Is Natura 2000 Large Enough?

Total Page:16

File Type:pdf, Size:1020Kb

Is Natura 2000 Large Enough? Is Natura 2000 large enough? Evaluating and improving the European Union’s nature protection network towards current and potential post-2020 biodiversity representation targets Anke Müller Centre for Earth System Research and Sustainability Universität Hamburg, Germany [email protected] Recommendation to policy makers Implement systematic conservation planning concepts and further expand the Natura 2000 network to ensure adequate ecological representation. 1 @SimplyAnke Systematic conservation planning Central Goals Margules & Sarkar, 2007, Cambridge University Press 1) adequate representation of all components of biodiversity 2) ensuring the persistence of biodiversity into the future 3) achieving these ends with as much economy of resources as possible 2 @SimplyAnke What has worked and didn’t work in the current EU strategy? • Target 1, Action 1a: “Member States […] will ensure that the phase to establish Natura 2000, […], is largely complete by 2012.” • Mid-term review (2015): “[…], the establishment of Natura 2000 on land is largely complete” Terrestrial coverage is 18% but is this enough? 3 @SimplyAnke Mean target achievement towards 10%* representation of each ecoregion 96% MTA protected in amount % protected 10 Müller et al., 2018, Biological Conservation Dinerstein et al., 2017, Bioscience * Target from the technical rationale to Aichi target 11 for ecologically representative protected 4 area networks @SimplyAnke Mean target achievement towards 10%* representation of each ecoregion additional conservation ecoregion area needed (in km²) English Lowlands beech forests 3,059 Celtic broadleaf forests 5,613 Po Basin mixed forests96% MTA 1,073 East European forest steppe 488 Sarmatic mixed forests 2,839 European Atlantic mixed forests 2,114 protected in amount % protected Total 15,187 ~ 0.35% 10 of the EU Müller et al., 2018, Biological Conservation Dinerstein et al., 2017, Bioscience * Target from the technical rationale to Aichi target 11 for ecologically representative protected 5 area networks @SimplyAnke Cost-efficient expansion of the network to close existing gaps BE&BG IE NE RO DE IT FR LV selected km² EE UK roportion of additional conservation area % in area of additional roportion conservation p 6 Müller et al., 2018, Biological Conservation @SimplyAnke What new policy responses are needed? Scientists call for higher protection targets to stop biodiversity loss: 26-28% of terrestrial area Butchart et al., 2015, Conservation Letters 25-75% globally Noss & Cooperrider, 1994, Island Press 30% until 2030 and 50% until 2050 Baillie & Zhang, 2018, Science 100% of all remaining intact ecosystems Watson et al., 2018, Nature Half Earth Wilson, 2016, Liveright 50% of each ecoregion Dinerstein et al., 2017, Bioscience How much additional conservation area would be needed to implement 30% or even 50% ecoregion representation in the EU? 7 @SimplyAnke Mean target achievement towards 30/50% representation of each ecoregion 8 Müller et al., under review @SimplyAnke Mean target achievement towards 30/50% representation of each ecoregion 8 Müller et al., under review @SimplyAnke Mean target achievement towards 30/50% representation of each ecoregion 68% MTA 88% MTA 8 Müller et al., under review @SimplyAnke Mean target achievement towards 30/50% representation of each ecoregion 68% MTA 88% MTA 6.6% 8 Müller et al., under review @SimplyAnke Mean target achievement towards 30/50% representation of each ecoregion 68% MTA 24.2% 88% MTA 8 Müller et al., under review @SimplyAnke Mean target achievement towards 30/50% representation of each ecoregion 8 Müller et al., under review @SimplyAnke Conclusions Consider a further expansion of Natura 2000 – potential target could range between 30% and 50% ecoregion representation (no consensus in the scientific community, yet) Socio-economic analysis of the impacts the adoption of higher representation targets would have on the agriculture and forestry sectors needed 9 @SimplyAnke Methods Step 1: Evaluation Step 2: Systematic expansion Representation metrics Protection levels Conservation of habitat types costs Mean target achievement Ecoregion (MTA) for ecoregions Spatial prioritization model targets Protection equality* (PE) for habitat types or Allocation of additional protected ecosystems areas *Chauvenet et al., 2017,PLOS ONE Distribution of recommended additional conservation area Müller et al., under review The largest amount of additional conservation area could be provided by natural areas.
Recommended publications
  • Blomstedt2014.Pdf (9.403Mb)
    School of GeoSciences DISSERTATION For the degree of MSc in Geographical Information Science William Blomstedt August 2014 COPYRIGHT STATEMENT Copyright of this dissertation is retained by the author and The University of Edinburgh. Ideas contained in this dissertation remain the intellectual property of the author and their supervisors, except where explicitly otherwise referenced. All rights reserved. The use of any part of this dissertation reproduced, transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a retrieval system without the prior written consent of the author and The University of Edinburgh (Institute of Geography) is not permitted. STATEMENT OF ORIGINALITY AND LENGTH I declare that this dissertation represents my own work, and that where the work of others has been used it has been duly accredited. I further declare that the length of the components of this dissertation is 5259 words (including in-text references) for the Research Paper and 7917 words for the Technical Report. Signed: Date: ACKNOWLEDGEMENTS I would like to recognize the faculty and staff of the University of Edinburgh Geosciences Department for the instruction and guidance this school year. Special acknowledgements to Bruce Gittings, William Mackaness, Neil Stuart and Caroline Nichol for sound thoughts and dissertation advice. I also extend a kind thank you to my advisor Alasdair MacArthur for agreeing to undertake this project with me. Thanks to all my fellow students on this MSc program. For the extensive effort leant to providing scale-hive data I am in debt to • Ari Seppälä, Finnish Beekeepers Association, MTT Agrifood Research Finland, Seppo Korpela, Sakari Raiskio • Jure Justinek and Čebelarske zveze Slovenije • René Zumsteg and Verein Deutschschweizerischer Und Rätoromanischer Bienenfreunde, Swise • Centre Apicole de Recherche et Information For his kindness and help starting this project I would like to distinguish Dr.
    [Show full text]
  • Baseline Study
    Nostra Project – Baseline study Gulf of Finland This document is presented in the name of BIO by Deloitte. BIO by Deloitte is a commercial brand of the legal entity BIO Intelligence Service. The legal entity BIO Intelligence Service is a 100% owned subsidiary of Deloitte Conseil since 26 June 2013. Disclaimer: The views expressed in this report are purely those of the authors and may not necessarily reflect the views or policies of the partners of the NOSTRA network. The methodological approach that was applied during the baseline study is presented in the final report of the study. The analysis that is provided in this report is based on the data collected and reported by the Nostra partners, a complementary literature review conducted by the consultants, and the results provided by the methodological toolkit developed in the framework of the baseline study. Acknowledgement: This report has received support from the County of Helsinki-Uusimaa, and the county of Tallinn- Harju, Estonia. The authors would like to thank them for providing information requested for completing this study. Limitations of the analysis: The consultants faced a limited amount of data. In general, In general, on both sides of the strait, involved partners are facing difficulties in collecting social-economic and biodiversity related data. Moreover, the analytical results provided in this report represent mainly the perspective of the Finnish side of the strait, as the Estonian side does not have the research capacity to provide required data. Baseline study of
    [Show full text]
  • Impacts of Land Use on Biodiversity: Development of Spatially Differentiated Global Assessment Methodologies for Life Cycle Assessment
    DISS. ETH NO. xx Impacts of land use on biodiversity: development of spatially differentiated global assessment methodologies for life cycle assessment A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by LAURA SIMONE DE BAAN Master of Sciences ETH born January 23, 1981 citizen of Steinmaur (ZH), Switzerland accepted on the recommendation of Prof. Dr. Stefanie Hellweg, examiner Prof. Dr. Thomas Koellner, co-examiner Dr. Llorenç Milà i Canals, co-examiner 2013 In Gedenken an Frans Remarks This thesis is a cumulative thesis and consists of five research papers, which were written by several authors. The chapters Introduction and Concluding Remarks were written by myself. For the sake of consistency, I use the personal pronoun ‘we’ throughout this thesis, even in the chapters Introduction and Concluding Remarks. Summary Summary Today, one third of the Earth’s land surface is used for agricultural purposes, which has led to massive changes in global ecosystems. Land use is one of the main current and projected future drivers of biodiversity loss. Because many agricultural commodities are traded globally, their production often affects multiple regions. Therefore, methodologies with global coverage are needed to analyze the effects of land use on biodiversity. Life cycle assessment (LCA) is a tool that assesses environmental impacts over the entire life cycle of products, from the extraction of resources to production, use, and disposal. Although LCA aims to provide information about all relevant environmental impacts, prior to this Ph.D. project, globally applicable methods for capturing the effects of land use on biodiversity did not exist.
    [Show full text]
  • The Forest Industry Around the Baltic Sea Region: Future Challenges and Opportunities
    BSR Policy Briefing series 1/2020 The forest industry around the Baltic Sea region: Future challenges and opportunities Edited by Kari Liuhto CENTRUM BALTICUM Centrum Balticum Foundation reserves all the rights of this publication. ISSN: 2342-3153 Contents Authors 3 Introduction 8 Kari Liuhto Keynote articles Can sustainable forests save the world? 9 Sirpa Pietikäinen Sustainable forest management in the EU 11 Mihail Dumitru Climate change and digitalization driving transition of Finnish forest sector 13 Jari Partanen Articles The outlook for Nordic-Baltic forest bioeconomy to 2030 14 Lauri Hetemäki State Forests in the Baltic Sea Region: Where experience meets challenges and future 25 opportunities Amila Meskin and Piotr Borkowski Social and economic importance of the forestry and wood sector in Poland 36 Piotr Gołos and Jacek Hilszczański Forest industry in Northwest Russia 49 Sari Karvinen The forest sector in the Baltic States: A united, growth-oriented economic ecosystem 59 Kristaps Klauss Breakthrough or digression of forest industries: Challenges and potentials of future 69 Henrik Välja Rules-based international trade and Finnish forest industry 74 Eeva Korolainen Forest bioeconomy education and research at the University of Eastern Finland 83 Jyrki Kangas, Teppo Hujala and Sari Pitkänen Earlier publications in the BSR Policy Briefing series 90 Disclaimer: The opinions expressed in this article represent those of the author and do not represent the opinion of the Centrum Balticum Foundation, and thus, the Centrum Balticum Foundation does not bear any responsibility for the opinions expressed in the report. Authors Piotr Borkowski Piotr Borkowski, Executive Director at EUSTAFOR, graduated in Forest management from the Forestry Faculty at Warsaw Agricultural University – Central School of Farming, Mr.
    [Show full text]
  • Biophysical Sustainability of Food Systems in a Global and Interconnected World
    Biophysical Sustainability of Food Systems in a Global and Interconnected World Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Dor Fridman Submitted to the Senate of Ben-Gurion University of the Negev 53/32/2/ Beer-Sheva Biophysical Sustainability of Food Systems in a Global and Interconnected World Thesis submitted in partial fulfillment of the requirements for the degree of “DOCTOR OF PHILOSOPHY” by Dor Fridman Submitted to the Senate of Ben-Gurion University of the Negev Approved by the advisor Approved by the Dean of the Kreitman School of Advanced Graduate Studies 32/2/ 53/32/2/ Beer-Sheva This work was carried out under the supervision of Prof. Meidad Kissinger In the Department for Geography and Environmental Development Faculty of Social Sciences Research-Student’s Affidavit when Submitting the Doctoral Thesis for Judgment I Dor Fridman, whose signature appears below, hereby declare that (Please mark the appropriate statements): V I have written this Thesis by myself, except for the help and guidance offered by my Thesis Advisors. V The scientific materials included in this Thesis are products of my own research, culled from the period during which I was a research student. ___ This Thesis incorporates research materials produced in cooperation with others, excluding the technical help commonly received during experimental work. Therefore, I am attaching another affidavit stating the contributions made by myself and the other participants in this research, which has been approved by them and submitted with their approval. Date: 18/2/20 Student’s name: Dor Fridman Signature: Table of contents Table of contents v Acknowledgements vii List of figures viii List of tables ix List of equations x Abstract xi 1.
    [Show full text]
  • Central and South America Report (1.8
    United States NHEERL Environmental Protection Western Ecology Division May 1998 Agency Corvallis OR 97333 ` Research and Development EPA ECOLOGICAL CLASSIFICATION OF THE WESTERN HEMISPHERE ECOLOGICAL CLASSIFICATION OF THE WESTERN HEMISPHERE Glenn E. Griffith1, James M. Omernik2, and Sandra H. Azevedo3 May 29, 1998 1 U.S. Department of Agriculture, Natural Resources Conservation Service 200 SW 35th St., Corvallis, OR 97333 phone: 541-754-4465; email: [email protected] 2 Project Officer, U.S. Environmental Protection Agency 200 SW 35th St., Corvallis, OR 97333 phone: 541-754-4458; email: [email protected] 3 OAO Corporation 200 SW 35th St., Corvallis, OR 97333 phone: 541-754-4361; email: [email protected] A Report to Thomas R. Loveland, Project Manager EROS Data Center, U.S. Geological Survey, Sioux Falls, SD WESTERN ECOLOGY DIVISION NATIONAL HEALTH AND ENVIRONMENTAL EFFECTS RESEARCH LABORATORY OFFICE OF RESEARCH AND DEVELOPMENT U.S. ENVIRONMENTAL PROTECTION AGENCY CORVALLIS, OREGON 97333 1 ABSTRACT Many geographical classifications of the world’s continents can be found that depict their climate, landforms, soils, vegetation, and other ecological phenomena. Using some or many of these mapped phenomena, classifications of natural regions, biomes, biotic provinces, biogeographical regions, life zones, or ecological regions have been developed by various researchers. Some ecological frameworks do not appear to address “the whole ecosystem”, but instead are based on specific aspects of ecosystems or particular processes that affect ecosystems. Many regional ecological frameworks rely primarily on climatic and “natural” vegetative input elements, with little acknowledgement of other biotic, abiotic, or human geographic patterns that comprise and influence ecosystems.
    [Show full text]
  • Of Sea Level Rise Mediated by Climate Change 7 8 9 10 Shaily Menon ● Jorge Soberón ● Xingong Li ● A
    The original publication is available at www.springerlink.com Biodiversity and Conservation Menon et al. 1 Volume 19, Number 6, 1599-1609, DOI: 10.1007/s10531-010-9790-4 1 2 3 4 5 Preliminary global assessment of biodiversity consequences 6 of sea level rise mediated by climate change 7 8 9 10 Shaily Menon ● Jorge Soberón ● Xingong Li ● A. Townsend Peterson 11 12 13 14 15 16 17 S. Menon 18 Department of Biology, Grand Valley State University, Allendale, Michigan 49401-9403 USA, 19 [email protected] 20 21 J. Soberón 22 Natural History Museum and Biodiversity Research Center, The University of Kansas, 23 Lawrence, Kansas 66045 USA 24 25 X. Li 26 Department of Geography, The University of Kansas, Lawrence, Kansas 66045 USA 27 28 A. T. Peterson 29 Natural History Museum and Biodiversity Research Center, The University of Kansas, 30 Lawrence, Kansas 66045 USA 31 32 33 34 Corresponding Author: 35 A. Townsend Peterson 36 Tel: (785) 864-3926 37 Fax: (785) 864-5335 38 Email: [email protected] 39 40 The original publication is available at www.springerlink.com | DOI: 10.1007/s10531-010-9790-4 Menon et al. Biodiversity consequences of sea level rise 2 41 Running Title: Biodiversity consequences of sea level rise 42 43 Preliminary global assessment of biodiversity consequences 44 of sea level rise mediated by climate change 45 46 Shaily Menon ● Jorge Soberón ● Xingong Li ● A. Townsend Peterson 47 48 49 Abstract Considerable attention has focused on the climatic effects of global climate change on 50 biodiversity, but few analyses and no broad assessments have evaluated the effects of sea level 51 rise on biodiversity.
    [Show full text]
  • Lesy Evr Uvod CZ a I
    Lesy Evropy úvod Terrestrialní (suchozemské) ekoregiony Doc. Ing. Luboš Úradní ček,CSc . Ing. Zdeněk Hrubý Ph.D. Mendelu Brno Czech Republic Inovace biologických a lesnických disciplín pro vyšší konkurenceschopnost (Registra ční číslo CZ.1.07/2.2.00/28.0018 .) za p řisp ění finan čních prost ředk ů EU a státního rozpo čtu České republiky. Evropa x Eurasie Definice Evropy • Hranice dle Mezinárodní geografické unie: Kuma-Manysh deprese – zlom A (řeka Don – dolní tok) Klima Evropy Oceanické klima AT • Západoevropské klima • V. Britanie, Irsko, Holandsko,Dánsko, Belgie, Luxemburg, Francie, severní Španělsko • mírné přímořské zimy s chladnějším počasím na východě a silnými srážkami (dešti) na západě. • Léta jsou dosti teplá a směrem na sever se stávají chladnějšími. Subkontinentální a kontinentální klima • Východoevropské a středoevropské klima • Bulharsko, Rumunsko, Slovensko, Ukrajina, Slovinsko, ČR, Německo, Estonsko, Litva, Maďarsko, Polsko, Lotyšsko, Švýcarsko a Rakousko • Mírné léto s teplotami obvykle kolem 25 ° C • Zimy jsou celkem chladné, vlhké a mlhavé. • 4 rozdílné sezóny – deštivé jaro a podzim, sníh v horských polohách v průběhu zimi a mírně teplé (někdy horké) léto. Boreální a subarktické klima • Severoevropské klima • Švédsko, Norsko, Finsko, Island, severní část Ruska • mírné, příjemné klima podepřené efektem golfského proudu na Norském pobřeží. Zimy bývají velmi chladné. • Obvykle jižní část severní Evropy má mírnější klima s průměrnou teplotou kolem 0 °C. –SUBBOREÁLNÍ KLIMA • Léta jsou vskutku příjemná, zřídka s teplotou
    [Show full text]
  • Climate Connectivity of European Forests for Species Range Shifts
    Article Climate Connectivity of European Forests for Species Range Shifts Qiyao Han * , Greg Keeffe and Sean Cullen School of Natural and Built Environment, Queen’s University Belfast, Belfast BT7 1NN, UK; [email protected] (G.K.); [email protected] (S.C.) * Correspondence: [email protected] Abstract: Forest connectivity is important for the range shifts and long-term persistence of forest- dependent species, especially in the context of climate change. This study assessed the climate connectivity of European forests for species to track suitable climate conditions as the climate warms. Here, climate connectivity was calculated as the temperature difference between each forest patch and the coolest patch that can be reached along temperature gradients. We found that, overall, about 36% of the total forested area in Europe has achieved successful climate connectivity under the moderate emission scenario (SSP245), whereby species range shifts could circumvent the impact of climate warming. The percentage is much lower under the highest emission scenario (SSP585), which is only 12%. To identify forest areas of high importance for climate connectivity, we further evaluated the potential of each forest patch to serve as a stepping stone for species range shifts. Our results showed that about 94% of the European forested area is expected to experience species range shifts. Our study identified sites of high conservation value for improving and sustaining forest connectivity to facilitate climate-driven range shifts and thus could provide information for climate-smart management of European forests. Citation: Han, Q.; Keeffe, G.; Cullen, Keywords: climate change; species migration; landscape connectivity; European forests; stepping stone S.
    [Show full text]
  • From Trees to Molecules : the Invasive Process of Acacia Dealbata Link At
    From trees to molecules. The invasive process of Acacia dealbata Link at different scales Memoria de Tesis Doctoral presentada por el Licenciado Pablo Souza Alonso From trees to molecules, invasive process of Acacia dealbata Link at different scales La realización de esta tesis doctoral ha sido posible gracias a la concesión de una beca de 3er ciclo y posteriormente a un contrato predoctoral financiados por la Universidade de Vigo. Vigo, Noviembre de 2014 Edited by Pablo Souza Alonso Printing: Agradecimientos Más de 175 páginas, 60.000 palabras, 400.000 caracteres. Después de todo este trabajo, cualquiera diría que esta es la parte más fácil de escribir dentro de un proceso tan largo como es la redacción de una tesis doctoral. Error. Siendo muy fácil agradecer a la gente implicada su ayuda durante estos años, se me hace frustrante pensar que me dejo a alguien por el camino. Todos, de un modo u otro, en mayor o menor medida, me habéis marcado y tenéis vuestra parte de “culpa” en este trabajo. En un esfuerzo de memoria, intentaré en tres páginas recordaros a todos los que en algún momento os habéis cruzado en mi camino. Tengo que empezar, sin duda por mi familia. Sin vosotros no estaría aquí y no me equivoco si digo que pocos pueden estar tan agradecidos por tanto apoyo incansable, sin dudas desde el primer día. A Oli, por tu cariño, tu aliento diario, por tu confianza ciega, la tienes aún cuando a mí me falla. Esas horas interminables delante del ordenador, la paciencia durante esos fines de semana que había que subir a trabajar..
    [Show full text]
  • Sweden by 2050” In: FABLE 2020, Pathways to Sustainable Land-Use and Food Systems, 2020 Report of the FABLE Consortium
    2020 Report of the FABLE Consortium Pathways to Sustainable Land-Use and Food Systems Published by International Institute for Applied Systems Analysis (IIASA) and the Sustainable Development Solutions Network (SDSN) 2020 The full report is available at www.foodandlandusecoalition.org/fable. For questions please write to [email protected] Copyright © IIASA & SDSN 2020 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND 4.0; https://creativecommons.org/licenses/by-nc-nd/4.0/). Disclaimer The 2020 FABLE Report was written by a group of independent experts acting in their personal capacities. Any views expressed in this report do not necessarily reflect the views of any government or organization, agency, or programme of the United Nations (UN). The country chapters use maps prepared solely by the national teams. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of SDSN or IIASA concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Recommended citation: Basnet S., Fetzer I., Jansson T., Gordon L., Röös E., Ahlgren S., Wood A. and Woodhouse A. (2020), “Pathways to Sustainable Land-Use and Food Systems in Sweden by 2050” In: FABLE 2020, Pathways to Sustainable Land-Use and Food Systems, 2020 Report of the FABLE Consortium. Laxenburg and Paris: International Institute for Applied Systems Analysis (IIASA) and Sustainable Development Solutions Network (SDSN), pp. 595-625. https://doi.org/10.22022/ESM/12-2020.16896 Recommended Creative Commons (CC) License: CC-BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives 4.0 International).
    [Show full text]
  • Prishchepov2.Pdf
    Land Use Policy 30 (2013) 873–884 Contents lists available at SciVerse ScienceDirect Land Use Policy jou rnal homepage: www.elsevier.com/locate/landusepol Determinants of agricultural land abandonment in post-Soviet European Russia a,b,∗ a c Alexander V. Prishchepov , Daniel Müller , Maxim Dubinin , b b Matthias Baumann , Volker C. Radeloff a Leibniz Institute of Agricultural Development in Central and Eastern Europe (IAMO), Theodor-Lieser-Strasse 2, 06120 Halle (Saale), Germany b Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706-1598, USA c Biodiversity Conservation and Bioresources Use Laboratory, Institute of Ecology and Evolution of Russian Academy of Sciences, 33 Leninsky Prospect, Moscow 117071, Russia a r t i c l e i n f o a b s t r a c t Article history: The breakdown of socialism caused massive socio-economic and institutional changes that led to substan- Received 29 November 2011 tial agricultural land abandonment. The goal of our study was to identify the determinants of agricultural Received in revised form 12 June 2012 land abandonment in post-Soviet Russia during the first decade of transition from a state-controlled Accepted 27 June 2012 economy to a market-driven economy (1990–2000). We analyzed the determinants of agricultural land 2 abandonment for approximately 150,550 km of land area in the provinces (oblasts) of Kaluga, Rjazan, Keywords: Smolensk, Tula and Vladimir in European Russia. Based on the economic assumptions of profit max- Agricultural land abandonment imization, we integrated maps of abandoned agricultural land from five ∼185 km × 185 km Landsat Institutional change TM/ETM+ footprints with socio-economic, environmental and geographic variables, and we estimated Land use change logistic regressions at the pixel level to identify the determinants of agricultural land abandonment.
    [Show full text]