United States Patent Office Patented Jan
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 6,037,477 Ishii Et Al
USOO6037477A United States Patent (19) 11 Patent Number: 6,037,477 Ishii et al. (45) Date of Patent: Mar. 14, 2000 54) OXIDATION PROCESS OF ETHERS 838909 2/1996 Japan. 75 Inventors: Yasutaka Ishii, 19-21, OTHER PUBLICATIONS Besshohonmachi, Takatsuki-shi, Osaka Ishii et al., J. Org. Chem., vol. 61, pp. 4520-4526 (1996). 569-1112, Tatsuya Nakano, Himeji, Yoshino et al., J. Org. Chem., vol. 62, No. 20, pp. both of Japan 6810–6813 (Oct. 1997). Takeno et al., Aerobic Oxidation by Using N-hydroxyph 73 Assignees: Daicel Chemical Industries, Ltd.; thalimide, 67th Spring Annual Meeting of Chemical Society Yasutaka Ishii, both of Osaka, Japan of Japan, Lecture Draft II, Dec. 1994. 21 Appl. No.: 09/074,604 Primary Examiner Johann Richter ASSistant Examiner-Dominic Keating 22 Filed: May 8, 1998 Attorney, Agent, or Firm-Birch, Stewart, Kolasch & Birch, 30 Foreign Application Priority Data LLP May 13, 1997 JP Japan .................................... 9-122526 57 ABSTRACT 51) Int. Cl." .................. C07D 207/404; CO7D 207/448; An ether is oxidized with oxygen under an oxidation catalyst CO7D 487/06; CO7D 207/444 comprising an imide compound (Such as 52 U.S. Cl. .......................... 548/545; 548/548; 548/549; N-hydroxyphthalimide) or the imide compound and a 548/453 co-catalyst to produce the corresponding chain or cyclic 58 Field of Search ..................................... 548/545, 548, ester or anhydride. The co-catalyst may be a transition metal 548/549 compound. The above proceSS provides a process for oxi dizing an ether by oxygen efficiently to produce the corre 56) References Cited sponding oxide (Such as an ester, an hydride) with high conversion and Selectivity. -
Novel Approach to Introduce Alkyl Chains Into PEDOT:PSS and Its Effect on the Performance As a Flexible Electrode
applied sciences Article Novel Approach to Introduce Alkyl Chains into PEDOT:PSS and Its Effect on the Performance as a Flexible Electrode In-Seong Hwang 1, Chul-Woo Park 1, Hye-In Kang 1, Sung-yoon Joe 2, Na-Young Pak 3 and Dae-won Chung 1,* 1 Department of Polymer Engineering, College of Engineering, The University of Suwon, Hwaseong-si 18323, Korea; [email protected] (I.-S.H.); [email protected] (C.-W.P.); [email protected] (H.-I.K.) 2 Center of Advanced Materials Analysis, The University of Suwon, Hwaseong-si 18323, Korea; [email protected] 3 EverChemTech Co., Ltd., 38, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong-si 18323, Korea; [email protected] * Correspondence: [email protected]; Tel.: +81-312-202-156 Abstract: We here report a synthetic route to introduce alky chains into poly (3,4-ethylenedioxythio- phene):poly (4-styrenesulfonate) (PEDOT:PSS) by the reaction with epoxyalkanes. The reaction was analyzed by FT-IR, TGA, and XPS studies, and the conductivities of derivatives were discussed as a function of the length of alkyl chains. PEDOT:PSS-C6, which is the product from a reaction with epoxyhexane, was well dispersed in methanol and transparent films from this dispersion were successfully prepared. PEDOT:PSS-C6 film showed an increase in hydrophobicity, resulting in enhanced water resistance compared to pristine PEDOT:PSS film, and a morphological study of the film exhibited clear phase separation similar to PEDOT:PSS doped by DMSO. We also observed an improvement in the conductivity and flexibility of PEDOT:PSS-C6 film compared to those of Citation: Hwang, I.-S.; Park, C.-W.; pristine PEDOT:PSS film. -
Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions Alice E
Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions Alice E. van der Ende, Evan J. Kravitz, and Eva Harth* Department of Chemistry and Pharmacology, Vanderbilt UniVersity, 7619 SteVenson Center, NashVille, Tennessee 37235 Received December 26, 2007; Revised Manuscript Received April 16, 2008; E-mail: [email protected] Abstract: We present the synthesis of discrete functionalized polyester nanoparticles in selected nanoscale size dimensions via a controlled intermolecular chain cross-linking process. The novel technique involves the controlled coupling of epoxide functionalized polyesters with 2,2′-(ethylenedioxy)bis(ethylamine) to give well-defined nanoparticles with narrow size distribution and selected nanoscopic size dimensions. Diverse functionalized polyesters, synthesized with pendant functionalities via ring-opening copolymerization of δ-valerolactone with R-allyl-δ-valerolactone, R-propargyl-δ-valerolactone and 2-oxepane-1,5-dione, were prepared as linear precursors which facilitated 3-D nanoparticles with functionalities such as amines, keto groups, and alkynes for post modification reactions. We found that the nanoparticle formation and the control over the nanoscopic dimension is primarily influenced by the degree of the epoxide entity implemented in the precursor polymers and the amount of 2,2′-(ethylenedioxy)bis(ethylamine) as cross- linking reagent. The other functionalities in the linear polyester do not participate in the nanoparticle formation and particles with defined functionalities can be prepared from batches of identical linear polymers containing various functionalities or by mixing different polyester materials to achieve controlled amounts of specific functional groups. The utilization of integrated functionalities was demonstrated in one post-modification reaction with N-Boc-ethylenediamine via reductive amination. -
WO 2016/022464 Al 11 February 2016 (11.02.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/022464 Al 11 February 2016 (11.02.2016) P O P C T (51) International Patent Classification GELMAN, Leonid; 260 E. Grand Avenue, 2nd Floor, A61K 31/7068 (2006.01) A61K 31/519 (2006.01) South San Francisco, CA 94080 (US). SMITH, David, A61K 31/4184 (2006.01) A61K 31/166 (2006.01) Bernard; 260 E. Grand Avenue, 2nd Floor, South San A61K 31/675 (2006.01) A61K 31/41 (2006.01) Francisco, CA 94080 (US). WANG, Guangyi; 260 E. A61K 31/513 (2006.01) A61K 38/21 (2006.01) Grand Avenue, 2nd Floor, South San Francisco, CA 94080 A61K 31/506 (2006.01) A61K 38/16 (2006.01) (US). A61K 31/437 (2006.01) A61K 39/155 (2006.01) (74) Agent: MILLER, Kimberly, J.; Knobbe Martens Olson A61K 31/4709 (2006.01) A61K 39/42 (2006.01) & Bear, LLP, 2040 Main Street, 14th Floor, Irvine, CA A61K 31/4188 (2006.01) A61P 31/14 (2006.01) 92614 (US). A61K 31/517 (2006.01) A61P 11/00 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: PCT/US20 15/043402 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 3 August 2015 (03.08.2015) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, English (25) Filing Language: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/033,55 1 5 August 2014 (05.08.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN
This dissertation has been Mic 61-2820 microfilmed exactly as received BESCH, Paige Keith. ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG. The Ohio State University, Ph.D., 1961 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Paige Keith Besch, B. S., M. S. The Ohio State University 1961 Approved by Katharine A. Brownell Department of Physiology DEDICATION This work is dedicated to my wife, Dr. Norma F. Besch. After having completed her graduate training, she was once again subjected to almost social isolation by the number of hours I spent away from home. It is with sincerest appreciation for her continual encouragement that I dedi cate this to her. ACKNOWLEDGMENTS I wish to acknowledge the assistance and encourage ment of my Professor, Doctor Katharine A. Brownell. Equally important to the development of this project are the experience and information obtained through the association with Doctor Frank A. Hartman, who over the years has, along with Doctor Brownell, devoted his life to the development of many of the techniques used in this study. It is also with extreme sincerity that I wish to ac knowledge the assistance of Mr. David J. Watson. He has never complained when asked to work long hours at night or weekends. Our association has been a fruitful one. I also wish to acknowledge the encouragement of my former Professor, employer and good friend, Doctor Joseph W. -
The Metabolism of Desmosterol in Human Subjects During Triparanol Administration
THE METABOLISM OF DESMOSTEROL IN HUMAN SUBJECTS DURING TRIPARANOL ADMINISTRATION DeWitt S. Goodman, … , Joel Avigan, Hildegard Wilson J Clin Invest. 1962;41(5):962-971. https://doi.org/10.1172/JCI104575. Research Article Find the latest version: https://jci.me/104575/pdf Journal of Clinical Investigation Vol. 41, No. 5, 1962 THE METABOLISM OF DESMOSTEROL IN HUMAN SUBJECTS DURING TRIPARANOL ADMINISTRATION * BY DEWITT S. GOODMAN, JOEL AVIGAN AND HILDEGARD WILSON (From the Section on Metabolism, National Heart Institute, and the National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.) (Submitted for publication October 25, 1961; accepted January 25, 1962) Recent studies with triparanol (1-[p-,3-diethyl- Patient G.B. was a 55 year old man with known arterio- aminoethoxyphenyl ]-1- (p-tolyl) -2- (p-chloro- sclerotic heart disease and mild hypercholesterolemia; phenyl)ethanol) have demonstrated that this com- since 1957 he had maintained a satisfactory and stable cardiac status. At the time of the present study he had pound inhibits cholesterol biosynthesis by blocking been taking 250 mg triparanol daily for 4 weeks, and had the reduction of 24-dehydrocholesterol (desmos- a total serum sterol level in the high normal range. terol) to cholesterol (2-4). Administration of Patient F.A. was a 40 year old man with a 4- to 5-year triparanol to laboratory animals and to man re- history of gout and essential hyperlipemia. At the time sults in of of this study he had been on an isocaloric low purine diet the accumulation desmosterol in the for several weeks, and both the gout and hyperlipemia plasma and tissues, usually with some concom- were in remission. -
Acetic Anhydride Cyclodehydration Agent, 220 Acetoamides Synthesis
INDEX Acetic anhydride Acrylic acid cyclodehydration agent, 220 biomer polymer activity, 309 Acetoamides Acrylonitrile synthesis, 277 purification, 409 Acetone sodium naphthalene polymerized, polyanhydride solvent, 193 410 Acetone cyanohydrin N-Acryloyl-a-aminoisobutyrate azlactone raw material, 225 synthesis, 225 a-Acetoxypropionic acid N-Acryloylmethylalanine ring closure to lactone, 443 ethyl chloroformate reaction, 206 Acetyl acetone, 464 Activation energy manganese decarbonyl coordi styrene anoinic dispersion nating agent, 300 polymerization, 392, 296 Acetyl chloride a-Acylamino-a-aminopropionic acid coumalic acid reaction, 61 conversion to a-lactone, 445 polystyrene living particle N-Acylurea, 307 reaction, 400 Adhesives, hot melt Acetylene carbonyls synthesis concept, 480 amine condensations, 276 Adipic acid, 192 Acrolein Adipic acid, metal salts acetal formation, 62, 74 phosphorus acid chloride Acrylamide condensation, 195 hydrophilic grafts on polymers, Aldehydes 293 anionic polymerization, 322 functionalized oligomers, 205, Alkenes 211, 215-217 triazolinedione ene reaction, 2 ORTEP plots, 212 Alkenyl azalactone purification, 308 amine oligomer reaction, 208, telechelic oligomers, 203 210, 211 Acrylamides, bis type 2-Alkenyl-2-oxazoline-5-ones amine reaction, 215 amine reactions, 205, 211 Acrylamides, telechelic Alkoxides characterization, 208 catalyst for oxazolidone synthesis from azlactones, formation, 252 219, 221 Alkoxides, polymeric Acrylates, alkyl ethylene oxide polymerization, anionic polymerization, 327 330 alkali -
PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics
polymers Review Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics Daniele Mantione 1,†, Isabel del Agua 1,2,†, Ana Sanchez-Sanchez 1,2,* and David Mecerreyes 1,3,* 1 Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; [email protected] (D.M.); [email protected] (I.d.A.) 2 Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France 3 Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain * Correspondence: [email protected] (A.S.-S.); [email protected] (D.M.); Tel.: +34-943-015-323 (A.S.-S.); +34-943-018-018 (D.M.) † These authors contributed equally. Received: 26 June 2017; Accepted: 8 August 2017; Published: 11 August 2017 Abstract: Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT:PSS presents some limitations associated with its low (bio)functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio)functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers. -
ラッ ト肝 の Steroid 5Β-Reductase 活性 に 対す る酢酸第 二水銀
〔614〕 ラ ッ ト肝 の steroid 5β-reductase 活 性 に 対 す る酢 酸 第 二 水 銀 の 影 響 The Effect of Mercuric Acetate on the Activity of Steroid 5β-reductase in the Rat Liver 北海道大学医学部衛生学教室 富 田 勤 ・佐 藤 敏 雄 ・高 桑 栄 松 北海道大学大学院環境科学研究科環境医学教室 斎 藤 和 雄 Tsutomu Tomita, Toshio Sato and Eimatsu Takakuwa Department of Hygiene and Preventive Medicine, Hokkaido University School of Medicine, Sapporo Kazuo Saito Department of Environmental Medicine, Graduate School of Environmental Science, Hokkaido University, Sapporo The increase of urinary δ-aminolevulinic acid in man and animals exposed to high concentration of mercury is studied, but the mechanism of the increase has not been clearly explained. In this paper, the content of 5β type steroid, inducing δ-aminolevulinic acid synthetase, was studied by noticing the activities of steroid 5β-reductase, which is the rate limiting enzyme in metabolism of steroid hormones, 3α- and 3β-hydroxysteroid dehydrogenase. For measurement of these activities, 105,000×g supernatant of rat liver was used. The testosterone and ⊿4-androstene-3, 17-dione 5β-reductase activities decreased on either the fourth or eleventh day after either intraperitoneal or subcutaneous administration of mercuric acetate, respe- ctively, and the adrenosterone 5β-reductase activity increased on the eleventh day after the subcutaneous administration of mercuric acetate. These changes mentioned above, however, were not significant. The progesterone and 17α-hydroxy progesterone 5β-reductase activities decreased on either the fourth or eleventh day after either intraperitioneal or subcutaneous administration of mercuric acetate, but there were no significant changes. -
27-2-Erraigkarl HASS at TORNEYS
Dec. 24, 1968 A. LENZ ETAL 3,418,383 PRODUCTION OF ALKALI METAL, ALCOHOLATES Filed Nov. 8, 1966 g-Lower and higher olcohol vapors Lower Olcohol Condenser X Distillation column Reactor column Receiver Zy -IO 3 lower alcohol Higher olcohol Olcoholote vopor higher olcohol Liquid alcohol Solution S mixture Resevoir Superheater 15 a - 13 Higher alcohol Pump1 D HigherOlcohol olcoholote NVENTORS ARNOLD LENZ OTTO BLEH 27-2-erraigKARL HASS AT TORNEYS. 3,418,383 United States Patent Office Patented Dec. 24, 1968 2 e.g., isopropanol, butanol - (2), pentanol - (2), pentanol 3,418,383 (3), 2-methylbutanol - (3) and the like; and the tertiary PRODUCTION OF ALKALIMETAL ALCOHOLATES alcohols, e.g., 2-methylpropanol-(2), 2-methylbutanol-(2) Arnold Lenz, Gerstenkamp, Otto Bleh, Bergheim, and and the like. In addition to the univalent aliphatic alco Karl Hass, Niederkassel, Germany, assignors to Dyna hols, cycloaliphatic alcohols can be interchanged such as: mit Nobel Aktiengesellschaft cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, Claims Filedpriority, Nov. application 8, 1966, Germany,Ser. No. 594,333 Nov. 10, 1965, and the alkyl-substituted derivatives thereof having a total D 48,614 of up to 12 carbon atoms. 9 Claims. (CI. 260-632) Both the alkali alcoholates of methanol and those of O ethanol can be used as starting products, and the alkali metal of the alcoholate can be sodium, potassium and ABSTRACT OF THE DISCLOSURE lithium, and, of course, cesium and rubidium as well. The improved interchange reaction between a lower The process of the invention is to be explained by alcoholate of an alkali metal and a higher alcohol to pro means of the annexed drawing which is a flow diagram of duce a higher alcoholate of the alkali metal, wherein the 15 the process. -
United States Patent (19) 11 Patent Number: 4,584,288 Nickish Et Al
United States Patent (19) 11 Patent Number: 4,584,288 Nickish et al. (45) Date of Patent: Apr. 22, 1986 (54) 6,6-ETHYLENE-15,16-METHYLENE-3-OXO 17a-PREGN-4-ENE-21,17-CARBOLACTONES, PROCESSES FOR THE PRODUCTION O (I) THEREOF, AND PHARMACEUTICAL PREPARATIONS CONTAINING THEM 75 Inventors: Klaus Nickish; Dieter Bittler; Henry Laurent; Rudolf Wiechert; Sybille Beier; Walter Elger, all of Berlin, Fed. Rep. of Germany 73) Assignee: Schering Aktiengesellschaft, Berlin and Bergkamen, Fed. Rep. of Germany (21) Appl. No.: 692,489 22 Filed: Jan. 18, 1985 30 Foreign Application Priority Data Jan. 20, 1984 DE Fed. Rep. of Germany ....... 3402329 51) Int, Cl." ....................... CO7J 19/00; A61K 31/58 is a CC-single of CC-double bond, 52 U.S. C. ................................ 514/172; 260/239.57 R1 is a hydrogen atom or a methyl group, 58) Field of Search .................... 260/239.57; 514/172 R2 is a methyl or ethyl group, and 56) References Cited U.S. PATENT DOCUMENTS 3,422,097 1/1969 Kerwin ........................... 260/239.57 Na 4,500,522 2/1985 Nickish et al. ................. 260/239.57 is " > OT l D Primary Examiner-Elbert L. Roberts Attorney, Agent, or Firm-Millen & White exhibit strong gestagen potency and an aldosterone 57) ABSTRACT antagonistic activity. 6,6-ethylene-15, 16-methylene-3-oxo-17a-pregn-4-ene 21,17a-carbolactones of general Formula I 18 Claims, No Drawings 4,584,288 1. 2 tagen effects, but wherein the gestagen activity is not so 6,6-ETHYLENE-15,16-METHYLENE-3-OXO-17a strongly pronounced (DOS No. -
Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts † ‡ † ‡ † Tiancheng Pu, Huijie Tian, Michael E
Review Cite This: ACS Catal. 2019, 9, 10727−10750 pubs.acs.org/acscatalysis Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts † ‡ † ‡ † Tiancheng Pu, Huijie Tian, Michael E. Ford, Srinivas Rangarajan,*, and Israel E. Wachs*, † ‡ Department of Chemical and Biomolecular Engineering and Operando Molecular Spectroscopy & Catalysis Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015, United States ABSTRACT: Ethylene oxidation by Ag catalysts has been extensively investigated over the past few decades, but many key fundamental issues about this important catalytic system are still unresolved. This overview of the selective oxidation of ethylene to ethylene oxide by Ag catalysts critically examines the experimental and theoretical literature of this complex catalytic system: (i) the surface chemistry of silver catalysts (single crystal, α powder/foil, and supported Ag/ -Al2O3), (ii) the role of promoters, (iii) the reaction kinetics, (iv) the reaction mechanism, (v) density functional theory (DFT), and (vi) microkinetic modeling. Only in the past few years have the modern catalysis research tools of in situ/operando spectroscopy and DFT calculations been applied to begin establishing fundamental structure−activity/selectivity relationships. This overview of the ethylene oxidation reaction by Ag catalysts covers what is known and what issues still need to be determined to advance the rational design of this important catalytic system. KEYWORDS: ethylene epoxidation, silver, promoters, catalyst characterization,