United States Patent Office Patented Jan

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent Office Patented Jan 3,164,611 United States Patent Office Patented Jan. 5, 1965 1. 2 reaction, care must be taken in applying this method 3,164,611 to the oxidation of heat sensitive compounds. OXDATION OF PRIMARY AND SECONDARY AL COHOLS TO THE CORRESPONDING CARBONY These organic base-chromium trioxide complexes are CSCMPOUNDS (USNG A TERTARY AMENE particularly useful oxidizing agents for effecting the oxida (CERORySSJR, TROXDE COMPLEX tion of alcohols having at least one hydrogen atom at Lewis H. Sarett, Friscetos, N.J., assigaor to Merck & Co., tached to the carbon atom bearing the hydroxyl sub Inc., Rahway, N.J., a corporatioia of New Jersey Stituent, i.e., primary and secondary alcohols, to the No Drawing. Fied any 26, 1956, Ser. No. 686,463 corresponding carbonyl compounds. Thus, primary al 13 Caias. (C. 260-349.9) cohols are oxidized to aldehydes, and secondary alcohols IO are converted to ketones. This invention relates to a novel process for the oxida This method of oxidizing alcohols to the corresponding tion of chemical compounds, and more particularly to carbonyl compounds is generally applicable to all pri an improved method for the oxidation of primary and mary and secondary alcohols. Examples of such al Secondary alcohols to the corresponding carbonyl com cohols that might be mentioned are aliphatic alcohols pounds. 5 such as alkanals, alkenols, alkinois, polyhydric alkanols, This application is a continuation-in-part application polyhydric alkenols and polyhydric alkinols; aralkyl al of my application Serial No. 263,016, filed December cohols; aralkenyl alcohols; aralkinyl alcohols; alicyclic 22, 1951, now abandoned, and my copending application alcohols such as cycloalkyl, cycloalkenyl, cycloalkinyl, Serial No. 292,985, filed June 11, 1952, now abandoned. spiran, terpene, polyterpene, steroid and carotenoid al While various methods are known for effecting the 20 cohols; alicyclic alkyl alcohols; allicyclic alkenyl alcohols; oxidation of chemical compounds, these methods suffer alicyclic atkinyl alcohols; heterocyclic alcohols; hetero from the serious disadvantage in that they very often cause cyclic alkyl alcohols; heterocyclic alkenyl alcohols; undesirable side reactions. For example, in oxidizing heterocyclic alkinyl alcohols; and the like. primary and secondary alcohols to the corresponding The primary and secondary alcohols reduced by the carbonyl compounds, frequently the oxidizing agents will 25 methods of the present invention can be unsubstituted attack unsaturated bonds, or oxidize the compound be alcohols or alcohols containing substituents such as halo, yond the desired stage. Further, many of the known amino, nitro carbonyl, sulfonic acid groups, and the like. processes employ acid reagents which attack acid-sensi Specific examples of such alcohols that might be men tive portions of compounds being oxidized. ... tioned are ethanol, propanol, butanol, farnesol, cit It is an object of my present invention to provide 30 ronellol, geraniol, glycol, propylene glycol, glycerol, novel process for effecting chemical oxidations. It is (3-phenylethanol, cyclopropanol, cyclobutanol, cyclopen another object to provide a method of oxidizing chemical tanol, cyclohexanol, cyclooctanol, benzylalcohol, menthol, compounds under alkaline conditions. It is a further carnomenthol, cyclohexylethanol, p-nitrobenzyl alcohol, object to provide an improved method of oxidizing pri 1,2-diphenyl ethanol, 4,4'-dimethoxydiphenyl carbonol, mary and secondary alcohols to the corresponding car 35 3-hydroxy-1,3-diphenyl propene, trichlorenthanol, 4,4' bonyl compounds. Other objects will be apparent from dihydroxy diphenyl carbinol, methyl 3-pyridylcarbinol, the detailed description hereinafter provided. furfuryl alcohol, codeine, biotin, scopolamine, atropine, In accordance with my invention, I have found that hydroxy proline and cyclopentanol. The process of the complexes formed by reacting an organic base with present invention is particularly useful in oxidizing chromium trioxide may be employed as agents in the 40 cyclopentanopolyhydrophenanthrene alcohols such as steroids to the corresponding carbonyl compounds. Thus, oxidation of chemical compounds having an oxidizable sterols such as cholesterol, cholestanol, epicholesterol, functional group. Thus, the complexes formed by react coprostanol, epicoprostanol, ergosterol, stigmasterol, and ing chromium trioxide with organic bases such as pyridine, lumisterol, bile acids such as cholic acid, desoxycholic y-picoline, (3-picoline, lutidines, quinoline, diethyl form acid, lithocholic acid, 3-epidesoxycholic acid, bisnor amide and the like, function as mild oxidizing agents and cholic acid, cholanic acid, allocholanic acid and bufo are conveniently employed in oxidizing chemical com choianic acid, heart poisons such as strophanthidin, iso pounds. strophanthidin, periplogenin, 17-isoperiplogenin, di In carrying out oxidations with these complexes, the gitoxigenin, sarmentogenin, Scillariden and bufotalin, organic compound being oxidized is intimately contacted 50 sapogenins such as tigogenin, sarsasapogenin, similogenin, with the complex for sufficient time to effect the de neotigogenin, Samogenin and hecogenin, sex hormones sired oxidation. Usually, I prefer to carry out the oxida such as estriol, estrane, equilenin, equilin, androsterone tion by dissolving the organic compound in a suitable and epiandrosterone, can be oxidized by the base-chro inert non-acidic solvent, such as benzene, toluene, pyridine mium trioxide complexes to produce the corresponding and the like, adding thereto the organic base-chromium 5 5 carbonyl compounds. In addition to these steroids other trioxide complex, agitating the reaction mixture to effect saturated or unsaturated derivatives of such steroids such intimate contact of the reactants, and permitting the re as primary and secondary alcohols of estranes, andro stanes, etiocholanes, pregnanes, cholanes, cholestanes, action mixture to stand for sufficient time at room tem spirostanes, isoaillospirostanes, and the like, can be oxi perature to complete the oxidation. Alternatively, as 60 dized by the processes of the present invention. Also, al will be readily apparent to those skilled in the art, the cohols of the dodecahydrophenanthrene series are con compound to be oxidized may be dissolved in an organic veniently oxidized by the processes of the present inven base, and the chromium trioxide may then be added form tion. ing the organic base-chromium trioxide complex in situ. in accordance with a preferred embodiment of my in Since the formation of the complex is an exothermic 65 vention, i have found that complexes prepared by re 3,164,611 3. 4. acting chromium trioxide with tertiary amines are espe be utilized as oxidizing agents since chromium trioxide cially valuable oxidizing agents. In particular, I have had always been employed as an oxidizing agent under found the pyridine-chromium trioxide complex, which acid conditions. - has been described by Sisler et al. in the Journal of the The following examples are presented to illustrate spe American Chemical Society, 70, 3828, (1948) to be of cific embodiments of my invention: outstanding value in effecting the oxidation of primary EXAMPLE 1. and secondary alcohols to the corresponding carbonyl compounds. Preparation of 3-acetoxy-11,20-diketo pregnane by the The pyridine-chromium trioxide complex is readily oxidation of 3-acetoxy-11-keto-20-hydroxy pregnane prepared by reacting chromium trioxide with pyridine. 10 Since this complex is relatvely insoluble in pyridine, it can CH3 (H, be obtained in solid form by reacting chromium trioxide (Hot CO with a moderate excess of pyridine. Thus, by reacting about one gram of chromium trioxide with 10 cc. of pyr idine, the solid complex is precipitated and, if desired, or ?h may be separated in accordance with conventional pro cedures. By reacting chromium trioxide with a large excess of pyridine, for example, by adding about one gram of chromium trioxide to 75 cc. of pyridine, a solution of pyridine-chromium trioxide complex in pyridine is ob 20 To aC.C. solution of 17 mg. of 3-acetoxy-11-keto-20-hydroxy taned. Although the complex which may be prepared in solid form as indicated above, may be employed as the pregnane in 0.3 cc. of dry pyridine was added 75 mg. of oxidizing agent, I have usually found it most convenient pyridine-chromium trioxide complex. The mixture, after to utilize it in the form of a suspension or solution in standing 36 hours at room temperature, was poured into pyridine. 25 ether and water, and the ether layer was washed with In carrying out the oxidation of alcohols pursuant to dilute aqueous hydrochloric acid. Concentration of the the preferred embodiment of my invention, the alcohol is ethereal solution and crystallization of the residue from dissolved in a suitable inert non-acidic solvent and the ether gave 3-acetoxy-11,20-diketo-pregnane, M.P. 131 C. pyridine-chromium trioxide complex added as a suspen EXAMPLE 2 sion or solution in pyridine. Various solvents such as 30. Preparation of 3,21-diacetoxy-17-hydroxy-11,20-diketo benzene, toluene, picoline and the like are suitable as sol pregnane from 3,21-diacetoxy-11-keto-17,20-dihydroxy vents for the alcohol, although I usually find that pyri dine is most satisfactory. After intimately contacting the pregnane resulting reaction mixture of the alcohol with the pyridine CHOAC CHO Ac chromium trioxide complex, it is permitted to stand, pref 35 s erably at room temperature, for sufficient time to insure
Recommended publications
  • United States Patent (19) 11 Patent Number: 6,037,477 Ishii Et Al
    USOO6037477A United States Patent (19) 11 Patent Number: 6,037,477 Ishii et al. (45) Date of Patent: Mar. 14, 2000 54) OXIDATION PROCESS OF ETHERS 838909 2/1996 Japan. 75 Inventors: Yasutaka Ishii, 19-21, OTHER PUBLICATIONS Besshohonmachi, Takatsuki-shi, Osaka Ishii et al., J. Org. Chem., vol. 61, pp. 4520-4526 (1996). 569-1112, Tatsuya Nakano, Himeji, Yoshino et al., J. Org. Chem., vol. 62, No. 20, pp. both of Japan 6810–6813 (Oct. 1997). Takeno et al., Aerobic Oxidation by Using N-hydroxyph 73 Assignees: Daicel Chemical Industries, Ltd.; thalimide, 67th Spring Annual Meeting of Chemical Society Yasutaka Ishii, both of Osaka, Japan of Japan, Lecture Draft II, Dec. 1994. 21 Appl. No.: 09/074,604 Primary Examiner Johann Richter ASSistant Examiner-Dominic Keating 22 Filed: May 8, 1998 Attorney, Agent, or Firm-Birch, Stewart, Kolasch & Birch, 30 Foreign Application Priority Data LLP May 13, 1997 JP Japan .................................... 9-122526 57 ABSTRACT 51) Int. Cl." .................. C07D 207/404; CO7D 207/448; An ether is oxidized with oxygen under an oxidation catalyst CO7D 487/06; CO7D 207/444 comprising an imide compound (Such as 52 U.S. Cl. .......................... 548/545; 548/548; 548/549; N-hydroxyphthalimide) or the imide compound and a 548/453 co-catalyst to produce the corresponding chain or cyclic 58 Field of Search ..................................... 548/545, 548, ester or anhydride. The co-catalyst may be a transition metal 548/549 compound. The above proceSS provides a process for oxi dizing an ether by oxygen efficiently to produce the corre 56) References Cited sponding oxide (Such as an ester, an hydride) with high conversion and Selectivity.
    [Show full text]
  • Novel Approach to Introduce Alkyl Chains Into PEDOT:PSS and Its Effect on the Performance As a Flexible Electrode
    applied sciences Article Novel Approach to Introduce Alkyl Chains into PEDOT:PSS and Its Effect on the Performance as a Flexible Electrode In-Seong Hwang 1, Chul-Woo Park 1, Hye-In Kang 1, Sung-yoon Joe 2, Na-Young Pak 3 and Dae-won Chung 1,* 1 Department of Polymer Engineering, College of Engineering, The University of Suwon, Hwaseong-si 18323, Korea; [email protected] (I.-S.H.); [email protected] (C.-W.P.); [email protected] (H.-I.K.) 2 Center of Advanced Materials Analysis, The University of Suwon, Hwaseong-si 18323, Korea; [email protected] 3 EverChemTech Co., Ltd., 38, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong-si 18323, Korea; [email protected] * Correspondence: [email protected]; Tel.: +81-312-202-156 Abstract: We here report a synthetic route to introduce alky chains into poly (3,4-ethylenedioxythio- phene):poly (4-styrenesulfonate) (PEDOT:PSS) by the reaction with epoxyalkanes. The reaction was analyzed by FT-IR, TGA, and XPS studies, and the conductivities of derivatives were discussed as a function of the length of alkyl chains. PEDOT:PSS-C6, which is the product from a reaction with epoxyhexane, was well dispersed in methanol and transparent films from this dispersion were successfully prepared. PEDOT:PSS-C6 film showed an increase in hydrophobicity, resulting in enhanced water resistance compared to pristine PEDOT:PSS film, and a morphological study of the film exhibited clear phase separation similar to PEDOT:PSS doped by DMSO. We also observed an improvement in the conductivity and flexibility of PEDOT:PSS-C6 film compared to those of Citation: Hwang, I.-S.; Park, C.-W.; pristine PEDOT:PSS film.
    [Show full text]
  • Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions Alice E
    Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions Alice E. van der Ende, Evan J. Kravitz, and Eva Harth* Department of Chemistry and Pharmacology, Vanderbilt UniVersity, 7619 SteVenson Center, NashVille, Tennessee 37235 Received December 26, 2007; Revised Manuscript Received April 16, 2008; E-mail: [email protected] Abstract: We present the synthesis of discrete functionalized polyester nanoparticles in selected nanoscale size dimensions via a controlled intermolecular chain cross-linking process. The novel technique involves the controlled coupling of epoxide functionalized polyesters with 2,2′-(ethylenedioxy)bis(ethylamine) to give well-defined nanoparticles with narrow size distribution and selected nanoscopic size dimensions. Diverse functionalized polyesters, synthesized with pendant functionalities via ring-opening copolymerization of δ-valerolactone with R-allyl-δ-valerolactone, R-propargyl-δ-valerolactone and 2-oxepane-1,5-dione, were prepared as linear precursors which facilitated 3-D nanoparticles with functionalities such as amines, keto groups, and alkynes for post modification reactions. We found that the nanoparticle formation and the control over the nanoscopic dimension is primarily influenced by the degree of the epoxide entity implemented in the precursor polymers and the amount of 2,2′-(ethylenedioxy)bis(ethylamine) as cross- linking reagent. The other functionalities in the linear polyester do not participate in the nanoparticle formation and particles with defined functionalities can be prepared from batches of identical linear polymers containing various functionalities or by mixing different polyester materials to achieve controlled amounts of specific functional groups. The utilization of integrated functionalities was demonstrated in one post-modification reaction with N-Boc-ethylenediamine via reductive amination.
    [Show full text]
  • WO 2016/022464 Al 11 February 2016 (11.02.2016) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/022464 Al 11 February 2016 (11.02.2016) P O P C T (51) International Patent Classification GELMAN, Leonid; 260 E. Grand Avenue, 2nd Floor, A61K 31/7068 (2006.01) A61K 31/519 (2006.01) South San Francisco, CA 94080 (US). SMITH, David, A61K 31/4184 (2006.01) A61K 31/166 (2006.01) Bernard; 260 E. Grand Avenue, 2nd Floor, South San A61K 31/675 (2006.01) A61K 31/41 (2006.01) Francisco, CA 94080 (US). WANG, Guangyi; 260 E. A61K 31/513 (2006.01) A61K 38/21 (2006.01) Grand Avenue, 2nd Floor, South San Francisco, CA 94080 A61K 31/506 (2006.01) A61K 38/16 (2006.01) (US). A61K 31/437 (2006.01) A61K 39/155 (2006.01) (74) Agent: MILLER, Kimberly, J.; Knobbe Martens Olson A61K 31/4709 (2006.01) A61K 39/42 (2006.01) & Bear, LLP, 2040 Main Street, 14th Floor, Irvine, CA A61K 31/4188 (2006.01) A61P 31/14 (2006.01) 92614 (US). A61K 31/517 (2006.01) A61P 11/00 (2006.01) (81) Designated States (unless otherwise indicated, for every (21) International Application Number: PCT/US20 15/043402 kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (22) International Filing Date: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 3 August 2015 (03.08.2015) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, English (25) Filing Language: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, (26) Publication Language: English MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (30) Priority Data: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 62/033,55 1 5 August 2014 (05.08.2014) US TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN
    This dissertation has been Mic 61-2820 microfilmed exactly as received BESCH, Paige Keith. ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG. The Ohio State University, Ph.D., 1961 Chemistry, biological University Microfilms, Inc., Ann Arbor, Michigan ADRENOCORTICAL STEROID PROFILE IN THE HYPERTENSIVE DOG DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Paige Keith Besch, B. S., M. S. The Ohio State University 1961 Approved by Katharine A. Brownell Department of Physiology DEDICATION This work is dedicated to my wife, Dr. Norma F. Besch. After having completed her graduate training, she was once again subjected to almost social isolation by the number of hours I spent away from home. It is with sincerest appreciation for her continual encouragement that I dedi­ cate this to her. ACKNOWLEDGMENTS I wish to acknowledge the assistance and encourage­ ment of my Professor, Doctor Katharine A. Brownell. Equally important to the development of this project are the experience and information obtained through the association with Doctor Frank A. Hartman, who over the years has, along with Doctor Brownell, devoted his life to the development of many of the techniques used in this study. It is also with extreme sincerity that I wish to ac­ knowledge the assistance of Mr. David J. Watson. He has never complained when asked to work long hours at night or weekends. Our association has been a fruitful one. I also wish to acknowledge the encouragement of my former Professor, employer and good friend, Doctor Joseph W.
    [Show full text]
  • The Metabolism of Desmosterol in Human Subjects During Triparanol Administration
    THE METABOLISM OF DESMOSTEROL IN HUMAN SUBJECTS DURING TRIPARANOL ADMINISTRATION DeWitt S. Goodman, … , Joel Avigan, Hildegard Wilson J Clin Invest. 1962;41(5):962-971. https://doi.org/10.1172/JCI104575. Research Article Find the latest version: https://jci.me/104575/pdf Journal of Clinical Investigation Vol. 41, No. 5, 1962 THE METABOLISM OF DESMOSTEROL IN HUMAN SUBJECTS DURING TRIPARANOL ADMINISTRATION * BY DEWITT S. GOODMAN, JOEL AVIGAN AND HILDEGARD WILSON (From the Section on Metabolism, National Heart Institute, and the National Institute of Arthritis and Metabolic Diseases, Bethesda, Md.) (Submitted for publication October 25, 1961; accepted January 25, 1962) Recent studies with triparanol (1-[p-,3-diethyl- Patient G.B. was a 55 year old man with known arterio- aminoethoxyphenyl ]-1- (p-tolyl) -2- (p-chloro- sclerotic heart disease and mild hypercholesterolemia; phenyl)ethanol) have demonstrated that this com- since 1957 he had maintained a satisfactory and stable cardiac status. At the time of the present study he had pound inhibits cholesterol biosynthesis by blocking been taking 250 mg triparanol daily for 4 weeks, and had the reduction of 24-dehydrocholesterol (desmos- a total serum sterol level in the high normal range. terol) to cholesterol (2-4). Administration of Patient F.A. was a 40 year old man with a 4- to 5-year triparanol to laboratory animals and to man re- history of gout and essential hyperlipemia. At the time sults in of of this study he had been on an isocaloric low purine diet the accumulation desmosterol in the for several weeks, and both the gout and hyperlipemia plasma and tissues, usually with some concom- were in remission.
    [Show full text]
  • Acetic Anhydride Cyclodehydration Agent, 220 Acetoamides Synthesis
    INDEX Acetic anhydride Acrylic acid cyclodehydration agent, 220 biomer polymer activity, 309 Acetoamides Acrylonitrile synthesis, 277 purification, 409 Acetone sodium naphthalene polymerized, polyanhydride solvent, 193 410 Acetone cyanohydrin N-Acryloyl-a-aminoisobutyrate azlactone raw material, 225 synthesis, 225 a-Acetoxypropionic acid N-Acryloylmethylalanine ring closure to lactone, 443 ethyl chloroformate reaction, 206 Acetyl acetone, 464 Activation energy manganese decarbonyl coordi­ styrene anoinic dispersion nating agent, 300 polymerization, 392, 296 Acetyl chloride a-Acylamino-a-aminopropionic acid coumalic acid reaction, 61 conversion to a-lactone, 445 polystyrene living particle N-Acylurea, 307 reaction, 400 Adhesives, hot melt Acetylene carbonyls synthesis concept, 480 amine condensations, 276 Adipic acid, 192 Acrolein Adipic acid, metal salts acetal formation, 62, 74 phosphorus acid chloride Acrylamide condensation, 195 hydrophilic grafts on polymers, Aldehydes 293 anionic polymerization, 322 functionalized oligomers, 205, Alkenes 211, 215-217 triazolinedione ene reaction, 2 ORTEP plots, 212 Alkenyl azalactone purification, 308 amine oligomer reaction, 208, telechelic oligomers, 203 210, 211 Acrylamides, bis type 2-Alkenyl-2-oxazoline-5-ones amine reaction, 215 amine reactions, 205, 211 Acrylamides, telechelic Alkoxides characterization, 208 catalyst for oxazolidone synthesis from azlactones, formation, 252 219, 221 Alkoxides, polymeric Acrylates, alkyl ethylene oxide polymerization, anionic polymerization, 327 330 alkali
    [Show full text]
  • PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics
    polymers Review Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics Daniele Mantione 1,†, Isabel del Agua 1,2,†, Ana Sanchez-Sanchez 1,2,* and David Mecerreyes 1,3,* 1 Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; [email protected] (D.M.); [email protected] (I.d.A.) 2 Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France 3 Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain * Correspondence: [email protected] (A.S.-S.); [email protected] (D.M.); Tel.: +34-943-015-323 (A.S.-S.); +34-943-018-018 (D.M.) † These authors contributed equally. Received: 26 June 2017; Accepted: 8 August 2017; Published: 11 August 2017 Abstract: Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT:PSS presents some limitations associated with its low (bio)functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio)functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers.
    [Show full text]
  • ラッ ト肝 の Steroid 5Β-Reductase 活性 に 対す る酢酸第 二水銀
    〔614〕 ラ ッ ト肝 の steroid 5β-reductase 活 性 に 対 す る酢 酸 第 二 水 銀 の 影 響 The Effect of Mercuric Acetate on the Activity of Steroid 5β-reductase in the Rat Liver 北海道大学医学部衛生学教室 富 田 勤 ・佐 藤 敏 雄 ・高 桑 栄 松 北海道大学大学院環境科学研究科環境医学教室 斎 藤 和 雄 Tsutomu Tomita, Toshio Sato and Eimatsu Takakuwa Department of Hygiene and Preventive Medicine, Hokkaido University School of Medicine, Sapporo Kazuo Saito Department of Environmental Medicine, Graduate School of Environmental Science, Hokkaido University, Sapporo The increase of urinary δ-aminolevulinic acid in man and animals exposed to high concentration of mercury is studied, but the mechanism of the increase has not been clearly explained. In this paper, the content of 5β type steroid, inducing δ-aminolevulinic acid synthetase, was studied by noticing the activities of steroid 5β-reductase, which is the rate limiting enzyme in metabolism of steroid hormones, 3α- and 3β-hydroxysteroid dehydrogenase. For measurement of these activities, 105,000×g supernatant of rat liver was used. The testosterone and ⊿4-androstene-3, 17-dione 5β-reductase activities decreased on either the fourth or eleventh day after either intraperitoneal or subcutaneous administration of mercuric acetate, respe- ctively, and the adrenosterone 5β-reductase activity increased on the eleventh day after the subcutaneous administration of mercuric acetate. These changes mentioned above, however, were not significant. The progesterone and 17α-hydroxy progesterone 5β-reductase activities decreased on either the fourth or eleventh day after either intraperitioneal or subcutaneous administration of mercuric acetate, but there were no significant changes.
    [Show full text]
  • 27-2-Erraigkarl HASS at TORNEYS
    Dec. 24, 1968 A. LENZ ETAL 3,418,383 PRODUCTION OF ALKALI METAL, ALCOHOLATES Filed Nov. 8, 1966 g-Lower and higher olcohol vapors Lower Olcohol Condenser X Distillation column Reactor column Receiver Zy -IO 3 lower alcohol Higher olcohol Olcoholote vopor higher olcohol Liquid alcohol Solution S mixture Resevoir Superheater 15 a - 13 Higher alcohol Pump1 D HigherOlcohol olcoholote NVENTORS ARNOLD LENZ OTTO BLEH 27-2-erraigKARL HASS AT TORNEYS. 3,418,383 United States Patent Office Patented Dec. 24, 1968 2 e.g., isopropanol, butanol - (2), pentanol - (2), pentanol 3,418,383 (3), 2-methylbutanol - (3) and the like; and the tertiary PRODUCTION OF ALKALIMETAL ALCOHOLATES alcohols, e.g., 2-methylpropanol-(2), 2-methylbutanol-(2) Arnold Lenz, Gerstenkamp, Otto Bleh, Bergheim, and and the like. In addition to the univalent aliphatic alco Karl Hass, Niederkassel, Germany, assignors to Dyna hols, cycloaliphatic alcohols can be interchanged such as: mit Nobel Aktiengesellschaft cyclopropanol, cyclobutanol, cyclopentanol, cyclohexanol, Claims Filedpriority, Nov. application 8, 1966, Germany,Ser. No. 594,333 Nov. 10, 1965, and the alkyl-substituted derivatives thereof having a total D 48,614 of up to 12 carbon atoms. 9 Claims. (CI. 260-632) Both the alkali alcoholates of methanol and those of O ethanol can be used as starting products, and the alkali metal of the alcoholate can be sodium, potassium and ABSTRACT OF THE DISCLOSURE lithium, and, of course, cesium and rubidium as well. The improved interchange reaction between a lower The process of the invention is to be explained by alcoholate of an alkali metal and a higher alcohol to pro means of the annexed drawing which is a flow diagram of duce a higher alcoholate of the alkali metal, wherein the 15 the process.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,584,288 Nickish Et Al
    United States Patent (19) 11 Patent Number: 4,584,288 Nickish et al. (45) Date of Patent: Apr. 22, 1986 (54) 6,6-ETHYLENE-15,16-METHYLENE-3-OXO 17a-PREGN-4-ENE-21,17-CARBOLACTONES, PROCESSES FOR THE PRODUCTION O (I) THEREOF, AND PHARMACEUTICAL PREPARATIONS CONTAINING THEM 75 Inventors: Klaus Nickish; Dieter Bittler; Henry Laurent; Rudolf Wiechert; Sybille Beier; Walter Elger, all of Berlin, Fed. Rep. of Germany 73) Assignee: Schering Aktiengesellschaft, Berlin and Bergkamen, Fed. Rep. of Germany (21) Appl. No.: 692,489 22 Filed: Jan. 18, 1985 30 Foreign Application Priority Data Jan. 20, 1984 DE Fed. Rep. of Germany ....... 3402329 51) Int, Cl." ....................... CO7J 19/00; A61K 31/58 is a CC-single of CC-double bond, 52 U.S. C. ................................ 514/172; 260/239.57 R1 is a hydrogen atom or a methyl group, 58) Field of Search .................... 260/239.57; 514/172 R2 is a methyl or ethyl group, and 56) References Cited U.S. PATENT DOCUMENTS 3,422,097 1/1969 Kerwin ........................... 260/239.57 Na 4,500,522 2/1985 Nickish et al. ................. 260/239.57 is " > OT l D Primary Examiner-Elbert L. Roberts Attorney, Agent, or Firm-Millen & White exhibit strong gestagen potency and an aldosterone 57) ABSTRACT antagonistic activity. 6,6-ethylene-15, 16-methylene-3-oxo-17a-pregn-4-ene 21,17a-carbolactones of general Formula I 18 Claims, No Drawings 4,584,288 1. 2 tagen effects, but wherein the gestagen activity is not so 6,6-ETHYLENE-15,16-METHYLENE-3-OXO-17a strongly pronounced (DOS No.
    [Show full text]
  • Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts † ‡ † ‡ † Tiancheng Pu, Huijie Tian, Michael E
    Review Cite This: ACS Catal. 2019, 9, 10727−10750 pubs.acs.org/acscatalysis Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts † ‡ † ‡ † Tiancheng Pu, Huijie Tian, Michael E. Ford, Srinivas Rangarajan,*, and Israel E. Wachs*, † ‡ Department of Chemical and Biomolecular Engineering and Operando Molecular Spectroscopy & Catalysis Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015, United States ABSTRACT: Ethylene oxidation by Ag catalysts has been extensively investigated over the past few decades, but many key fundamental issues about this important catalytic system are still unresolved. This overview of the selective oxidation of ethylene to ethylene oxide by Ag catalysts critically examines the experimental and theoretical literature of this complex catalytic system: (i) the surface chemistry of silver catalysts (single crystal, α powder/foil, and supported Ag/ -Al2O3), (ii) the role of promoters, (iii) the reaction kinetics, (iv) the reaction mechanism, (v) density functional theory (DFT), and (vi) microkinetic modeling. Only in the past few years have the modern catalysis research tools of in situ/operando spectroscopy and DFT calculations been applied to begin establishing fundamental structure−activity/selectivity relationships. This overview of the ethylene oxidation reaction by Ag catalysts covers what is known and what issues still need to be determined to advance the rational design of this important catalytic system. KEYWORDS: ethylene epoxidation, silver, promoters, catalyst characterization,
    [Show full text]