Acetic Anhydride Cyclodehydration Agent, 220 Acetoamides Synthesis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 6,037,477 Ishii Et Al
USOO6037477A United States Patent (19) 11 Patent Number: 6,037,477 Ishii et al. (45) Date of Patent: Mar. 14, 2000 54) OXIDATION PROCESS OF ETHERS 838909 2/1996 Japan. 75 Inventors: Yasutaka Ishii, 19-21, OTHER PUBLICATIONS Besshohonmachi, Takatsuki-shi, Osaka Ishii et al., J. Org. Chem., vol. 61, pp. 4520-4526 (1996). 569-1112, Tatsuya Nakano, Himeji, Yoshino et al., J. Org. Chem., vol. 62, No. 20, pp. both of Japan 6810–6813 (Oct. 1997). Takeno et al., Aerobic Oxidation by Using N-hydroxyph 73 Assignees: Daicel Chemical Industries, Ltd.; thalimide, 67th Spring Annual Meeting of Chemical Society Yasutaka Ishii, both of Osaka, Japan of Japan, Lecture Draft II, Dec. 1994. 21 Appl. No.: 09/074,604 Primary Examiner Johann Richter ASSistant Examiner-Dominic Keating 22 Filed: May 8, 1998 Attorney, Agent, or Firm-Birch, Stewart, Kolasch & Birch, 30 Foreign Application Priority Data LLP May 13, 1997 JP Japan .................................... 9-122526 57 ABSTRACT 51) Int. Cl." .................. C07D 207/404; CO7D 207/448; An ether is oxidized with oxygen under an oxidation catalyst CO7D 487/06; CO7D 207/444 comprising an imide compound (Such as 52 U.S. Cl. .......................... 548/545; 548/548; 548/549; N-hydroxyphthalimide) or the imide compound and a 548/453 co-catalyst to produce the corresponding chain or cyclic 58 Field of Search ..................................... 548/545, 548, ester or anhydride. The co-catalyst may be a transition metal 548/549 compound. The above proceSS provides a process for oxi dizing an ether by oxygen efficiently to produce the corre 56) References Cited sponding oxide (Such as an ester, an hydride) with high conversion and Selectivity. -
Novel Approach to Introduce Alkyl Chains Into PEDOT:PSS and Its Effect on the Performance As a Flexible Electrode
applied sciences Article Novel Approach to Introduce Alkyl Chains into PEDOT:PSS and Its Effect on the Performance as a Flexible Electrode In-Seong Hwang 1, Chul-Woo Park 1, Hye-In Kang 1, Sung-yoon Joe 2, Na-Young Pak 3 and Dae-won Chung 1,* 1 Department of Polymer Engineering, College of Engineering, The University of Suwon, Hwaseong-si 18323, Korea; [email protected] (I.-S.H.); [email protected] (C.-W.P.); [email protected] (H.-I.K.) 2 Center of Advanced Materials Analysis, The University of Suwon, Hwaseong-si 18323, Korea; [email protected] 3 EverChemTech Co., Ltd., 38, Cheongwonsandan 7-gil, Mado-myeon, Hwaseong-si 18323, Korea; [email protected] * Correspondence: [email protected]; Tel.: +81-312-202-156 Abstract: We here report a synthetic route to introduce alky chains into poly (3,4-ethylenedioxythio- phene):poly (4-styrenesulfonate) (PEDOT:PSS) by the reaction with epoxyalkanes. The reaction was analyzed by FT-IR, TGA, and XPS studies, and the conductivities of derivatives were discussed as a function of the length of alkyl chains. PEDOT:PSS-C6, which is the product from a reaction with epoxyhexane, was well dispersed in methanol and transparent films from this dispersion were successfully prepared. PEDOT:PSS-C6 film showed an increase in hydrophobicity, resulting in enhanced water resistance compared to pristine PEDOT:PSS film, and a morphological study of the film exhibited clear phase separation similar to PEDOT:PSS doped by DMSO. We also observed an improvement in the conductivity and flexibility of PEDOT:PSS-C6 film compared to those of Citation: Hwang, I.-S.; Park, C.-W.; pristine PEDOT:PSS film. -
Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions Alice E
Approach to Formation of Multifunctional Polyester Particles in Controlled Nanoscopic Dimensions Alice E. van der Ende, Evan J. Kravitz, and Eva Harth* Department of Chemistry and Pharmacology, Vanderbilt UniVersity, 7619 SteVenson Center, NashVille, Tennessee 37235 Received December 26, 2007; Revised Manuscript Received April 16, 2008; E-mail: [email protected] Abstract: We present the synthesis of discrete functionalized polyester nanoparticles in selected nanoscale size dimensions via a controlled intermolecular chain cross-linking process. The novel technique involves the controlled coupling of epoxide functionalized polyesters with 2,2′-(ethylenedioxy)bis(ethylamine) to give well-defined nanoparticles with narrow size distribution and selected nanoscopic size dimensions. Diverse functionalized polyesters, synthesized with pendant functionalities via ring-opening copolymerization of δ-valerolactone with R-allyl-δ-valerolactone, R-propargyl-δ-valerolactone and 2-oxepane-1,5-dione, were prepared as linear precursors which facilitated 3-D nanoparticles with functionalities such as amines, keto groups, and alkynes for post modification reactions. We found that the nanoparticle formation and the control over the nanoscopic dimension is primarily influenced by the degree of the epoxide entity implemented in the precursor polymers and the amount of 2,2′-(ethylenedioxy)bis(ethylamine) as cross- linking reagent. The other functionalities in the linear polyester do not participate in the nanoparticle formation and particles with defined functionalities can be prepared from batches of identical linear polymers containing various functionalities or by mixing different polyester materials to achieve controlled amounts of specific functional groups. The utilization of integrated functionalities was demonstrated in one post-modification reaction with N-Boc-ethylenediamine via reductive amination. -
Polyanhydride-Based Nanomedicine Platform for Combating Neurodegeneration Benjamin W
Polyanhydride-based Nanomedicine Platform for Combating Neurodegeneration Benjamin W. Schlichtmann1, Shivani Ghaisas2, Vellareddy Anantharam2, Anumantha Kanthasamy2, Surya Mallapragada1, and Balaji Narasimhan1. 1Chemical & Biological Engineering and 2Biomedical Sciences, Iowa State University, Ames, IA 50011 Statement of Purpose: Treatment for exposure to (blue arrows). The average NP size of NF-NPs and CPTP- chemical toxins such as pesticides has resulted in an NPs was 397 ± 143 nm and 287 ± 99 nm, respectively, estimated annual cost of $200 million in recent years [1]. which is in agreement with previous work [4]. Surface Exposure to these toxins leads to neurodegeneration, zeta potential measurements demonstrated a negligible including development of chronic conditions such as effect of functionalization on surface charge, as expected. Parkinson’s and Alzheimer’s diseases. Drugs that combat Non-functionalized neurodegeneration, such as antioxidants, must effectively pass through the blood-brain barrier (BBB), and then target diseased neurons and their mitochondria. The efficacy of drugs administered alone to do so is significantly hindered by drug metabolism and limited CPTP bulk-functionalized localization. Polyanhydride nanoparticles (NPs) have several favorable characteristics for drug delivery to overcome these issues and improve treatment of neurodegeneration [2]. Localization can be further Pre-CPTP (control) improved using targeting ligands by directly functionalizing the polyanhydrides to ensure that the ligand persists throughout NP degradation. The lipophilic cationic ligand triphenylphosphonium (TPP) has recently shown enhanced targeting of the BBB and mitochondria Figure 1. FTIR of functionalized and non-functionalized [3]. In this work, a derivative of TPP, (3-carboxypropyl) polymer showing functionalization by the relative triphenylphosphonium (CPTP) was used to functionalize decrease (red) of non-functionalized polymer end-group polyanhydrides. -
PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics
polymers Review Poly(3,4-ethylenedioxythiophene) (PEDOT) Derivatives: Innovative Conductive Polymers for Bioelectronics Daniele Mantione 1,†, Isabel del Agua 1,2,†, Ana Sanchez-Sanchez 1,2,* and David Mecerreyes 1,3,* 1 Polymat University of the Basque Country UPV/EHU, Joxe Mari Korta Center, Avda. Tolosa 72, 20018 Donostia-San Sebastian, Spain; [email protected] (D.M.); [email protected] (I.d.A.) 2 Department of Bioelectronics, Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC, 13541 Gardanne, France 3 Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain * Correspondence: [email protected] (A.S.-S.); [email protected] (D.M.); Tel.: +34-943-015-323 (A.S.-S.); +34-943-018-018 (D.M.) † These authors contributed equally. Received: 26 June 2017; Accepted: 8 August 2017; Published: 11 August 2017 Abstract: Poly(3,4-ethylenedioxythiophene)s are the conducting polymers (CP) with the biggest prospects in the field of bioelectronics due to their combination of characteristics (conductivity, stability, transparency and biocompatibility). The gold standard material is the commercially available poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS). However, in order to well connect the two fields of biology and electronics, PEDOT:PSS presents some limitations associated with its low (bio)functionality. In this review, we provide an insight into the synthesis and applications of innovative poly(ethylenedioxythiophene)-type materials for bioelectronics. First, we present a detailed analysis of the different synthetic routes to (bio)functional dioxythiophene monomer/polymer derivatives. Second, we focus on the preparation of PEDOT dispersions using different biopolymers and biomolecules as dopants and stabilizers. -
United States Patent (19) 11 Patent Number: 4,584,288 Nickish Et Al
United States Patent (19) 11 Patent Number: 4,584,288 Nickish et al. (45) Date of Patent: Apr. 22, 1986 (54) 6,6-ETHYLENE-15,16-METHYLENE-3-OXO 17a-PREGN-4-ENE-21,17-CARBOLACTONES, PROCESSES FOR THE PRODUCTION O (I) THEREOF, AND PHARMACEUTICAL PREPARATIONS CONTAINING THEM 75 Inventors: Klaus Nickish; Dieter Bittler; Henry Laurent; Rudolf Wiechert; Sybille Beier; Walter Elger, all of Berlin, Fed. Rep. of Germany 73) Assignee: Schering Aktiengesellschaft, Berlin and Bergkamen, Fed. Rep. of Germany (21) Appl. No.: 692,489 22 Filed: Jan. 18, 1985 30 Foreign Application Priority Data Jan. 20, 1984 DE Fed. Rep. of Germany ....... 3402329 51) Int, Cl." ....................... CO7J 19/00; A61K 31/58 is a CC-single of CC-double bond, 52 U.S. C. ................................ 514/172; 260/239.57 R1 is a hydrogen atom or a methyl group, 58) Field of Search .................... 260/239.57; 514/172 R2 is a methyl or ethyl group, and 56) References Cited U.S. PATENT DOCUMENTS 3,422,097 1/1969 Kerwin ........................... 260/239.57 Na 4,500,522 2/1985 Nickish et al. ................. 260/239.57 is " > OT l D Primary Examiner-Elbert L. Roberts Attorney, Agent, or Firm-Millen & White exhibit strong gestagen potency and an aldosterone 57) ABSTRACT antagonistic activity. 6,6-ethylene-15, 16-methylene-3-oxo-17a-pregn-4-ene 21,17a-carbolactones of general Formula I 18 Claims, No Drawings 4,584,288 1. 2 tagen effects, but wherein the gestagen activity is not so 6,6-ETHYLENE-15,16-METHYLENE-3-OXO-17a strongly pronounced (DOS No. -
United States Patent Office Patented Jan
3,164,611 United States Patent Office Patented Jan. 5, 1965 1. 2 reaction, care must be taken in applying this method 3,164,611 to the oxidation of heat sensitive compounds. OXDATION OF PRIMARY AND SECONDARY AL COHOLS TO THE CORRESPONDING CARBONY These organic base-chromium trioxide complexes are CSCMPOUNDS (USNG A TERTARY AMENE particularly useful oxidizing agents for effecting the oxida (CERORySSJR, TROXDE COMPLEX tion of alcohols having at least one hydrogen atom at Lewis H. Sarett, Friscetos, N.J., assigaor to Merck & Co., tached to the carbon atom bearing the hydroxyl sub Inc., Rahway, N.J., a corporatioia of New Jersey Stituent, i.e., primary and secondary alcohols, to the No Drawing. Fied any 26, 1956, Ser. No. 686,463 corresponding carbonyl compounds. Thus, primary al 13 Caias. (C. 260-349.9) cohols are oxidized to aldehydes, and secondary alcohols IO are converted to ketones. This invention relates to a novel process for the oxida This method of oxidizing alcohols to the corresponding tion of chemical compounds, and more particularly to carbonyl compounds is generally applicable to all pri an improved method for the oxidation of primary and mary and secondary alcohols. Examples of such al Secondary alcohols to the corresponding carbonyl com cohols that might be mentioned are aliphatic alcohols pounds. 5 such as alkanals, alkenols, alkinois, polyhydric alkanols, This application is a continuation-in-part application polyhydric alkenols and polyhydric alkinols; aralkyl al of my application Serial No. 263,016, filed December cohols; aralkenyl alcohols; aralkinyl alcohols; alicyclic 22, 1951, now abandoned, and my copending application alcohols such as cycloalkyl, cycloalkenyl, cycloalkinyl, Serial No. -
Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts † ‡ † ‡ † Tiancheng Pu, Huijie Tian, Michael E
Review Cite This: ACS Catal. 2019, 9, 10727−10750 pubs.acs.org/acscatalysis Overview of Selective Oxidation of Ethylene to Ethylene Oxide by Ag Catalysts † ‡ † ‡ † Tiancheng Pu, Huijie Tian, Michael E. Ford, Srinivas Rangarajan,*, and Israel E. Wachs*, † ‡ Department of Chemical and Biomolecular Engineering and Operando Molecular Spectroscopy & Catalysis Laboratory, Lehigh University, Bethlehem, Pennsylvania 18015, United States ABSTRACT: Ethylene oxidation by Ag catalysts has been extensively investigated over the past few decades, but many key fundamental issues about this important catalytic system are still unresolved. This overview of the selective oxidation of ethylene to ethylene oxide by Ag catalysts critically examines the experimental and theoretical literature of this complex catalytic system: (i) the surface chemistry of silver catalysts (single crystal, α powder/foil, and supported Ag/ -Al2O3), (ii) the role of promoters, (iii) the reaction kinetics, (iv) the reaction mechanism, (v) density functional theory (DFT), and (vi) microkinetic modeling. Only in the past few years have the modern catalysis research tools of in situ/operando spectroscopy and DFT calculations been applied to begin establishing fundamental structure−activity/selectivity relationships. This overview of the ethylene oxidation reaction by Ag catalysts covers what is known and what issues still need to be determined to advance the rational design of this important catalytic system. KEYWORDS: ethylene epoxidation, silver, promoters, catalyst characterization, -
Introduction of Polymer Nanoparticles for Nanoparticles Generally Have the Following Properties [13-17]: Drug Delivery Applications
Wang H and Rempel GL, J Nanotechnol Nanomed Nanobiotechnol 2015, 2: 008 DOI: 10.24966/NTMB-2044/100008 HSOA Journal of Nanotechnology: Nanomedicine & Nanobiotechnology Review Article human beings. Until now, the main techniques to fight cancer are Introduction of Polymer non-targeted chemotherapy and radiation. However, it is unavoidable to prevent systematic side effects to the human body due to Nanoparticles for Drug non-specific uptake by normal, healthy, noncancerous tissues because of the instinctive properties of the chemotherapy chemical agent Delivery Applications featured with high toxicity and a lack of tumor specificity. Hui Wang and Garry L Rempel* In order to overcome the limitations of free chemotherapeutic agents, targeting of tumors with nanoparticulate drug carriers has Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario received much attention and expectance [1,2]. Nanocarriers can offer N2L 3G1, Canada many avenues over free drugs for the following aspects [3]:(1) protect the drug from premature degradation; (2) prevent drugs from prematurely interacting with the biological environment; (3) enhance absorption of the drugs into a selected tissue (for example, solid tumour); (4) control the pharmacokinetic and drug distribution profile; and (5) improve intracellular penetration. Abstract Let us first recall the important moments in the short but rapid The past half of a century has seen increasing attention focused development history of drug delivery systems (Figure 1). Lipid is on the development of polymer nanoparticle based drug delivery the first nanotechnology based drug delivery system, which was systems as being capable of improving the efficacy and obviating discovered in the 1960s and later known as liposomes [4]. -
Surface Modification of Polyanhydride Microspheres
COMMUNICATIONS Surface Modification of Polyanhydride Microspheres JINMING GAO†,‡,LAURA NIKLASON†,‡,XIAO-MEI ZHAO§, AND ROBERT LANGER*,† Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Department of Anesthesia, Massachusetts General Hospital, Boston, Massachusetts 02114, and Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138 Received July 25, 1997. Final revised manuscript received October 31, 1997. Accepted for publication November 6, 1997. Polyanhydrides are emerging as a new class of biode- gradable polymers for drug delivery.1-3 The degradation of polyanhydride delivery systems is largely through surface erosion, potentially leading to zero-order release Scheme 1sSurface modification of pSA microspheres with ligands con- of encapsulated drugs.4,5 Recently, the Food and Drug taining amino groups via amide formation. Administration has approved the use of the polyanhydride poly[sebacic acid-co-1,3-bis(p-carboxyphenoxy)propane] to The microspheres were collected after centrifugation (10 000 deliver drugs for treatment of brain cancer.6 This is one rpm for 10 min) at 4 °C, washed with 2 M aqueous NaCl, of the few examples where an implantable synthetic distilled water (twice), and ethanol, and dried in vacuo. The degradable polymer has been approved for human use. The surface density of argininamide was analyzed by X-ray use of polyanhydride polymers in oral delivery of insulin photoelectron spectroscopy (XPS), and its bulk concentra- and genes further broadens the scope of their applications tion was analyzed by 1H NMR (400 MHz) of microspheres in drug delivery.7 Despite numerous studies on polyan- dissolved in CDCl3. The size of the microspheres was hydrides, the compositions thus far developed do not have measured by a Coulter Multisizer (Coulter Electronic the capability to target specific organs or cell types. -
Iridium Complex Catalyzed Hydrogen Production from Glucose and Various Monosaccharides
catalysts Article Iridium Complex Catalyzed Hydrogen Production from Glucose and Various Monosaccharides Ken-ichi Fujita * , Takayoshi Inoue, Toshiki Tanaka, Jaeyoung Jeong, Shohichi Furukawa and Ryohei Yamaguchi Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-8501, Japan; [email protected] (T.I.); [email protected] (T.T.); [email protected] (J.J.); [email protected] (S.F.); [email protected] (R.Y.) * Correspondence: [email protected]; Tel.: +81-75-753-6827 Abstract: A new catalytic system has been developed for hydrogen production from various monosac- charides, mainly glucose, as a starting material under reflux conditions in water in the presence of a water-soluble dicationic iridium complex bearing a functional bipyridine ligand. For example, the reaction of D-glucose in water under reflux for 20 h in the presence of [Cp*Ir(6,60-dihydroxy-2,20- bipyridine)(H2O)][OTf]2 (1.0 mol %) (Cp*: pentamethylcyclopentadienyl, OTf: trifluoromethanesul- fonate) resulted in the production of hydrogen gas in 95% yield. In the present catalytic reaction, it was experimentally suggested that dehydrogenation of the alcoholic moiety at 1-position of glu- cose proceeded. Keywords: iridium catalyst; water-soluble catalyst; hydrogen production; glucose; monosaccharides Citation: Fujita, K.-i.; Inoue, T.; Tanaka, T.; Jeong, J.; Furukawa, S.; 1. Introduction Yamaguchi, R. Iridium Complex Hydrogen is important as a raw material for the industrial production of ammonia Catalyzed Hydrogen Production and methanol [1–5]. In addition, it is an essential industrial reagent in the refining and from Glucose and Various desulfurization of petroleum [6–8]. -
Design and Evaluation of Single-Dose Polyanhydride Nanovaccines Against Bacterial Respiratory Pathogens Danielle Ann Wagner Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2019 Design and evaluation of single-dose polyanhydride nanovaccines against bacterial respiratory pathogens Danielle Ann Wagner Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Allergy and Immunology Commons, Immunology and Infectious Disease Commons, and the Medical Immunology Commons Recommended Citation Wagner, Danielle Ann, "Design and evaluation of single-dose polyanhydride nanovaccines against bacterial respiratory pathogens" (2019). Graduate Theses and Dissertations. 17116. https://lib.dr.iastate.edu/etd/17116 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Design and evaluation of single-dose polyanhydride nanovaccines against bacterial respiratory pathogens by Danielle Ann Wagner A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Immunobiology Program of Study Committee: Michael Wannemuehler, Co-major Professor Balaji Narasimhan, Co-major Professor Bryan Bellaire Marian Kohut Randy Sacco The student author, whose presentation of the scholarship herein was approved by the program of study committee, is solely responsible for the content of this dissertation. The Graduate College will ensure this dissertation is globally accessible and will not permit alterations after a degree is conferred. Iowa State University Ames, Iowa 2019 Copyright © Danielle Wagner, 2019. All rights reserved.