or omental bursa; lies behind the stomach. .Both cavities are interconnected through the epiploic foramen(winslow ). .In male : the peritoneum is a closed sac . .In female : the sac is not completely closed because it Greater Sac communicates with the exterior through the uterine tubes, uterus and vagina. Peritoneum in transverse section The relationship between viscera and peritoneum Intraperitoneal viscera viscera is almost totally covered with visceral peritoneum example, stomach, 1st & last inch of duodenum, jejunum, ileum, cecum, vermiform appendix, transverse and sigmoid colons, spleen and ovary Intraperitoneal viscera Interperitoneal viscera Retroperitoneal viscera Interperitoneal viscera Such organs are not completely wrapped by peritoneum one surface attached to the abdominal walls or other organs. Example liver, gallbladder, urinary bladder and uterus Upper part of the rectum, Ascending and Descending colon Retroperitoneal viscera some organs lie on the posterior abdominal wall Behind the peritoneum they are partially covered by peritoneum on their anterior surfaces only Example kidney, suprarenal gland, pancreas, upper 3rd of rectum duodenum, and ureter, aorta and I.V.C The Peritoneal Reflection The peritoneal reflection include: omentum, mesenteries, ligaments, folds, recesses, pouches and fossae. -
A Rare Variation of the Inferior Mesenteric Vein with Clinical
CASE REPORT A rare variation of the inferior mesenteric vein with clinical implications Danielle Park, Sarah Blizard, Natalie O’Toole, Sheeva Norooz, Martin Dela Torre, Young Son, Michael McGuinness, Mei Xu Park D, Blizard S, O’Toole N, et al. A rare variation of the inferior the middle colic vein. The superior mesenteric vein then united with the mesenteric vein with clinical implications. Int J Anat Var. Mar 2019;12(1): splenic vein to become the hepatic portal vein. Awareness of this uncommon 024-025. anatomy of the inferior mesenteric vein is important in planning a successful gastrointestinal surgery. Several variations of the inferior mesenteric vein have been previously described. However, this report presents a rare variation that has not yet been noted. In this case, the small inferior mesenteric vein drained into a Key Words: Inferior mesenteric vein; Marginal vein; Middle colic vein; Superior tributary of the marginal vein, which joined the superior mesenteric vein via mesenteric vein INTRODUCTION he portal venous system consists of four large veins: the hepatic portal, Tsplenic (SV), superior mesenteric (SMV) and inferior mesenteric (IMV). The SMV collects the venous return from the small intestine, stomach, pancreas, cecum, ascending colon and proximal portion of the transverse colon. The SMV tributaries include the small intestine, right gastro-omental, inferior pancreaticoduodenal, ileocolic, right colic, middle colic (MCV) and marginal (MarV) veins. The IMV receives the blood from the superior rectal, sigmoid and left colic veins, which cover the distal portion of the transverse colon, descending colon, sigmoid colon and superior rectum. According to the description by Thompson in 1890, the portal vein tributaries are categorized into four types [1]. -
Vessels and Circulation
CARDIOVASCULAR SYSTEM OUTLINE 23.1 Anatomy of Blood Vessels 684 23.1a Blood Vessel Tunics 684 23.1b Arteries 685 23.1c Capillaries 688 23 23.1d Veins 689 23.2 Blood Pressure 691 23.3 Systemic Circulation 692 Vessels and 23.3a General Arterial Flow Out of the Heart 693 23.3b General Venous Return to the Heart 693 23.3c Blood Flow Through the Head and Neck 693 23.3d Blood Flow Through the Thoracic and Abdominal Walls 697 23.3e Blood Flow Through the Thoracic Organs 700 Circulation 23.3f Blood Flow Through the Gastrointestinal Tract 701 23.3g Blood Flow Through the Posterior Abdominal Organs, Pelvis, and Perineum 705 23.3h Blood Flow Through the Upper Limb 705 23.3i Blood Flow Through the Lower Limb 709 23.4 Pulmonary Circulation 712 23.5 Review of Heart, Systemic, and Pulmonary Circulation 714 23.6 Aging and the Cardiovascular System 715 23.7 Blood Vessel Development 716 23.7a Artery Development 716 23.7b Vein Development 717 23.7c Comparison of Fetal and Postnatal Circulation 718 MODULE 9: CARDIOVASCULAR SYSTEM mck78097_ch23_683-723.indd 683 2/14/11 4:31 PM 684 Chapter Twenty-Three Vessels and Circulation lood vessels are analogous to highways—they are an efficient larger as they merge and come closer to the heart. The site where B mode of transport for oxygen, carbon dioxide, nutrients, hor- two or more arteries (or two or more veins) converge to supply the mones, and waste products to and from body tissues. The heart is same body region is called an anastomosis (ă-nas ′tō -mō′ sis; pl., the mechanical pump that propels the blood through the vessels. -
Variant Branching Pattern of the Right Internal Iliac Vessels in a Male
Case Report Original Article Archives of Clinical Experimental Surgery Increased of Langerhans Cells in Smokeless Tobacco-Associated Oral Mucosal Lesions Érica Dorigatti de Ávila1, Rafael Scaf de Molon2, Melaine de Almeida Lawall1, Renata Bianco Consolaro1, Alberto Consolaro1 Variant Branching Pattern of the Right Internal Iliac Vessels in A Male: A Case Report Satheesha Nayak Badagabettu, Naveen Kumar, Surekha Devadasa Shetty, Srinivasa Rao Sirasanagandla 1Bauru Dental School Abstract University of São Paulo Department of AnatomyBauru–SP, Brazil AbstractObjective: To evaluate the changes in the number of Langerhans Cells (LC) observed in the epitheliumMelaka ofManipal Medical College 2Araraquara Dental School smokeless tobacco (SLT-induced) lesions. (Manipal Campus) Internal iliac vessels show frequent variations in their branching pattern. We saw variations in the São Paulo State University Methods: Microscopic sections from biopsies carried out in the buccal mucosa of twenty patients, whoManipal were University branching pattern of right internal iliac vessels in a male cadaver. The internal iliac artery did not divide Manipal, Karnataka,Araraquara-SP, India Brazil intochronic anterior users and of posteriorsmokeless divisions. tobacco There (SLT), were were three utilized. common For thetrunks: control one group,for iliolumbar twenty andnon-SLT lateral users of SLT Received: Aug 09,Received: 2012 February 05, 2012 sacralwith normalarteries, mucosa another forwere inferior selected. gluteal The and sections internal werepudendal studied arteries, with routineand the thirdcoloring one forand superior were immunostained Accepted: Oct 09,Accepted: 2012 February 29, 2012 vesicalfor S-100, and CD1a,obturator Ki-67 arteries. and p63.The Thesesuperior data gluteal were and statistically middle rectal analyzed arteries by thearose Student’s directly t-testfrom tothe investigate Arch Clin the Exp SurgArch 2014;3:197-200 Clin Exp Surg 2012;X: X-X DOI:10.5455/aces.20121009120145 maindifferences trunk of in the the internal expression iliac artery.