Robotic Art and Cultural Imagination

Total Page:16

File Type:pdf, Size:1020Kb

Robotic Art and Cultural Imagination http://dx.doi.org/10.14236/ewic/EVAC18.48 Robotic Art and Cultural Imagination Bojana Romic School of Arts and Communication Nordenskiöldsgatan 1, 211 19 Malmö, Sweden [email protected] In this article, I aim to accentuate the importance of the cultural imagination about robots, observing it 'as a mixed register of fantasy and an actual practice' (Kakoudaki 2007, 165). I emphasise the field of robotic art, which, I argue, is in a fluid state of exchange with other areas of robotic research, equally benefiting from the larger context of the cultural imagination about robots. Furthermore, I discuss artworks that offer a valuable commentary on robots even though they are not defined as robotic art in a narrow sense (Penny 2013), given that they feature only the representation of robots or robot-like characters. Nevertheless, these artworks contribute to the circulation of symbolic registers that revolve around the multifaceted figure of a robot. Robot. Robotic Art. Cultural imagination. Cultural robotics. 1. INTRODUCTION imagination: I do not probe deeper into ideological, religious and societal reasons for imaginaries that In recent years, there has been an ongoing debate are characteristic of particular societies (e.g. about the notion and (possible) function of robotic Japanese, US, Korean, etc.). Instead, I focus on culture. With the development of the new generation phenomenological aspects of cultural imagination in of drones, as well as the advancement in social and robotic art in general. health robotics, questions about the robot culture seem to open a variety of discussions (Kim & Kim 2013, Samani et al. 2013, Šabanović et al. 2014, 2. WHAT IS A ROBOT CULTURE? Koh et al. 2015). Such discourses begin with the inquiry on how we can grasp the notion of culture1 Although the study of culture has a long history in as an umbrella term for the range of habitual and the humanities and the social sciences (Šabanović technological practices, in relation to the equally et al. 2004), only recently has culture become an heterogeneous field of robotics. The term robot area of study in the field of robotics: covers a broad range of meanings that communicate The emerging discipline of cultural robotics […] with the common cultural imagination about robots defines culture as a notion which is not only fed by the literature and popular culture. Typically, a attributed to humans, but also encompasses the robot is considered a mechanical entity that cultural exchanges between robots, robots and possesses a certain level of autonomy, agency and humans, as well as other intellectual and choice (Kakoudaki 2007). emotional entities (Samani et al. 2013, 2). I do not delve into detail regarding different aspects This definition includes animals as well, given that of scientific research (e.g. HRI, computer vision, they are social and emotional beings and may have social robotics, artificial intelligence (AI), locomotive strong attachments to their groups or packs. There qualities, etc.) but observe it as a whole. are interesting examples of research that has closely Whilst I acknowledge the importance of gender- examined the experimental prototypes of a mixed related questions in cultural robotics (Eyssel 2012, community and has tried to determine the impact of Vlachos, Jochum and Schärfe 2016), they are not robots on the ecosystem2. These experiments show the focus of my article. I take into account that the alteration of animal behaviour when robots are depending on the circumstances and/or artistic introduced to the closed circuit. intention, a robot may be female, male or neither. In Western societies, we are witnessing the Furthermore, I observe 'culturally odourless' introduction of animal-like social or personal robots, (Borggreen 2011, 42) aspects of cultural such as Paro (therapeutic robot, Intelligent System © Romic. Published by BCS Learning and Development Ltd. 1 Proceedings of EVA Copenhagen 2018, Denmark Robotic Art and Cultural Imagination Bojana Romic Co.), Probo (intelligent, autonomous robot that imagination about robots fuelled by popular interacts with hospitalised children, Free University initiatives, especially in film, literature and visual and Brussels), iCat (social robot for children and adults, sonic arts. Philips), Huggable (robotic companion for healthcare, education and social communication, Massachusetts Institute of Technology Media Lab) 3. ROBOTS: IN BETWEEN REAL AND and many others. Such robotic companions are IMAGINARY expected to be easily accepted by people, firstly due to the robots’ pet-like qualities and the already In recent decades, cinema – as a popular medium established relationships between people and capable of reaching broad audiences worldwide – animals (Coeckelbergh 2011); secondly, people are has produced many fictional robots that have gained not challenged by the 'uncanny valley'3 in terms of a considerable fan base, especially since the advent robots’ appearance (Mori 1970). Besides pet-like of the Internet (Jenkins 2006a). These fictional robots, other technological agents operate robots that appear on film and other popular media alongside humans as health workers, educators, greatly influence people's ideas about them. As playmates or even intimate partners (Turkle 2011). noted by Kakoudaki, 'the robot is a figure of fiction and science fiction which, despite its un-reality On the other hand, relevant robotic studies have channels feelings about culture and technology, been conducted outside the centres and the difference and justice, often in indirect ways' (2007, laboratories that have pursued research for 165). Kakoudaki carefully avoids the binary instrumental purposes, specifically in the area of art opposition between 'real' (produced) and and cultural practices (Penny 2013), as well as in do- phantasmal robots, arguing that the two approaches it-yourself (DIY) robotics. Such research offers a fuel each other – we can observe the presence of a broader space for dialogue and rethinking human- robot as a cultural figure in popular media for almost robot interaction (HRI) approaches, iconic a century now. stereotypes and ethical concerns. It can even be argued that robotic art and culture has an additional Likewise, we can find analogues in both literature quality of a 'testing space' for an outspread cultural and folk phantasmagoria for many more centuries. imagination about robots. An example is Rodney A. as well as some embodied agents – such as the Brook's six-legged insect robot Genghis (1988), Chakanobi Ningyo tea-serving doll from the Edo which he describes as 'an artificial agent with a Period in Japan (Hornyak 2006), Jacques de "wasplike" personality' that 'chased and scrambled Vaucanson's Digesting Duck or Henri Maillardet's according to its will' (Dixon 2004, 31). Currently, we and Pierre Jacquet-Droz's anthropomorphic can find a whole range of both commercial insect- automata from the eighteenth century (Dixon like robots (e.g. Robugtix T8 spider, Amoeba 2004a). As Genevieve Bell puts it: Robotics Ltd.; Hexapod collection for hobbyists, [I] would say (…) at least three or five thousand Lynxmotion) and DIY spider robots. years, we have had a fascination with stories As Penny notes: about things coming to life (Bell 2018, 26). Cultural robotics is a highly charged In this sense, we may consider a certain cultural interdisciplinary test environment in which the heritage orbiting around the imagination the 'man's theory and the pragmatics of technical research alternative' (Telotte 1995), which influences the confronts the phenomenological realities of cultural imagination about robots – what their physical and social being in the world, and the properties may be, how they can integrate in future performative and processual practices of the arts society and how they will influence the workforce of (2013, 147). the future (McClure 2018). Some scientists and theorists, including Ray Kurzweil, Hans Moravec or Similarly, Šabanović, Bennett and Lee (2014, 2) Bill Joy, have worked on popularising robotic suggest: science, sometimes playing the role of tech- Robotics as a culture-aware practice should evangelists who comment on future trends or incorporate an understanding of scientific imagine the future ‘aloud’ – thus communicating with practice as a cultural phenomenon and include audiences unaccustomed to the presence of robots. the critical study of cultural meanings and values as they are defined outside of robotics labs into However, I argue that cultural imagination is also the development of new robotic technologies. related to the actual robotic research, which in itself covers a diverse range of practices. Even though For this reason, the authors propose the phrase produced robots can be radically different from culturally robust robotics, which takes culture into fictional ones, the latter still participate in the general account as a broad context in which robot design phantasmagoria and inspiration or as a paradigm for and use occur. This can be interpreted as an attempt pursuing further exploration. to bridge the persisting gap between the actual robotic technological research and the cultural 2 Robotic Art and Cultural Imagination Bojana Romic Given that the imaginaries are hardly measurable in 3.1 Robots as techno-dinosaurs quantitative terms and that these domains somewhat overlap, we can take a closer look at the To illustrate this symbolic connection between the tendencies in the current types of robotic research. real and the imaginary, I use the dinosaur analogy These areas influence one another and cross fields and briefly introduce W.J.T. Mitchell’s (1998) to a certain degree, either through a form of joint interesting study about dinosaurs as cultural icons. research between an industry and an artist (such is The reason why I use this parable is a certain the case with the robot Kuratas, developed by the similarity in cultural status between dinosaurs and artist Kogoro Kurata and built by Suidobashi Heavy robots, which I will explain shortly. Industry) or because many art or DIY projects are Mitchell stresses the importance of taking into simply informed by the technological state-of-the-art account not only 'the things themselves' (i.e.
Recommended publications
  • AI, Robots, and Swarms: Issues, Questions, and Recommended Studies
    AI, Robots, and Swarms Issues, Questions, and Recommended Studies Andrew Ilachinski January 2017 Approved for Public Release; Distribution Unlimited. This document contains the best opinion of CNA at the time of issue. It does not necessarily represent the opinion of the sponsor. Distribution Approved for Public Release; Distribution Unlimited. Specific authority: N00014-11-D-0323. Copies of this document can be obtained through the Defense Technical Information Center at www.dtic.mil or contact CNA Document Control and Distribution Section at 703-824-2123. Photography Credits: http://www.darpa.mil/DDM_Gallery/Small_Gremlins_Web.jpg; http://4810-presscdn-0-38.pagely.netdna-cdn.com/wp-content/uploads/2015/01/ Robotics.jpg; http://i.kinja-img.com/gawker-edia/image/upload/18kxb5jw3e01ujpg.jpg Approved by: January 2017 Dr. David A. Broyles Special Activities and Innovation Operations Evaluation Group Copyright © 2017 CNA Abstract The military is on the cusp of a major technological revolution, in which warfare is conducted by unmanned and increasingly autonomous weapon systems. However, unlike the last “sea change,” during the Cold War, when advanced technologies were developed primarily by the Department of Defense (DoD), the key technology enablers today are being developed mostly in the commercial world. This study looks at the state-of-the-art of AI, machine-learning, and robot technologies, and their potential future military implications for autonomous (and semi-autonomous) weapon systems. While no one can predict how AI will evolve or predict its impact on the development of military autonomous systems, it is possible to anticipate many of the conceptual, technical, and operational challenges that DoD will face as it increasingly turns to AI-based technologies.
    [Show full text]
  • Review of Advanced Medical Telerobots
    applied sciences Review Review of Advanced Medical Telerobots Sarmad Mehrdad 1,†, Fei Liu 2,† , Minh Tu Pham 3 , Arnaud Lelevé 3,* and S. Farokh Atashzar 1,4,5 1 Department of Electrical and Computer Engineering, New York University (NYU), Brooklyn, NY 11201, USA; [email protected] (S.M.); [email protected] (S.F.A.) 2 Advanced Robotics and Controls Lab, University of San Diego, San Diego, CA 92110, USA; [email protected] 3 Ampère, INSA Lyon, CNRS (UMR5005), F69621 Villeurbanne, France; [email protected] 4 Department of Mechanical and Aerospace Engineering, New York University (NYU), Brooklyn, NY 11201, USA 5 NYU WIRELESS, Brooklyn, NY 11201, USA * Correspondence: [email protected]; Tel.: +33-0472-436035 † Mehrdad and Liu contributed equally to this work and share the first authorship. Abstract: The advent of telerobotic systems has revolutionized various aspects of the industry and human life. This technology is designed to augment human sensorimotor capabilities to extend them beyond natural competence. Classic examples are space and underwater applications when distance and access are the two major physical barriers to be combated with this technology. In modern examples, telerobotic systems have been used in several clinical applications, including teleoperated surgery and telerehabilitation. In this regard, there has been a significant amount of research and development due to the major benefits in terms of medical outcomes. Recently telerobotic systems are combined with advanced artificial intelligence modules to better share the agency with the operator and open new doors of medical automation. In this review paper, we have provided a comprehensive analysis of the literature considering various topologies of telerobotic systems in the medical domain while shedding light on different levels of autonomy for this technology, starting from direct control, going up to command-tracking autonomous telerobots.
    [Show full text]
  • February8-2016-Ihmcbodminutes
    IHMC Board of Directors Meeting Minutes Monday February 8, 2016 8:30 a.m. CST/9:30 a.m. EST Teleconference Meeting Roll Call Chair Ron Ewers Chair’s Greetings Chair Ron Ewers Action Items 1. Approval of December 7, 2015 Minutes Chair Ron Ewers 2. Approval of IHMC Conflict of Interest Policy Chair Ron Ewers Chief Executive Officer’s Report 1. Update on Pensacola Expansion Dr. Ken Ford 2. Research Update Dr. Ken Ford 3. Federal Legislative Update Dr. Ken Ford 4. State Legislative Update Dr. Ken Ford Other Items Adjournment IHMC Chair Ron Ewers called the meeting to order at 8:30 a.m. CST. Directors in attendance included: Dick Baker, Carol Carlan, Bill Dalton, Ron Ewers, Eugene Franklin, Hal Hudson, Jon Mills, Mort O’Sullivan, Alain Rappaport, Martha Saunders, Gordon Sprague and Glenn Sturm. Also in attendance were Ken Ford, Bonnie Dorr, Pam Dana, Sharon Heise, Row Rogacki, Phil Turner, Ann Spang, and Julie Sheppard. Chair Ewers welcomed and thanked everyone who dialed in this morning. He informed the Board that the next meeting is an in person meeting scheduled for Pensacola on Sunday, June 5 and Monday, June 6, 2016 adding that we would begin the event late Sunday afternoon with a dinner at the Union Public House and have a half day Board meeting in Pensacola on Monday the 6th. He asked all Board members to place this meeting date on their calendar as soon as possible and let Julie know if you are able to attend so we can solidify arrangements and book hotel rooms for out of town guests.
    [Show full text]
  • 2017 File Sesi
    f e s t i v a l international l a n g u a g e festival internacionalelectronic de linguagem eletrônica o borbulhar de universos b u b b l i n g u n i v e r s e s Realização | Accomplishment FILE SÃO PAULO 2017 festival internacional de linguagem eletrônica file.org.br FILE FILE SÃO PAULO 2017 electronic l a n g u a g e international f e s t i v a l f e s t i v a l international l a n g u a g e festival internacionalelectronic de linguagem eletrônica o borbulhar de universos b u b b l i n g u n i v e r s e s Realização | Accomplishment FILE SÃO PAULO 2017 festival internacional de linguagem eletrônica file.org.br FILE FILE SÃO PAULO 2017 electronic l a n g u a g e international f e s t i v a l o borbulhar de universos b u b b l i n g u n i v e r s e s FILE SÃO PAULO 2017 festival internacional de linguagem eletrônica electronic l a n g u a g e international f e s t i v a l Dados Internacionais de Catalogação na Publicação (CIP) (Câmara Brasileira do Livro, SP, Brasil) o borbulhar de universos FILE São Paulo 2017 : Festival Internacional de Linguagem Eletrônica : o borbulhar de universos = FILE São Paulo b u b b l i n g u n i v e r s e s 2017 : Electronic Language International Festival : bubbling universes / organizadores Paula Perissinotto e Ricardo Barreto.
    [Show full text]
  • Multisensory Real-Time Space Telerobotics
    MULTISENSORY REAL-TIME SPACE TELEROBOTICS. DEVELOPMENT AND ANALYSIS OF REAL-TIME TELEROBOTICS SYSTEMS FOR SPACE EXPLORATION 1 3 Marta Ferraz , Edmundo Ferreira2, Thomas Krueger 1European Space Agency, Human-Robot Interaction Lab, Netherlands, E-mail: [email protected] 2European Space Agency, Human-Robot Interaction Lab, Netherlands, E-mail: [email protected] 3European Space Agency, Human-Robot Interaction Lab, Netherlands, E-mail: [email protected] space environments. The rationale in support of this ABSTRACT later argument is the difficulties in achieving human We introduce a research project whose goal is the exploration - due to current technical limitations on development and analysis of real-time telerobotic spacecraft and EVA technology (i.e., spacesuits) [31]. control setups for space exploration in stationary orbit Another key goal of space telerobotics has been and from deep-space habitats. We suggest a new preparing direct human space exploration - approach to real-time space telerobotics - Multisensory terraforming planetary bodies in order to support Real-time Space Telerobotics - in order to improve human expedition and, ultimately, Earth-like life [34]. perceptual functions in operators and surpass sensorimotor perturbations caused by altered gravity Lately, there has been a strong investment on the conditions. We submit that telerobotic operations, in preparation of Crew Surface Telerobotics (CST) such conditions, can be improved by offering enhanced missions for space exploration - the crew remotely sources of sensory information to the operator: operates surface robots from a spacecraft or deep-space combined visual, auditory, chemical and habitats [10]. These missions include Moon, Mars and somatosensory stimuli. We will characterize and Near-Earth Asteroid exploration [4, 16, 34].
    [Show full text]
  • The Meteron Supvis-Justin Telerobotic Experiment and the Solex Proving Ground
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/277268674 SIMULATING AN EXTRATERRESTRIAL ENVIRONMENT FOR ROBOTIC SPACE EXPLORATION: THE METERON SUPVIS-JUSTIN TELEROBOTIC EXPERIMENT AND THE SOLEX PROVING GROUND CONFERENCE PAPER · MAY 2015 READS 16 8 AUTHORS, INCLUDING: Neal Y. Lii Daniel Leidner German Aerospace Center (DLR) German Aerospace Center (DLR) 20 PUBLICATIONS 43 CITATIONS 10 PUBLICATIONS 28 CITATIONS SEE PROFILE SEE PROFILE Benedikt Pleintinger German Aerospace Center (DLR) 9 PUBLICATIONS 11 CITATIONS SEE PROFILE Available from: Neal Y. Lii Retrieved on: 24 September 2015 SIMULATING AN EXTRATERRESTRIAL ENVIRONMENT FOR ROBOTIC SPACE EXPLORATION: THE METERON SUPVIS-JUSTIN TELEROBOTIC EXPERIMENT AND THE SOLEX PROVING GROUND Neal Y. Lii1, Daniel Leidner1, Andre´ Schiele2, Peter Birkenkampf1, Ralph Bayer1, Benedikt Pleintinger1, Andreas Meissner1, and Andreas Balzer1 1Institute of Robotics and Mechatronics, German Aerospace Center (DLR), 82234 Wessling, Germany, Email: [email protected], [email protected] 2Telerobotics and Haptics Laboratory, ESA, 2201 AZ Noordwijk, The Netherlands, Email: [email protected] ABSTRACT This paper presents the on-going development for the Supvis-Justin experiment lead by DLR, together with ESA, planned for 2016. It is part of the ESA initiated Me- teron telerobotics experiment suite aimed to study differ- ent forms of telerobotics solutions for space applications. Supvis-Justin studies the user interface design, and super- vised autonomy aspects of telerobotics, as well as tele- operated tasks for a humanoid robot by teleoperating a dexterous robot on earth (located at DLR) from the Inter- national Space Station (ISS) with the use of a tablet PC. Figure 1.
    [Show full text]
  • Humanoid Robots (Figures 41, 42)
    A Roboethics Framework for the Development and Introduction of Social Assistive Robots in Elderly Care Antonio M. M. C. Espingardeiro Salford Business School University of Salford, Manchester, UK Submitted in Partial Fulfilment of the Requirements of the Degree of Doctor of Philosophy, September 2013 TABLE OF CONTENTS Chapter 1 - Introduction ......................................................................................................................................... 1 Chapter 2 - Literature review ................................................................................................................................. 9 2.1. Ethics in the digital world ................................................................................................................................ 9 2.2. Exploratory work in roboethics ..................................................................................................................... 14 2.2. Roboethics rules and guidance ...................................................................................................................... 18 2.3. “In-situ” practical workshops with SARs ........................................................................................................ 23 2.4. Summary ........................................................................................................................................................ 24 Chapter 3 - Human robotics interactions and ethical principles .........................................................................
    [Show full text]
  • The Roar Vol. 1, Edition 02 Rgb Final
    Vol . 1 -2 1 | The Roar Monday, October 19, 2015 the ROAR LCHS NEWS LIVING IN THE SHADOW OF A SIBLING ! JACQUELINE RYAN Your older sibling does not define you. They set their W HAT’ S INSIDE… Junior High Writer own bar, but you should know that you do not have to ! compete with them. Do not put them on a pedestal, because no one is perfect. As Romans 3:23 says, “All L IVING IN THE SHADOW OF A SIBLING You may be wondering: “What does it Jacqueline Ryan mean to live in the shadow of an older have sinned and fallen short of the glory of God.” sibling?” It means that because your ! STUDENT SPOTLIGHT: JONAH sibling is successful, you feel as though Find your own strengths and do something new! You H INTON’ S PAPER you must also be successful in order to don’t have to join the same clubs as your siblings, nor Sydney Beech feel a sense of accomplishment and self- do you have to play the same sports. Learn from their worth. mistakes, as well as the good things they did. You are J OKES FROM DR . SHUMAN ! your own person. God created you. You are unique. Tom Scoggin Quite a few junior high students at LCHS are younger ! While I was talking to Grace Jones, she said she feels T HE TWO DOLLAR DILEMMA siblings to upperclassmen. On the first day of school, a Tom Scoggin few of you probably heard a teacher say, “I know your like she has to live up to her older sisters because they brother/sister” as they were reading roll call.
    [Show full text]
  • A Study of Potential Applications of Automation and Robotics Technology in Construction, Maintenance and Operation of Highway Systems: a Final Report
    A Study of Potential Applications of Automation and Robotics Technology in Construction, Maintenance and Operation of Highway Systems: A Final Report Ernest Kent Intelligent Systems Division U.S. DEPARTMENT OF COMMERCE Technology Administration National Institute of Standards and Technology Bldg. 220 Rm. B124 Gaithersburg, MD 20899 QC 100 .U56 NIST NO. 5667 1995 V.1 A Study of Potential Applications of Automation and Robotics Technology in Construction, Maintenance and Operation of Highway Systems: A Final Report Ernest Kent Intelligent Systems Division U.S. DEPARTMENT OF COMMERCE Technoiogy Administration Nationai Institute of Standards and Technology Bldg. 220 Rm. B124 Gaithersburg, MD 20899 June 1995 U.S. DEPARTMENT OF COMMERCE Ronaid H. Brown, Secretary TECHNOLOGY ADMiNISTRATION Mary L. Good, Under Secretary for Techrwlogy NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Arati Prabhakar, Director FINAL REPORT VOLUME: 1 To: FEDERAL HIGHWAY ADMINISTRATION Prepared by: NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY Dr. Ernest Kent ' Vi \1 ;i ;4i V’jI’4 vP '’'. ^'^' .^. '-i'^- :'ii: ji I^.v • </ V; y :j 1,-'^ TABLE OF CONTENTS Volume: 1 ***This Volume*** Section Acknowledgments 1 Executive Summary 2 Overview of the Study 3 Summary of Results and Recommendations 4 White Papers on Selected Topics 5 Bibliographic Study 6 Volume: 2 Technology Proposals Submitted for Evaluation 7 CERF Cost/Benefits Analysis of Technology Proposals Measures of Merit 8 Volume: 3 1st Workshop Report: Industry Views and Requirements 9 2nd Workshop Report: Technical State of the Art 1 0 Volume: 4 Final Proposals for Potential Research Efforts 11 Abstract. The National Institute of Standards and Technology, at the request of the Federal Highway Administration, has conducted a study of potential appli- cations of automation and robotics technology in construction, maintenance, and operation of highway systems.
    [Show full text]
  • The Ranger Telerobotic Shuttle Experiment: an On-Orbit Satellite Servicer
    THE RANGER TELEROBOTIC SHUTTLE EXPERIMENT: AN ON-ORBIT SATELLITE SERVICER Joseph C. Parrish NASA Headquarters Office of Space Science, Advanced Technologies & Mission Studies Division Mail Code SM, Washington, DC, 20546-0001, U.S.A. phone: +1 301 405 0291, fax: +1 209 391 9785, e-mail: [email protected] Abstract 1 Introduction As space operations enter the 21st century, the role The Ranger Telerobotic Shuttle Experiment (RTSX) of robotic satellite servicing systems will increase dra- is a Space Shuttle-based flight experiment to demon- matically. Several such systems are currently in de- strate key telerobotic technologies for servicing as- velopment for use on the International Space Sta- sets in Earth orbit. The flight system will be tele- tion, including the Canadian Mobile Servicing Sys- operated from onboard the Space Shuttle and from a tem (MSS)[2] and the Japanese Experiment Module ground control station at the NASA Johnson Space Remote Manipulator System (JEM-RMS). Another Center. The robot, along with supporting equipment Japanese system, the Experimental Test System VII and task elements, will be located in the Shuttle pay- (ETS-VII) [I],has already demonstrated the ability for load bay. A number of relevant servicing operations rendezvous and docking, followed by ORU manipula- will be performed-including extravehicular activity tion under supervisory control. Under development by (EVA) worksite setup, orbit replaceable unit (ORU) the United States, the Ranger Telerobotic Shuttle Ex- exchange, and other dexterous tasks. The program periment (RTSX)[3] is progressing toward its mission is underway toward an anticipated launch date in on the NASA Space Shuttle to demonstrate telerobotic CY2001, and the hardware and software for the flight servicing of orbital assets.
    [Show full text]
  • Telepresence Enclosure: VR, Remote Work, and the Privatization of Presence in a Shrinking Japan
    Telepresence Enclosure: VR, Remote Work, and the Privatization of Presence in a Shrinking Japan The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Roquet, Paul. "Telepresence Enclosure: VR, Remote Work, and the Privatization of Presence in a Shrinking Japan." Media Theory 4, 1 (November 2020): 33-62. As Published https://journalcontent.mediatheoryjournal.org/index.php/mt/article/ view/109 Publisher Pubilc Knowledge Project Version Final published version Citable link https://hdl.handle.net/1721.1/130241 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ Article Telepresence Enclosure: Media Theory Vol. 4 | No. 1 | 33-62 © The Author(s) 2020 VR, Remote Work, and the CC-BY-NC-ND http://mediatheoryjournal.org/ Privatization of Presence in a Shrinking Japan PAUL ROQUET Massachusetts Institute of Technology, USA Abstract Virtual reality proponents often promise the technology will allow a more fully embodied sense of presence at a distance, or what researchers have called ‗telepresence.‘ Departing from telepresence‘s original focus on providing access to dangerous environments, VR and robotics researchers in Japan now promote everyday service and factory work via telerobots as a solution to the country‘s rapidly shrinking workforce. Telepresence becomes a way to access the physical labor of the elderly, persons with disabilities, and foreign workers, while at the same time keeping them fixed in place at home or behind closed borders. This essay theorizes the perceptual segregation imposed by these immersive labor platforms as a form of telepresence enclosure: the mediated privatization of presence itself.
    [Show full text]
  • The Turing Test Q: Can Machines Think?
    The Turing Test Q: Can machines think? I compute, therefore I am. Problem: We don’t know what ―think‖ means. Q: What is intelligence? Problem: We can’t define ―intelligence‖. But, we usually ―know it when we see it‖. The Turing Test Q: Which of the following can think? The Turing Test Q: Can you distinguish a machine from a person? ≡ Can a machine impersonate a person? The Turing Test • The first deep investigation into whether machines can ―behave intelligently‖ • Helped usher in field of AI • Decoupled ―intelligence‖ from ―human‖ • Based ―intelligence‖ on I/O, not entity’s ―look and feel‖ • Proposed a practical, formal test for intelligence • Definitions & test are operational & easily implementable • Turing test variants: ―immortality‖, ―fly-on-wall‖, ―meta‖, ―reverse‖, ―subject matter expert‖, ―compression‖, ―minimum intelligent signal‖ Turing Test Milestones Turk (von Kempelen), 1770: • Played a strong game of chess • Toured the world for 84 years • Generated much interest in automata • Was a hoax (hidden human operator) Turing Test Milestones Eliza (Weizenbaum), 1966: • First ―chatterbot‖ • Named after ―Eliza Doolittle‖ of Shaw’s Pygmalion • Simulated Rogerian psychotherapist • Often convinced people it is human • Influence computer games (e.g., Dungeon, Adventure) • Inspired Arthur C. Clarke’s HAL 9000 • Chatterbots appear today in chatrooms and dating services • Chatterbot competitions (Turing Test format): – Loebner Prize – Chatterbox Challenge, 2010 Turing Test Milestones Elbot, 2008: • Won 2008 Loebner Prize • Fooled 3 of 12 judges (Turing: >30%) • Typical excerpt: Judge: What's your favourite novel? Elbot: I often read telephone books, or dadaist poetry: Brä brä brä Judge: Typical computer! Elbot: You tend towards generalizations.
    [Show full text]