Magnificent Migration

Total Page:16

File Type:pdf, Size:1020Kb

Magnificent Migration THE MAGNIFICENT Land bridge 8 MY–14,500 Y MIGRATION Domestication of camels began between World camel population today About 6 million years ago, 3,000 and 4,000 years ago—slightly later than is about 30 million: 27 million of camelids began to move Best known today for horses—in both the Arabian Peninsula and these are dromedaries; 3 million westward across the land Camelini western Asia. are Bactrians; and only about that connected Asia and inhabiting hot, arid North America. 1,000 are Wild Bactrians. regions of North Africa and the Middle East, as well as colder steppes and Camelid ancestors deserts of Asia, the family Camelidae had its origins in North America. The The First Camels signature physical features The earliest-known camelids, the Protylopus and Lamini E the Poebrotherium, ranged in sizes comparable to of camels today—one or modern hares to goats. They appeared roughly 40 DMOR I SK million years ago in the North American savannah. two humps, wide padded U L Over the 20 million years that followed, more U L ; feet, well-protected eyes— O than a dozen other ancestral members of the T T O family Camelidae grew, developing larger bodies, . E may have developed K longer legs and long necks to better browse high C I The World's Most Adaptable Traveler? R ; vegetation. Some, like Megacamelus, grew even I as adaptations to North Camels have adapted to some of the Earth’s most demanding taller than the woolly mammoths in their time. LEWSK (Later, in the Middle East, the Syrian camel may American winters. environments. Both dromedaries and Bactrians can go days, even weeks, P About 300,000 now-feral A About 3 million Z without a drink of water. This is thanks to adaptations in its physiology, C have been even larger.) Around 25 million years dromedaries inhabit Australia’s years ago, J its circulatory and digestive systems, and its ability to let its body ago, two tribes of camelids divided: The Camelini Outback. They descend from AS camelids of the L temperature change more than any other mammal. These traits have camels imported from India O gradually migrated north and west, and the Lamini Lamini tribe CH I also helped camels keep a distance from predators. in the 19th century. N drifted south. entered South : T R America. O PP U S H Dromedary Circulation Eyes Nose Humps ARC E Bactrian Blood cells that can swell up to three Camels see well in both bright A camel can close its These store fat, not water. S E R times their normal size are what allow desert sun and at night. Their nostrils. This helps keep out The fat in the hump gives L A Wild Bactrian the camel to drink so much water. As it eyelids are semitranslucent, sand, and it also helps cool camels a reserve of energy N O I T uses water, the same cells narrow to keep which allows a camel to walk exhaled air, which helps when no vegetation is I Llama wing, allowing the camel to become with its eyes shut. Extra-long conserve water. available for grazing. ADD more dehydrated than other mammals. eyelashes, too, protect against Vicuna sand and dust. Guanaco Alpaca Dromedary (Camelus dromedarius) Bactrian (Camelus bactrianus) Camelops Megacamelus Aepycamelus Procamelus Poebrotherium Weight: 400–600 kilograms Weight: 600–1,000 kilograms 4 MY–10,000Y 10–5 MY 21–5 MY 22–5 MY 40–32 MY Shoulder height: 1.6–2 meters Shoulder height: 1.6–1.8 meters AramcoWorld November/December 2018 .
Recommended publications
  • Wild Or Bactrian Camel French: German: Wildkamel Spanish: Russian: Dikiy Verblud Chinese
    1 of 4 Proposal I / 7 PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A. PROPOSAL: Inclusion of the Wild camel Camelus bactrianus in Appendix I of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: Mongolia C. SUPPORTING STATEMENT 1. Taxon 1.1. Classis: Mammalia 1.2. Ordo: Tylopoda 1.3. Familia: Camelidae 1.4. Genus: Camelus 1.5. Species: Camelus bactrianus Linnaeus, 1758 1.6. Common names: English: Wild or Bactrian camel French: German: Wildkamel Spanish: Russian: Dikiy verblud Chinese: 2. Biological data 2.1. Distribution Wild populations are restricted to 3 small, remnant populations in China and Mongolia:in the Taklamakan Desert, the deserts around Lop Nur, and the area in and around region A of Mongolia’s Great Gobi Strict Protected Area (Reading et al 2000). In addition, there is a small semi-captive herd of wild camels being maintained and bred outside of the Park. 2.2. Population Surveys over the past several decades have suggested a marked decline in wild bactrian camel numbers and reproductive success rates (Zhirnov and Ilyinsky 1986, Anonymous 1988, Tolgat and Schaller 1992, Tolgat 1995). Researchers suggest that fewer than 500 camels remain in Mongolia and that their population appears to be declining (Xiaoming and Schaller 1996). Globally, scientists have recently suggested that less than 900 individuals survive in small portions of Mongolia and China (Tolgat and Schaller 1992, Hare 1997, Tolgat 1995, Xiaoming and Schaller 1996). However, most of the population estimates from both China and Mongolia were made using methods which preclude rigorous population estimation.
    [Show full text]
  • Bactrian Camel, Two-Humped Camel
    Camelus ferus/bactrianus Common name: Bactrian camel, two-humped camel Local name: Havtagai (Mongolian), Wildkamel (German), Jya nishpa yapung (Ladakhi) Classification: Kingdom: Animalia Phylum: Chordata Class: Mammalia Order: Artiodactyla Family: Camelidae Genus: Camelus Species: ferus/bactrianus Profile: The scientific name of the wild Bactrian camel is Camelus ferus, while the domesticated form is called Camelus bactrianus. The distinctive feature of the animal is that it is two-humped whereas the Dromedary camel has a single hump. DNA tests have revealed that there are two or three distinct genetic differences and about 3% base difference between the wild and domestic populations of Bactrian camels. They also differ physically. The wild Bactrian camel is smaller and slender than the domestic breed. The wild camels have a sandy gray- brown coat while the domestic ones have a dark brown coat. The predominant difference between them however is the shape of the humps. While that of the wild camel are small and pyramid-like, those of the domestic ones are large and irregular. The face of a Bactrian camel is long and triangular with a split upper lip. The Bactrian camel is highly adapted to surviving the cold desert climate. Each foot has an undivided sole with two large toes that can spread wide apart for walking on sand. The ears and nose are lined with hair to protect against sand and the muscular nostrils can be closed during sandstorms. The eyes are protected from sand and debris by a double layer of long eyelashes while bushy eyebrows give protection from the sun. It grows a thick shaggy coat during winter, which is shed very rapidly in spring to give the animal a shorn look.
    [Show full text]
  • 1 BOARD of ANIMAL HEALTH Subpart 2 Chapter 12 Sheep And
    BOARD OF ANIMAL HEALTH Subpart 2 Chapter 12 Sheep and Goats 109 All sheep and goats, except those for immediate slaughter shall be accompanied by an official certificate of veterinary inspection (OCVI) and shall comply with the following: 1. Intact sheep and goats require individual identification by an official USDA Scrapie eartag, brand, or tattoo recorded on the OCVI. 2. “I certify these animals are free of clinical signs of the diseases contagious footrot, keratoconjunctivitis, contagious ecthyma (Orf), scabies and lice and that the sexually intact animals represented on this form are not known to be scrapie- positive, suspect, high risk, or exposed, and did not originate from a known infected, source, exposed, or noncompliant flock.” 3. When originating from an area known to have scabies, must be dipped within ten (10) days immediately preceding the date of entry in an USDA approved dip, and maintained on absolutely clean premises until delivered to the final destination. Dairy goats and dairy sheep maintained separate from other sheep and goats are exempt from dipping when certified free of scabies on OCVI. 4. Dairy goats and dairy sheep over 6 months of age must be negative to an official tuberculin test and an official brucellosis test made within 30 days immediately preceding date of entry. 5. All sheep and goats for immediate slaughter shall be consigned to a recognized slaughtering establishment on either an OCVI or permit or waybill or inspection certification from federally inspected stockyards. In either instance, a copy shall accompany sheep and goats and a copy shall be forwarded to the State Veterinarian of Mississippi.
    [Show full text]
  • Guidebook Contains Preliminary Findings of a Number of Concurrent Projects Being Worked on by the Trip Leaders
    TH FRIENDS OF THE PLEISTOCENE, ROCKY MOUNTAIN-CELL, 45 FIELD CONFERENCE PLIO-PLEISTOCENE STRATIGRAPHY AND GEOMORPHOLOGY OF THE CENTRAL PART OF THE ALBUQUERQUE BASIN OCTOBER 12-14, 2001 SEAN D. CONNELL New Mexico Bureau of Geology and Mineral Resources-Albuquerque Office, New Mexico Institute of Mining and Technology, 2808 Central Ave. SE, Albuquerque, New Mexico 87106 DAVID W. LOVE New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801 JOHN D. SORRELL Tribal Hydrologist, Pueblo of Isleta, P.O. Box 1270, Isleta, NM 87022 J. BRUCE J. HARRISON Dept. of Earth and Environmental Sciences, New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 Open-File Report 454C and D Initial Release: October 11, 2001 New Mexico Bureau of Geology and Mineral Resources New Mexico Institute of Mining and Technology 801 Leroy Place, Socorro, NM 87801 NMBGMR OFR454 C & D INTRODUCTION This field-guide accompanies the 45th annual Rocky Mountain Cell of the Friends of the Pleistocene (FOP), held at Isleta Lakes, New Mexico. The Friends of the Pleistocene is an informal gathering of Quaternary geologists, geomorphologists, and pedologists who meet annually in the field. The field guide has been separated into two parts. Part C (open-file report 454C) contains the three-days of road logs and stop descriptions. Part D (open-file report 454D) contains a collection of mini-papers relevant to field-trip stops. This field guide is a companion to open-file report 454A and 454B, which accompanied a field trip for the annual meeting of the Rocky Mountain/South Central Section of the Geological Society of America, held in Albuquerque in late April.
    [Show full text]
  • Pleistocene Mammals from Extinction Cave, Belize
    Canadian Journal of Earth Sciences Pleistocene Mammals From Extinction Cave, Belize Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0178.R3 Manuscript Type: Article Date Submitted by the 04-May-2019 Author: Complete List of Authors: Churcher, C.S.; University of Toronto, Zoology Central America, Pleistocene, Fauna, Vertebrate Palaeontology, Keyword: Limestone cave Is the invited manuscript for consideration in a Special Not applicableDraft (regular submission) Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 43 Canadian Journal of Earth Sciences 1 1 PLEISTOCENE MAMMALS FROM EXTINCTION CAVE, BELIZE 2 by C.S. CHURCHER1 Draft 1Department of Zoology, University of Toronto, Toronto, Ontario Canada M5S 2C6 and 322-240 Dallas Rd., Victoria, British Columbia, Canada V8V 4X9 (corresponding address): e-mail [email protected] https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 43 2 4 5 ABSTRACT. A small mammalian fauna is recorded from Extinction Cave (also called Sibun 6 Cave), east of Belmopan, on the Sibun River, Belize, Central America. The animals recognized 7 are armadillo (†Dasypus bellus), American lion (†Panthera atrox), jaguar (P. onca), puma or 8 mountain lion (Puma concolor), Florida spectacled bear (†Tremarctos floridanus), javelina or 9 collared peccary (Pecari tajacu), llama (Camelidae indet., ?†Palaeolama mirifica), red brocket 10 deer (Mazama americana), bison (Bison sp.) and Mexican half-ass (†Equus conversidens), and 11 sabre-tooth cat († Smilodon fatalis) may also be represented (‘†’ indicates an extinct taxon). 12 Bear and bison are absent from the region today. The bison record is one of the more southernly 13 known. The bear record is almost the mostDraft westerly known and a first for Central America.
    [Show full text]
  • Preliminary Post-Cranial Metric Analysis of Mammoths from the Hot Springs Mammoth Site, South Dakota
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Transactions of the Nebraska Academy of Sciences and Affiliated Societies Nebraska Academy of Sciences 1977 Preliminary Post-Cranial Metric Analysis Of Mammoths From The Hot Springs Mammoth Site, South Dakota Barbara Lee Dutrow Chadron State College Follow this and additional works at: https://digitalcommons.unl.edu/tnas Dutrow, Barbara Lee, "Preliminary Post-Cranial Metric Analysis Of Mammoths From The Hot Springs Mammoth Site, South Dakota" (1977). Transactions of the Nebraska Academy of Sciences and Affiliated Societies. 445. https://digitalcommons.unl.edu/tnas/445 This Article is brought to you for free and open access by the Nebraska Academy of Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Transactions of the Nebraska Academy of Sciences and Affiliated Societiesy b an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. COLLEGIATE SECTION PRELIMINARY POST-CRANIAL METRIC ANALYSIS OF MAMMOTHS FROM THE HOT SPRINGS MAMMOTH SITE, SOUTH DAKOTA BARBARA LEE DUTROW Department of Earth Sciences Chadron State College, Chadron, Nebraska 69337 Salvage investigations of a Karst depression containing more than but is not currently available. nine Late Pleistocene mammoth were conducted during approxi­ mately twenty field days in the summers of 1974 and 1975. The deposit contains a local death assemblage of a mammoth population. METHODOLOGY A post-cranial metric analysis has been conducted on the fossil elephant remains. Excavation of the site followed standard archaeological and paleontological techniques as applied at the following t t t sites: Murray Springs, Lehner Ranch, Boney Springs, and Hudson-Meng. Bones were mapped in situ, both vertically INTRODUCTION and horizontally, as encountered in the fill.
    [Show full text]
  • Redalyc.Bienestar Animal En Bovinos De Leche: Selección De Indicadores
    RIA. Revista de Investigaciones Agropecuarias ISSN: 0325-8718 [email protected] Instituto Nacional de Tecnología Agropecuaria Argentina MARTÍNEZ, G. M.; SUÁREZ, V. H.; GHEZZI, M. D. Bienestar animal en bovinos de leche: selección de indicadores vinculados a la salud y producción RIA. Revista de Investigaciones Agropecuarias, vol. 42, núm. 2, agosto, 2016, pp. 153- 160 Instituto Nacional de Tecnología Agropecuaria Buenos Aires, Argentina Disponible en: http://www.redalyc.org/articulo.oa?id=86447075008 Cómo citar el artículo Número completo Sistema de Información Científica Más información del artículo Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Página de la revista en redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Agosto 2016, Argentina 15 Bienestar animal en bovinos de leche: selección de indicadores vinculados a la salud y producción MARTÍNEZ, G. M. 1*; SUÁREZ, V. H. 2; GHEZZI, M. D. 3 RESUMEN El bienestar animal ha sido denido por la Organización Mundial de Sanidad Animal (OIE) como el término amplio que describe la manera en que los individuos se enfrentan con el ambiente y que incluye su sanidad, sus percepciones, su estado anímico y otros e fectos positivos o negativos que inuyen sobre los mecanis - mos físicos y psíquicos del animal. Durante años se tuvo como objetivo principal dentro de los programas de mejora genética en rodeos lecheros el aumento en la producción de leche por individuo; posteriormente se trabajó en compatibilizar ese incremento en el rinde con una mayor eciencia en la conversión alimenticia. A lo largo de este período todo el sistema productivo se fue transformando de manera tal de ofrecerle a esos animales de alto mérito genético el ambiente necesario para que consiguiesen expresar su potencial.
    [Show full text]
  • Palaeontologia Electronica COMPARATIVE VARIABILITY OF
    Palaeontologia Electronica http://palaeo-electronica.org COMPARATIVE VARIABILITY OF INTERMEMBRANOUS AND ENDOCHONDRAL BONES IN PLEISTOCENE MAMMALS Kristina R. Raymond and Donald R. Prothero ABSTRACT Study of the embryology and ossification of modern bones predicts that fossil intermembranous bones (which ossify from connective tissue) will exhibit greater size variability than endochondral bones (which are formed from embryological cartilagi- nous precursors), because intermembranous bones are less tightly constrained by joints and articular surfaces. To evaluate this hypothesis, we measured multiple dimen- sions of 989 intermembranous bones (patellae and other sesamoids) of the saber- toothed cat Smilodon fatalis, the Ice Age lion Panthera atrox, the bison Bison antiquus, the horse Equus occidentalis, the camel Camelops hesternus, the ground sloths Paramylodon (=Glossotherium) harlani and Nothrotheriops shastensis from Rancho La Brea and from the late Pleistocene San Josecito Cave in Nuevo Leon, Mexico. These were compared to measurements of 811 endochondral bones (primarily astragali) of comparable size. Through statistical analyses (coefficients of variation, ANOVA, modi- fied Levene’s test, and t-tests) we found slight evidence of higher variability in many of the intermembranous bones of these taxa (21 out of 27 CVs were higher for intermem- branous bones than endochondral bones), although this trend is not found in all taxa. Using a modified Levene’s test, only Smilodon and some of the dimensions of horse and bison patellae are significantly more variable than the corresponding dimensions of the astragali. Although the results are mixed, at least some data show that inter- membranous bones are not as tightly constrained by growth and by adjacent tissues as are endochondral bones.
    [Show full text]
  • (Lama Guanicoe) in South America
    Molecular Ecology (2013) 22, 463–482 doi: 10.1111/mec.12111 The influence of the arid Andean high plateau on the phylogeography and population genetics of guanaco (Lama guanicoe) in South America JUAN C. MARIN,* BENITO A. GONZA´ LEZ,† ELIE POULIN,‡ CIARA S. CASEY§ and WARREN E. JOHNSON¶ *Laboratorio de Geno´mica y Biodiversidad, Departamento de Ciencias Ba´sicas, Facultad de Ciencias, Universidad del Bı´o-Bı´o, Casilla 447, Chilla´n, Chile, †Laboratorio de Ecologı´a de Vida Silvestre, Facultad de Ciencias Forestales y de la Conservacio´ndela Naturaleza, Universidad de Chile, Santiago, Chile, ‡Laboratorio de Ecologı´a Molecular, Departamento de Ciencias Ecolo´gicas, Facultad de Ciencias, Instituto de Ecologı´a y Biodiversidad, Universidad de Chile, Santiago, Chile, §Department of Biological Science, University of Lincoln, Lincoln, UK, ¶Laboratory of Genomic Diversity, National Cancer Institute, Frederick, MD, USA Abstract A comprehensive study of the phylogeography and population genetics of the largest wild artiodactyl in the arid and cold-temperate South American environments, the gua- naco (Lama guanicoe) was conducted. Patterns of molecular genetic structure were described using 514 bp of mtDNA sequence and 14 biparentally inherited microsatel- lite markers from 314 samples. These individuals originated from 17 localities through- out the current distribution across Peru, Bolivia, Argentina and Chile. This confirmed well-defined genetic differentiation and subspecies designation of populations geo- graphically separated to the northwest (L. g. cacsilensis) and southeast (L. g. guanicoe) of the central Andes plateau. However, these populations are not completely isolated, as shown by admixture prevalent throughout a limited contact zone, and a strong sig- nal of expansion from north to south in the beginning of the Holocene.
    [Show full text]
  • Middle Miocene Paleoenvironmental Reconstruction of the Central Great Plains from Stable Carbon Isotopes in Large Mammals Willow H
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 7-2017 Middle Miocene Paleoenvironmental Reconstruction of the Central Great Plains from Stable Carbon Isotopes in Large Mammals Willow H. Nguy University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Nguy, Willow H., "Middle Miocene Paleoenvironmental Reconstruction of the Central Great Plains from Stable Carbon Isotopes in Large Mammals" (2017). Dissertations & Theses in Earth and Atmospheric Sciences. 91. http://digitalcommons.unl.edu/geoscidiss/91 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MIDDLE MIOCENE PALEOENVIRONMENTAL RECONSTRUCTION OF THE CENTRAL GREAT PLAINS FROM STABLE CARBON ISOTOPES IN LARGE MAMMALS by Willow H. Nguy A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Ross Secord Lincoln, Nebraska July, 2017 MIDDLE MIOCENE PALEOENVIRONMENTAL RECONSTRUCTION OF THE CENTRAL GREAT PLAINS FROM STABLE CARBON ISOTOPES IN LARGE MAMMALS Willow H. Nguy, M.S. University of Nebraska, 2017 Advisor: Ross Secord Middle Miocene (18-12 Mya) mammalian faunas of the North American Great Plains contained a much higher diversity of apparent browsers than any modern biome.
    [Show full text]
  • Prospects for Rewilding with Camelids
    Journal of Arid Environments 130 (2016) 54e61 Contents lists available at ScienceDirect Journal of Arid Environments journal homepage: www.elsevier.com/locate/jaridenv Prospects for rewilding with camelids Meredith Root-Bernstein a, b, *, Jens-Christian Svenning a a Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark b Institute for Ecology and Biodiversity, Santiago, Chile article info abstract Article history: The wild camelids wild Bactrian camel (Camelus ferus), guanaco (Lama guanicoe), and vicuna~ (Vicugna Received 12 August 2015 vicugna) as well as their domestic relatives llama (Lama glama), alpaca (Vicugna pacos), dromedary Received in revised form (Camelus dromedarius) and domestic Bactrian camel (Camelus bactrianus) may be good candidates for 20 November 2015 rewilding, either as proxy species for extinct camelids or other herbivores, or as reintroductions to their Accepted 23 March 2016 former ranges. Camels were among the first species recommended for Pleistocene rewilding. Camelids have been abundant and widely distributed since the mid-Cenozoic and were among the first species recommended for Pleistocene rewilding. They show a range of adaptations to dry and marginal habitats, keywords: Camelids and have been found in deserts, grasslands and savannas throughout paleohistory. Camelids have also Camel developed close relationships with pastoralist and farming cultures wherever they occur. We review the Guanaco evolutionary and paleoecological history of extinct and extant camelids, and then discuss their potential Llama ecological roles within rewilding projects for deserts, grasslands and savannas. The functional ecosystem Rewilding ecology of camelids has not been well researched, and we highlight functions that camelids are likely to Vicuna~ have, but which require further study.
    [Show full text]
  • Morton County, Kansas Michael Anthony Calvello Fort Hays State University
    Fort Hays State University FHSU Scholars Repository Master's Theses Graduate School Summer 2011 Mammalian Fauna From The ulF lerton Gravel Pit (Ogallala Group, Late Miocene), Morton County, Kansas Michael Anthony Calvello Fort Hays State University Follow this and additional works at: https://scholars.fhsu.edu/theses Part of the Geology Commons Recommended Citation Calvello, Michael Anthony, "Mammalian Fauna From The ulF lerton Gravel Pit (Ogallala Group, Late Miocene), Morton County, Kansas" (2011). Master's Theses. 135. https://scholars.fhsu.edu/theses/135 This Thesis is brought to you for free and open access by the Graduate School at FHSU Scholars Repository. It has been accepted for inclusion in Master's Theses by an authorized administrator of FHSU Scholars Repository. - MAMMALIAN FAUNA FROM THE FULLERTON GRAVEL PIT (OGALLALA GROUP, LATE MIOCENE), MORTON COUNTY, KANSAS being A Thesis Presented to the Graduate Faculty of the Fort Hays State University in Partial Fulfillment of the Requirements for the Degree of Master of Science by Michael Anthony Calvello B.A., State University of New York at Geneseo Date Z !J ~4r u I( Approved----c-~------------- Chair, Graduate Council Graduate Committee Approval The Graduate Committee of Michael A. Calvello hereby approves his thesis as meeting partial fulfillment of the requirement for the Degree of Master of Science. Approved: )<--+-- ----+-G~IJCommittee Meilnber Approved: ~J, iii,,~ Committee Member 11 ABSTRACT The Fullerton Gravel Pit, Morton County, Kansas is one of many sites in western Kansas at which the Ogallala Group crops out. The Ogallala Group was deposited primarily by streams flowing from the Rocky Mountains. Evidence of water transport is observable at the Fullerton Gravel Pit through the presence of allochthonous clasts, cross-bedding, pebble alignment, and fossil breakage and subsequent rounding.
    [Show full text]