Blomstedt2014.Pdf (9.403Mb)

Total Page:16

File Type:pdf, Size:1020Kb

Blomstedt2014.Pdf (9.403Mb) School of GeoSciences DISSERTATION For the degree of MSc in Geographical Information Science William Blomstedt August 2014 COPYRIGHT STATEMENT Copyright of this dissertation is retained by the author and The University of Edinburgh. Ideas contained in this dissertation remain the intellectual property of the author and their supervisors, except where explicitly otherwise referenced. All rights reserved. The use of any part of this dissertation reproduced, transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise or stored in a retrieval system without the prior written consent of the author and The University of Edinburgh (Institute of Geography) is not permitted. STATEMENT OF ORIGINALITY AND LENGTH I declare that this dissertation represents my own work, and that where the work of others has been used it has been duly accredited. I further declare that the length of the components of this dissertation is 5259 words (including in-text references) for the Research Paper and 7917 words for the Technical Report. Signed: Date: ACKNOWLEDGEMENTS I would like to recognize the faculty and staff of the University of Edinburgh Geosciences Department for the instruction and guidance this school year. Special acknowledgements to Bruce Gittings, William Mackaness, Neil Stuart and Caroline Nichol for sound thoughts and dissertation advice. I also extend a kind thank you to my advisor Alasdair MacArthur for agreeing to undertake this project with me. Thanks to all my fellow students on this MSc program. For the extensive effort leant to providing scale-hive data I am in debt to • Ari Seppälä, Finnish Beekeepers Association, MTT Agrifood Research Finland, Seppo Korpela, Sakari Raiskio • Jure Justinek and Čebelarske zveze Slovenije • René Zumsteg and Verein Deutschschweizerischer Und Rätoromanischer Bienenfreunde, Swise • Centre Apicole de Recherche et Information For his kindness and help starting this project I would like to distinguish Dr. Janko Božič. Thanks Janko. I was able to undertake this year of study partly due to the support from the Eva Crane Trust. Thank you to the trustees as well as Eva Crane herself, who has been a main inspiration me on this journey. Finally, my family, to whom I owe everything – Mother, Father, Grandpa Frank, Sister – Love and Thanks. William Blomstedt Research Paper Mapping The Phenology of European Honey Bee Nectar Flows Part I: Research Paper 1 William Blomstedt Research Paper ii. ABSTRACT Insect pollination is vital to both the health of our ecosystem and food production. Consequently, it is important to understand how the phenology of both pollinators and plants will be influenced by global climate change. Current satellites allow a near-daily synoptic view of the entire earth, but it is difficult linking the imagery with in situ events because of the difference in scale between a point and pixel. Due to their generalized foraging on a variety of plants in the 100 km2 surrounding their hive, honey bees operate at a scale which may be compared to satellite data. The MODIS Aqua and Terra satellites produce daily images of the earth and the Normalized Differentiation Vegetation Index (NDVI) is able to show the “green-up” or start of spring (SOS). Locally, the phenology of nectar-producing flowers can be inferred from the honey bee nectar flow (HBNF), which is measured by the weight gain of a honey bee hive. This research investigates the link between smoothed, gap-filled NDVI data, and weight gain of hives in Slovenia, Switzerland, Belgium and Finland during 2009-2012. No correlation was found between the SOS and HBNF start day, but a notable relationship (R2=0.73) was seen between NDVI SOS and HBNF midpoint (50% day) within the Alps and broadleaf forests of central Europe. This indicates that HBNF can be related to continental MODIS climate models, and that nectar flows have been advancing 0.54 days per year in central Europe. 2 William Blomstedt Research Paper iii. TABLE OF CONTENTS i. TITLE PAGE........................................................................................................................................... 1 ii. ABSTRACT........................................................................................................................................... 2 iii. TABLE OF CONTENTS...................................................................................................................... 3 iv. LIST OF ABBREVIATIONS AND ACRONYMS................................................................................4 1. INTRODUCTION.................................................................................................................................. 5 1.1 POLLINATION.......................................................................................................................... 5 1.2 HONEY BEES............................................................................................................................ 5 1.3 SATELLITE REMOTE SENSING............................................................................................6 1.4 LINKING SATELLITE WITH HBNF.......................................................................................6 1.5 RESEARCH QUESTION AND HYPOTHOSIS.......................................................................7 2. LITERATURE REVIEW....................................................................................................................... 8 2.1 HONEY BEES............................................................................................................................ 8 2.2 FORAGE.................................................................................................................................... 8 2.3 SCALE-HIVE............................................................................................................................. 8 2.4 NORMALIZED DIFFERENCE VEGETATION INDEX..........................................................9 2.5 LINKING NDVI WITH GROUND MEASUREMENTS........................................................10 2.6 CALCULATING SOS..............................................................................................................10 2.7 LSP AND HONEYBEES..........................................................................................................11 3. DATA AND METHODS...................................................................................................................... 12 3.1 STUDY AREAS....................................................................................................................... 12 3.2 DIGITAL MAP OF EUROPEAN ECOLOGICAL REGIONS................................................14 3.3 SCALE-HIVE DATA............................................................................................................... 14 3.3.1 SLOVENIA...................................................................................................................... 14 3.3.2 BELGIUM........................................................................................................................ 15 3.3.3 SWITZERLAND.............................................................................................................. 16 3.3.4 FINLAND......................................................................................................................... 17 3.4 HONEY BEE NECTAR FLOW METRICS.............................................................................18 3.5 MODIS NDVI.......................................................................................................................... 18 3.6 TIMESAT................................................................................................................................. 19 4. RESULTS............................................................................................................................................. 20 4.1 HBNF DATA............................................................................................................................ 20 4.2 START OF SEASON – HBNF METRICS...............................................................................21 4.3 TWO SCENARIOS.................................................................................................................. 24 5. DISCUSSION...................................................................................................................................... 27 6. CONCLUSION.................................................................................................................................... 29 7. DATA CITATION................................................................................................................................. 31 7.1 MODIS..................................................................................................................................... 31 7.2 SCALE-HIVE DATA............................................................................................................... 31 7.3 DMEER.................................................................................................................................... 31 8. BIBLIOGRAPHY................................................................................................................................ 32 3 William Blomstedt Research Paper iv. LIST OF ABBREVIATIONS AND ACRONYMS ACMF – Alps Conifer and Mixed Forests AVHRR – Advanced Very High Resolution Radiometer DMEER – Digital
Recommended publications
  • Buhlmann Etal 2009.Pdf
    Chelonian Conservation and Biology, 2009, 8(2): 116–149 g 2009 Chelonian Research Foundation A Global Analysis of Tortoise and Freshwater Turtle Distributions with Identification of Priority Conservation Areas 1 2 3 KURT A. BUHLMANN ,THOMAS S.B. AKRE ,JOHN B. IVERSON , 1,4 5 6 DENO KARAPATAKIS ,RUSSELL A. MITTERMEIER ,ARTHUR GEORGES , 7 5 1 ANDERS G.J. RHODIN ,PETER PAUL VAN DIJK , AND J. WHITFIELD GIBBONS 1University of Georgia, Savannah River Ecology Laboratory, Drawer E, Aiken, South Carolina 29802 USA [[email protected]; [email protected]]; 2Department of Biological and Environmental Sciences, Longwood University, 201 High Street, Farmville, Virginia 23909 USA [[email protected]]; 3Department of Biology, Earlham College, Richmond, Indiana 47374 USA [[email protected]]; 4Savannah River National Laboratory, Savannah River Site, Building 773-42A, Aiken, South Carolina 29802 USA [[email protected]]; 5Conservation International, 2011 Crystal Drive, Suite 500, Arlington, Virginia 22202 USA [[email protected]; [email protected]]; 6Institute for Applied Ecology Research Group, University of Canberra, Australian Capitol Territory 2601, Canberra, Australia [[email protected]]; 7Chelonian Research Foundation, 168 Goodrich Street, Lunenburg, Massachusetts 01462 USA [[email protected]] ABSTRACT. – There are currently ca. 317 recognized species of turtles and tortoises in the world. Of those that have been assessed on the IUCN Red List, 63% are considered threatened, and 10% are critically endangered, with ca. 42% of all known turtle species threatened. Without directed strategic conservation planning, a significant portion of turtle diversity could be lost over the next century. Toward that conservation effort, we compiled museum and literature occurrence records for all of the world’s tortoises and freshwater turtle species to determine their distributions and identify priority regions for conservation.
    [Show full text]
  • Munteanu Et Al 2016 FOM.Pdf
    Forest Ecology and Management 361 (2016) 179–193 Contents lists available at ScienceDirect Forest Ecology and Management journal homepage: www.elsevier.com/locate/foreco Historical forest management in Romania is imposing strong legacies on contemporary forests and their management ⇑ Catalina Munteanu a, , Mihai Daniel Nita b, Ioan Vasile Abrudan b, Volker C. Radeloff a a SILVIS Lab, Department of Forest and Wildlife Ecology, University of Wisconsin-Madison, 1630 Linden Drive, Madison, WI 53706, USA b Faculty of Silviculture and Forest Engineering, Transilvania University of Brasov, Sirul Beethoven, No. 1, 500123 Brasov, Romania article info abstract Article history: Historical forest management can heavily affect contemporary forest management and conservation. Yet, Received 23 August 2015 relatively little is known about century-long changes in forests, and that limits the understanding of how Received in revised form 5 November 2015 past management and land tenure affect current forestry practice and ecosystem conservation. Our goal Accepted 10 November 2015 here was to examine the relationship between historical forest management (as depicted by historical forest cover, species composition, age structure and harvesting data) and contemporary forest patterns in Romania. Romania represents an ideal case-study to examine the effects of historical forest manage- Keywords: ment, because it experienced multiple shifts in forest management regimes since the 1800s due to Historical forestry Austro-Hungarian, Ottoman, Romanian, Soviet and later EU policy influences, and because it is both a Historical forest statistics Forest composition shifts conservation hotspot harboring some of the largest old-growth forest in Europe, and an important source Forest disturbance of timber for international markets.
    [Show full text]
  • Baseline Study
    Nostra Project – Baseline study Gulf of Finland This document is presented in the name of BIO by Deloitte. BIO by Deloitte is a commercial brand of the legal entity BIO Intelligence Service. The legal entity BIO Intelligence Service is a 100% owned subsidiary of Deloitte Conseil since 26 June 2013. Disclaimer: The views expressed in this report are purely those of the authors and may not necessarily reflect the views or policies of the partners of the NOSTRA network. The methodological approach that was applied during the baseline study is presented in the final report of the study. The analysis that is provided in this report is based on the data collected and reported by the Nostra partners, a complementary literature review conducted by the consultants, and the results provided by the methodological toolkit developed in the framework of the baseline study. Acknowledgement: This report has received support from the County of Helsinki-Uusimaa, and the county of Tallinn- Harju, Estonia. The authors would like to thank them for providing information requested for completing this study. Limitations of the analysis: The consultants faced a limited amount of data. In general, In general, on both sides of the strait, involved partners are facing difficulties in collecting social-economic and biodiversity related data. Moreover, the analytical results provided in this report represent mainly the perspective of the Finnish side of the strait, as the Estonian side does not have the research capacity to provide required data. Baseline study of
    [Show full text]
  • Impacts of Land Use on Biodiversity: Development of Spatially Differentiated Global Assessment Methodologies for Life Cycle Assessment
    DISS. ETH NO. xx Impacts of land use on biodiversity: development of spatially differentiated global assessment methodologies for life cycle assessment A dissertation submitted to ETH ZURICH for the degree of Doctor of Sciences presented by LAURA SIMONE DE BAAN Master of Sciences ETH born January 23, 1981 citizen of Steinmaur (ZH), Switzerland accepted on the recommendation of Prof. Dr. Stefanie Hellweg, examiner Prof. Dr. Thomas Koellner, co-examiner Dr. Llorenç Milà i Canals, co-examiner 2013 In Gedenken an Frans Remarks This thesis is a cumulative thesis and consists of five research papers, which were written by several authors. The chapters Introduction and Concluding Remarks were written by myself. For the sake of consistency, I use the personal pronoun ‘we’ throughout this thesis, even in the chapters Introduction and Concluding Remarks. Summary Summary Today, one third of the Earth’s land surface is used for agricultural purposes, which has led to massive changes in global ecosystems. Land use is one of the main current and projected future drivers of biodiversity loss. Because many agricultural commodities are traded globally, their production often affects multiple regions. Therefore, methodologies with global coverage are needed to analyze the effects of land use on biodiversity. Life cycle assessment (LCA) is a tool that assesses environmental impacts over the entire life cycle of products, from the extraction of resources to production, use, and disposal. Although LCA aims to provide information about all relevant environmental impacts, prior to this Ph.D. project, globally applicable methods for capturing the effects of land use on biodiversity did not exist.
    [Show full text]
  • The Forest Industry Around the Baltic Sea Region: Future Challenges and Opportunities
    BSR Policy Briefing series 1/2020 The forest industry around the Baltic Sea region: Future challenges and opportunities Edited by Kari Liuhto CENTRUM BALTICUM Centrum Balticum Foundation reserves all the rights of this publication. ISSN: 2342-3153 Contents Authors 3 Introduction 8 Kari Liuhto Keynote articles Can sustainable forests save the world? 9 Sirpa Pietikäinen Sustainable forest management in the EU 11 Mihail Dumitru Climate change and digitalization driving transition of Finnish forest sector 13 Jari Partanen Articles The outlook for Nordic-Baltic forest bioeconomy to 2030 14 Lauri Hetemäki State Forests in the Baltic Sea Region: Where experience meets challenges and future 25 opportunities Amila Meskin and Piotr Borkowski Social and economic importance of the forestry and wood sector in Poland 36 Piotr Gołos and Jacek Hilszczański Forest industry in Northwest Russia 49 Sari Karvinen The forest sector in the Baltic States: A united, growth-oriented economic ecosystem 59 Kristaps Klauss Breakthrough or digression of forest industries: Challenges and potentials of future 69 Henrik Välja Rules-based international trade and Finnish forest industry 74 Eeva Korolainen Forest bioeconomy education and research at the University of Eastern Finland 83 Jyrki Kangas, Teppo Hujala and Sari Pitkänen Earlier publications in the BSR Policy Briefing series 90 Disclaimer: The opinions expressed in this article represent those of the author and do not represent the opinion of the Centrum Balticum Foundation, and thus, the Centrum Balticum Foundation does not bear any responsibility for the opinions expressed in the report. Authors Piotr Borkowski Piotr Borkowski, Executive Director at EUSTAFOR, graduated in Forest management from the Forestry Faculty at Warsaw Agricultural University – Central School of Farming, Mr.
    [Show full text]
  • Is Natura 2000 Large Enough?
    Is Natura 2000 large enough? Evaluating and improving the European Union’s nature protection network towards current and potential post-2020 biodiversity representation targets Anke Müller Centre for Earth System Research and Sustainability Universität Hamburg, Germany [email protected] Recommendation to policy makers Implement systematic conservation planning concepts and further expand the Natura 2000 network to ensure adequate ecological representation. 1 @SimplyAnke Systematic conservation planning Central Goals Margules & Sarkar, 2007, Cambridge University Press 1) adequate representation of all components of biodiversity 2) ensuring the persistence of biodiversity into the future 3) achieving these ends with as much economy of resources as possible 2 @SimplyAnke What has worked and didn’t work in the current EU strategy? • Target 1, Action 1a: “Member States […] will ensure that the phase to establish Natura 2000, […], is largely complete by 2012.” • Mid-term review (2015): “[…], the establishment of Natura 2000 on land is largely complete” Terrestrial coverage is 18% but is this enough? 3 @SimplyAnke Mean target achievement towards 10%* representation of each ecoregion 96% MTA protected in amount % protected 10 Müller et al., 2018, Biological Conservation Dinerstein et al., 2017, Bioscience * Target from the technical rationale to Aichi target 11 for ecologically representative protected 4 area networks @SimplyAnke Mean target achievement towards 10%* representation of each ecoregion additional conservation ecoregion area
    [Show full text]
  • Of Sea Level Rise Mediated by Climate Change 7 8 9 10 Shaily Menon ● Jorge Soberón ● Xingong Li ● A
    The original publication is available at www.springerlink.com Biodiversity and Conservation Menon et al. 1 Volume 19, Number 6, 1599-1609, DOI: 10.1007/s10531-010-9790-4 1 2 3 4 5 Preliminary global assessment of biodiversity consequences 6 of sea level rise mediated by climate change 7 8 9 10 Shaily Menon ● Jorge Soberón ● Xingong Li ● A. Townsend Peterson 11 12 13 14 15 16 17 S. Menon 18 Department of Biology, Grand Valley State University, Allendale, Michigan 49401-9403 USA, 19 [email protected] 20 21 J. Soberón 22 Natural History Museum and Biodiversity Research Center, The University of Kansas, 23 Lawrence, Kansas 66045 USA 24 25 X. Li 26 Department of Geography, The University of Kansas, Lawrence, Kansas 66045 USA 27 28 A. T. Peterson 29 Natural History Museum and Biodiversity Research Center, The University of Kansas, 30 Lawrence, Kansas 66045 USA 31 32 33 34 Corresponding Author: 35 A. Townsend Peterson 36 Tel: (785) 864-3926 37 Fax: (785) 864-5335 38 Email: [email protected] 39 40 The original publication is available at www.springerlink.com | DOI: 10.1007/s10531-010-9790-4 Menon et al. Biodiversity consequences of sea level rise 2 41 Running Title: Biodiversity consequences of sea level rise 42 43 Preliminary global assessment of biodiversity consequences 44 of sea level rise mediated by climate change 45 46 Shaily Menon ● Jorge Soberón ● Xingong Li ● A. Townsend Peterson 47 48 49 Abstract Considerable attention has focused on the climatic effects of global climate change on 50 biodiversity, but few analyses and no broad assessments have evaluated the effects of sea level 51 rise on biodiversity.
    [Show full text]
  • Lesy Evr Uvod CZ a I
    Lesy Evropy úvod Terrestrialní (suchozemské) ekoregiony Doc. Ing. Luboš Úradní ček,CSc . Ing. Zdeněk Hrubý Ph.D. Mendelu Brno Czech Republic Inovace biologických a lesnických disciplín pro vyšší konkurenceschopnost (Registra ční číslo CZ.1.07/2.2.00/28.0018 .) za p řisp ění finan čních prost ředk ů EU a státního rozpo čtu České republiky. Evropa x Eurasie Definice Evropy • Hranice dle Mezinárodní geografické unie: Kuma-Manysh deprese – zlom A (řeka Don – dolní tok) Klima Evropy Oceanické klima AT • Západoevropské klima • V. Britanie, Irsko, Holandsko,Dánsko, Belgie, Luxemburg, Francie, severní Španělsko • mírné přímořské zimy s chladnějším počasím na východě a silnými srážkami (dešti) na západě. • Léta jsou dosti teplá a směrem na sever se stávají chladnějšími. Subkontinentální a kontinentální klima • Východoevropské a středoevropské klima • Bulharsko, Rumunsko, Slovensko, Ukrajina, Slovinsko, ČR, Německo, Estonsko, Litva, Maďarsko, Polsko, Lotyšsko, Švýcarsko a Rakousko • Mírné léto s teplotami obvykle kolem 25 ° C • Zimy jsou celkem chladné, vlhké a mlhavé. • 4 rozdílné sezóny – deštivé jaro a podzim, sníh v horských polohách v průběhu zimi a mírně teplé (někdy horké) léto. Boreální a subarktické klima • Severoevropské klima • Švédsko, Norsko, Finsko, Island, severní část Ruska • mírné, příjemné klima podepřené efektem golfského proudu na Norském pobřeží. Zimy bývají velmi chladné. • Obvykle jižní část severní Evropy má mírnější klima s průměrnou teplotou kolem 0 °C. –SUBBOREÁLNÍ KLIMA • Léta jsou vskutku příjemná, zřídka s teplotou
    [Show full text]
  • Climate Connectivity of European Forests for Species Range Shifts
    Article Climate Connectivity of European Forests for Species Range Shifts Qiyao Han * , Greg Keeffe and Sean Cullen School of Natural and Built Environment, Queen’s University Belfast, Belfast BT7 1NN, UK; [email protected] (G.K.); [email protected] (S.C.) * Correspondence: [email protected] Abstract: Forest connectivity is important for the range shifts and long-term persistence of forest- dependent species, especially in the context of climate change. This study assessed the climate connectivity of European forests for species to track suitable climate conditions as the climate warms. Here, climate connectivity was calculated as the temperature difference between each forest patch and the coolest patch that can be reached along temperature gradients. We found that, overall, about 36% of the total forested area in Europe has achieved successful climate connectivity under the moderate emission scenario (SSP245), whereby species range shifts could circumvent the impact of climate warming. The percentage is much lower under the highest emission scenario (SSP585), which is only 12%. To identify forest areas of high importance for climate connectivity, we further evaluated the potential of each forest patch to serve as a stepping stone for species range shifts. Our results showed that about 94% of the European forested area is expected to experience species range shifts. Our study identified sites of high conservation value for improving and sustaining forest connectivity to facilitate climate-driven range shifts and thus could provide information for climate-smart management of European forests. Citation: Han, Q.; Keeffe, G.; Cullen, Keywords: climate change; species migration; landscape connectivity; European forests; stepping stone S.
    [Show full text]
  • D2.1 Part 2 Thematic Annexes FINAL.Pdf
    THEME: Environment (including climate change) TOPIC: ENV.2011.2.1.2-1 Hydromorphology and ecological objectives of WFD Collaborative project (large-scale integrating project) Grant Agreement 282656 Duration: November 1, 2011 – October 31, 2015 REstoring rivers FOR effective catchment Management Deliverable D2.1 Part 2 Title Thematic Annexes of the Multi-scale Hierarchical Framework Author(s) (authors of D2.1 Part 2 in alphabetical order*) S. Bizzi1, B. Blamauer2, G. Braca3, M. Bussettini3, B. Camenen4, F. Comiti5, L. Demarchi1, D. García De Jalón6, M. González Del Tánago6, R.C. Grabowski7, A.M. Gurnell7, H. Habersack2, B. Lastoria3, A. Latapie4, V. Martínez-Fernández6, J.O. Mountford8, L. Nardi9, M.T. O’Hare8, C. Percopo3, M. Rinaldi9, N. Surian10, C. Weissteiner1, L. Ziliani10 1JRC, 2BOKU, 3ISPRA, 4IRSTEA, 5Free University of Bozen-Bolzano, 6UPM, 7QMUL, 8NERC, 9UNIFI, 10University of Padova Deliverable due date: 1 November 2014 Actual Submission date: 30 October 2014 Project funded by the European Commission within the 7th Framework Programme (2007 – 2013) Dissemination Level PU Public X PP Restricted to other programme participants (including the Commission Services) RE Restricted to a group specified by the consortium (including the Commission Services) CO Confidential, only for members of the consortium (including the Commission Services) D2.1 HyMo Hierarchical Multi-scale Framework II. Thematic Annexes * Please cite the whole of Deliverable 2.1 as follows: A.M. Gurnell, B. Belletti, S. Bizzi, B. Blamauer, G. Braca, T.Buijse, M. Bussettini, B. Camenen, F. Comiti, L. Demarchi, D. García De Jalón, M. González Del Tánago, R.C. Grabowski, I.D.M. Gunn, H. Habersack, D.
    [Show full text]
  • Sweden by 2050” In: FABLE 2020, Pathways to Sustainable Land-Use and Food Systems, 2020 Report of the FABLE Consortium
    2020 Report of the FABLE Consortium Pathways to Sustainable Land-Use and Food Systems Published by International Institute for Applied Systems Analysis (IIASA) and the Sustainable Development Solutions Network (SDSN) 2020 The full report is available at www.foodandlandusecoalition.org/fable. For questions please write to [email protected] Copyright © IIASA & SDSN 2020 This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC-BY-NC-ND 4.0; https://creativecommons.org/licenses/by-nc-nd/4.0/). Disclaimer The 2020 FABLE Report was written by a group of independent experts acting in their personal capacities. Any views expressed in this report do not necessarily reflect the views of any government or organization, agency, or programme of the United Nations (UN). The country chapters use maps prepared solely by the national teams. The boundaries, colors, denominations, and other information shown on any map in this work do not imply any judgment on the part of SDSN or IIASA concerning the legal status of any territory or the endorsement or acceptance of such boundaries. Recommended citation: Basnet S., Fetzer I., Jansson T., Gordon L., Röös E., Ahlgren S., Wood A. and Woodhouse A. (2020), “Pathways to Sustainable Land-Use and Food Systems in Sweden by 2050” In: FABLE 2020, Pathways to Sustainable Land-Use and Food Systems, 2020 Report of the FABLE Consortium. Laxenburg and Paris: International Institute for Applied Systems Analysis (IIASA) and Sustainable Development Solutions Network (SDSN), pp. 595-625. https://doi.org/10.22022/ESM/12-2020.16896 Recommended Creative Commons (CC) License: CC-BY-NC-ND 4.0 (Attribution-NonCommercial-NoDerivatives 4.0 International).
    [Show full text]
  • Perspectives of Development of Forestry in Context of Sustainable Agriculture of the City of Novi Sad1
    PERSPECTIVES OF DEVELOPMENT OF FORESTRY IN CONTEXT OF SUSTAINABLE AGRICULTURE OF THE CITY OF NOVI SAD1 Nada Mijajlović2 Abstract Forest ecosystems are crucial in environmental protection and improvement of living conditions in urban and rural communities. Novi Sad, as the capital of AP Vojvodina, has a forest fund and natural forest communities. The aim of this paper is to analyze the state of the forest fund under the administration of the city of Novi Sad. The data considered are related to the forest communities of Fruška Gora and rhytic water ecosystems within the Upper Danube region. Forest plan- tations under the management of state forest farms were considered. Perspec- tives of the development of forestry in the territory of Novi Sad were considered in the context of sustainable development of agriculture. Key words: forest farms, forest fund, ecosystem, sustainable development. Introduction Forest ecosystems are dominant in terms of representation on the Earth’s sur- face, occupying about 4 billion hectares, which is about 30% of the world’s land (Food and Agriculture Organization 2006). The forest life community is diverse of the plant and animal species, as well as fungi and microorganisms. Forests are terrestrial ecosystems that account for 75% of the gross primary production of the Earth’s biosphere and produce 80% of our planet’s biomass. (Pan Yude et al., 2013) Forests are the most complex land-based ecosystems that have a very intense influence on the geological base on which they are rooted. Forests, as plant communities, in the highly active process of photosynthesis, the metabolic exchange of carbon dioxide and oxygen affect the composition of the air in the 1 The work is a part of integrated and interdisciplinary research project no.
    [Show full text]