Genus Cynara L

Total Page:16

File Type:pdf, Size:1020Kb

Genus Cynara L Genus Cynara L. Classificazione scientifica Kingdom: Plantae Subkingdom: Tracheobionta Superdivision: Spermatophyta Division: Magnoliophyta Class: Magnoliopsida Subclass: Asteridae Order: Asterales Family: Asteraceae Subfamily: Cynaroideae (Durande) Chevall., 1828 Tribe: Cynareae Lam. & DC., 1806 Genus : Cynara L. (1753) The genus Cynara L. comprises the following seven species: • the crop complex C. cardunculus L. which includes wild forms as well as cardoon cultivars; • C. scolimus L., as the artichoke globe or cultivated artichoke; • C. syriaca Boiss.; • C. cornigera Lindley; • C. cyrenaica Maire & Weiler, • C. algarbiensis Cosson, C. baetica (Spreng.) Pau; • C. humilis L. All are native to the Mediterranean basin. The closest wild relatives of the domestic vegetables are the “wild cardoon” forms of C. cardunculus that are fully inter-fertile with the cultivated varieties; and are now ranked conspecific with the crop, and identified as the wild stock from which the domestic varieties could have been derived. These wild forms comprise the primary wild gene pool (GP1) of the cultivated artichoke. The other six wild Cynara species are more distant. A crossing programme involving five of them (C. cyrenaica was not tested) showed that they are largely cross-incompatible with C. cardunculus complex, and the rare inter-specific F 1 hybrids recovered were mostly semi-sterile. Moreover, these wild Cynara species have also diverged from C. cardunculus isozymically. They are, therefore, regarded as comprising the secondary wild gene pool (GP2) of the artichoke crop. This paper surveys the taxonomy and geographical distribution of the various wild Cynara taxa; and summarizes the available information on the genetic affinities between the crop and its wild relatives. Other study affirm that the genetic affinities between the cultivated artichoke Cynara cardunculus L. var. scolymus (L.) Flori (= C. scolymus L.) and its wild relatives were tested by means of a crossing programme. The following wild taxa were involved: 1) wild cardoon C. carcundulus L. var. sylvestris (Lamk) Fiori; 2) C. syriaca Boiss.; 3) C. cornigera Lindley; 4) C. algarbiensis Cosson; 5) C. baetica (Spreng.) Pau (= C. alba Boiss.); 6) C. humilis L. Only the wild cardoon was found to be fully cross-compatible and fully infertile with the crop. In contrast, all other five wild Cynara species turned to be almost fully-or fully-cross-incompatible with the crop, and the few interspecific F 1 hybrids recovered were partly or almost fully sterile. These finds establish the wild cardoon as the wild ancestor of the cultivated vegetable. The species of genus Cynara are the following: Cynara alba Cynara algarbiensis Cynara auranitica Cynara baetica Cynara cardunculus Cynara cornigera Cynara cyrenaica Cynara humilis Cynara hystrix Cynara scolymus Cynara syriaca Cynara alba Cynara cornigera Cynara cornigera Cynara cornigera Cynara cornigera Cynara humilis .
Recommended publications
  • Artichoke Extract
    Herbal Extract Series 5. Artichoke Extract For the Treatment of Dyspeptic Complaints HERBAL EXTRACTS SERIES 5. ARTICHOKE Introduction is a company specialized in making botanical extracts and active principles used as phytomedicines in pharmacy. develops and produces these therapeutically active raw materials. The botanical raw materials are subject to strict selection and inspection, and products are manufactured according to methods developed by the company. They include inspections to guarantee a standard quality from both analyticochemical and therapeutical points of view and take into consideration the state of art in different fields: research and development, analyses, processes and devices, therapeutic applications on a scientific basis. guarantees the quality of its products by its broad phytochemical know-how. 1 HERBAL EXTRACTS SERIES 5. ARTICHOKE Table of Contents Page 1 ARTICHOKE EXTRACT : GENERAL INFORMATION 3 1.1 Description 3 1.2 Indications 4 1.3 Extract Specifications 4 1.4 Dosage and Methods of Administration 4 1.5 Contraindications and Interactions 4 1.6 Side-effects 5 2 FROM PLANT TO EXTRACT 6 2.1 Artichoke ( Cynara scolymus L.): Botanical Information 6 2.2 Historic Use 8 2.3 Chemistry of Cynara scolymus L. leaf 9 2.4 Preparation of the Extract and Quality Control 12 2.5 Standardization 15 3 DYSPEPTIC COMPLAINTS 16 3.1 Epidemiology 16 3.2 Symptoms 16 3.3 Therapy 17 4 PHARMACOLOGY 20 4.1 Pharmacodynamics 20 4.1.1 Increase of choleresis 21 4.1.2 Lowering of cholesterol levels 24 4.1.3 Diuretic effects 26 4.1.4 Anti-hepatotoxic and anti-oxidative effects 26 4.2 Pharmacokinetics 28 5 TOXICOLOGY 30 6 CLINICAL PHARMACOLOGY 32 7 PROOF OF CLINICAL EFFECTIVENESS 34 7.1 Clinical Trials with Placebos 34 7.2 Drug Monitoring Trials 36 7.3 Therapeutic Safety 39 8 BIBLIOGRAPHY 40 2 HERBAL EXTRACTS SERIES 5.
    [Show full text]
  • Cardoon, Cynara Cardunculus There Are Many Plants That Are Used As Annuals in Northern Climates, Either for Their fl Owers Or Foliage
    A Horticulture Information article from the Wisconsin Master Gardener website, posted 27 June 2014 Cardoon, Cynara cardunculus There are many plants that are used as annuals in northern climates, either for their fl owers or foliage. Cardoon (Cynara cardunculus), a close relative of artichoke (Cynara scolymus, although some taxonomists have considered them just varieties of the species cardunculus and they will form hybrids), is a great addition to the garden for making a dramatic statement with its large, spiny, silvery foliage and sometimes for the globe- like, violet-topped fl owers. This sculptural plant received the Royal Horticultural Society’s Award of Garden Merit. It could be considered an ornamental edible as the blanched stems can be eaten, although doing so would ruin the appearance of the plant. Cardoon, with an artichoke-like fl avor, was popular in ancient Greek, The spiny, silvery foliage of cardoon Roman, and Persian makes a dramatic statement in the garden. cuisine, and through the medieval and early modern periods in Europe, as well as in colonial America. Cardoon is still cultivated for food in southern Europe and northwestern Africa. This fast-growing herbaceous perennial in the aster family (Asteraceae) is native to the western and central Mediterranean where it was domesticated in ancient times. It is hardy only in zones 7-10, so is treated as an annual in colder climates. In some mild climates, including Argentina, Chile, Australia and California, it has become naturalized and is considered Cardoon has received the Royal Horticultural a weed. Society’s Award of Garden Merit. The fi rst year the plant produces an enormous single urn-shaped rosette.
    [Show full text]
  • Comparative Analysis and Implications of the Chloroplast Genomes of Three Thistles (Carduus L., Asteraceae)
    Comparative analysis and implications of the chloroplast genomes of three thistles (Carduus L., Asteraceae) Joonhyung Jung1,*, Hoang Dang Khoa Do1,2,*, JongYoung Hyun1, Changkyun Kim1 and Joo-Hwan Kim1 1 Department of Life Science, Gachon University, Seongnam, Gyeonggi, Korea 2 Nguyen Tat Thanh Hi-Tech Institute, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam * These authors contributed equally to this work. ABSTRACT Background. Carduus, commonly known as plumeless thistles, is a genus in the Asteraceae family that exhibits both medicinal value and invasive tendencies. However, the genomic data of Carduus (i.e., complete chloroplast genomes) have not been sequenced. Methods. We sequenced and assembled the chloroplast genome (cpDNA) sequences of three Carduus species using the Illumina Miseq sequencing system and Geneious Prime. Phylogenetic relationships between Carduus and related taxa were reconstructed using Maximum Likelihood and Bayesian Inference analyses. In addition, we used a single nucleotide polymorphism (SNP) in the protein coding region of the matK gene to develop molecular markers to distinguish C. crispus from C. acanthoides and C. tenuiflorus. Results. The cpDNA sequences of C. crispus, C. acanthoides, and C. tenuiflorus ranged from 152,342 bp to 152,617 bp in length. Comparative genomic analysis revealed high conservation in terms of gene content (including 80 protein-coding, 30 tRNA, and four rRNA genes) and gene order within the three focal species and members of subfamily Carduoideae. Despite their high similarity, the three species differed with respect to the number and content of repeats in the chloroplast genome. Additionally, eight Submitted 28 February 2020 hotspot regions, including psbI-trnS_GCU, trnE_UUC-rpoB, trnR_UCU-trnG_UCC, Accepted 11 December 2020 Published 14 January 2021 psbC-trnS_UGA, trnT_UGU-trnL_UAA, psbT-psbN, petD-rpoA, and rpl16-rps3, were identified in the study species.
    [Show full text]
  • BIGHEAD KNAPWEED (Centaurea Macrocephala Puschk.)
    PNW386 BIGHEAD KNAPWEED (Centaurea macrocephala Puschk.) Bighead knapweed is native to woody crown, each topped by a the mountain grasslands of 3-inch flower head. When Caucasia (specifically Armenia competing with other plants, and Romania) and also to bighead knapweed is generally subalpine meadows in Turkey. only 2 to 3 feet tall with one or European growers cultivate it as two stalks bearing flower heads an ornamental flower and sell it about 1.5 inches in diameter. in the fresh flower markets. Broadly lance-shaped leaves have Although not as popular as sharp-pointed tips, shallowly cornflower (bachelor's button) or toothed edges and rough mountain bluet, it is also surfaces. Blades of the stalked available in the United States in basal and rosette leaves may be flower seed catalogs and 10 inches long and 3 inches wide; nurseries under various common blade and stalk together may names, including Lemon fluff exceed 15 inches. Stem leaves and Globe Centaury. gradually change from having Occasionally, it appears in dried simple stalks to winged stalks to flower arrangements. stalkless as they become smaller Weed specialists in Washington going up the stem. The smallest found bighead knapweed in the Under frroorable conditions, bighead leaves are clustered on the early 1980s escaping from knapweed grows 4 to 5 feet tall. (Each swollen stem at the base of the abandoned gardens in Pend stripe on the stake is 4 inches.) flower head. Oreille and Whitman counties, and added it to the Class A noxious weed list. Since then, Okanogan County, Washington, and Quesnel, British Columbia have reported it.
    [Show full text]
  • Fate of Nitrogen from Artichoke (Cynara Cardunculus L. Var
    Nitrogen Article Fate of Nitrogen from Artichoke (Cynara cardunculus L. var. scolymus (L.)) Crop Residues: A Review and Lysimeter Study Nouraya Akkal-Corfini 1,* , Paul Robin 1 , Safya Menasseri-Aubry 1, Michael S. Corson 1 , Jean Paul Sévère 2, Jean Michel Collet 3 and Thierry Morvan 1 1 SAS, INRAE, Agrocampus Ouest, F-35000 Rennes, France; [email protected] (P.R.); [email protected] (S.M.-A.); [email protected] (M.S.C.); [email protected] (T.M.) 2 Comité d’Action Technique et Économique, Station Expérimentale Légumière et Horticole de Vézendoquet, F-29250 Saint-Pol-de-Léon, France; [email protected] 3 Ctifl-Caté, Station Expérimentale Légumière et Horticole de Vézendoquet, F-29250 Saint-Pol-de-Léon, France; [email protected] * Correspondence: nouraya.akkal-corfi[email protected] Abstract: The goal of the European Nitrate Directive 91/676/CEE is to mitigate or prevent water pollution associated with the nitrogen (N) cascade. Vegetable crops have a high risk of nitrate leaching during autumn and winter. Information about the fate of N from artichoke (Cynara cardunculus L. var. scolymus (L.)) residues is reviewed and then supplemented with a three-year study with 15N- labelled residues in an artichoke-cauliflower (Brassica oleracea L. cv. botrytis) rotation in six lysimeters. After three years, 6% of N in artichoke residues was leached, 8% was exported by crops, while 86% remained in the lysimeter. Summed over the rotation, 16% of artichoke-residue N was absorbed by artichoke and 14% by cauliflower. Total aboveground N uptake by all crops during the entire rotation ranged from 370 to 534 kg N ha−1, of which 207–311 kg N ha−1 returned to the soil as Citation: Akkal-Corfini, N.; Robin, P.; residues.
    [Show full text]
  • Universidade Estadual Paulista Câmpus De
    Campus de Botucatu UNESP - UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS DE BOTUCATU INSTITUTO DE BIOCIÊN CIAS GENÔMICA ORGANELAR E EVOLUÇÃO DE GENLISEA E UTRICULARIA (LENTIBULARIACEAE) SAURA RODRIGUES DA SILVA Tese apresentada ao Instituto de Biociências, Câmpus de Botucatu, UNESP, para obtenção do título de Doutor em Ciências Biológicas (Botânica) BOTUCATU - SP - 2018 - Insti tuto de Biociências – Departamento de Botânica Distrito de Rubião Júnior s/n CEP 18618 - 000 Botucatu SP Brasil Tel 14 3811 6265/6053 fax 14 3815 3744 [email protected] Campus de Botucatu UNESP - UNIVERSIDADE ESTADUAL PAULISTA CÂMPUS DE BOTUCATU INSTITUTO DE BIOCIÊN CIAS GENÔMICA ORGANELAR E EVOLUÇÃO DE GENLISEA E UTRICULARIA (LENTIBULARIACEAE) SAUR A RODRIGUES DA SILVA PROF. DR. VITOR FERN ANDES OLIVEIRA DE MI RANDA ORIENTADOR PROF. DR. ALESSANDRO DE MEL L O VARANI Coorientador Tese apresentada ao Instituto de Biociências, Câmpus de Botucatu, UNESP, para obtenção do título de Doutor em Ciên cias Biológicas (Botânica) BOTUCATU - SP - 2018 - Instituto de Biociências – Departamento de Botânica Distrito de Rubião Júnior s/n CEP 18618 - 000 Botucatu SP Brasil Tel 14 3811 6265/6053 fax 14 3815 3744 [email protected] 2 Campus de Botucatu FICHA CATALOGRÁFIC A ELABORADA PELA SEÇÃO TÉCNICA DE AQUISIÇÃO E TRATAMENTO DA INFORMAÇÃO DIVISÃO TÉCNICA DE BIBLIOTECA E DOCUMENTAÇÃO - CAMPUS DE BOTUCATU - UNESP Silva, Saura Rodrigues. Genômica organelar e evolução d e Genlisea e Utricularia (Lentibulariaceae) / Saura Rodrigues da Silva. – 2018. Tese (doutorado) – Universidade Estadual Paulista, Instituto de Biociências de Botucatu, 2018. Orientador: Vitor Fernandes Oliveira de Miranda Co - orientador: Alessandro de Mello Varani Assunto CAPES: 1. Sistemática Vegetal CDD 581.1 Palavras - c have: Utricularia ; Genlisea ; genômica de organelas; ndhs; Evolução de organelas.
    [Show full text]
  • Honey and Pollen Flora of SE Australia Species
    List of families - genus/species Page Acanthaceae ........................................................................................................................................................................34 Avicennia marina grey mangrove 34 Aizoaceae ............................................................................................................................................................................... 35 Mesembryanthemum crystallinum ice plant 35 Alliaceae ................................................................................................................................................................................... 36 Allium cepa onions 36 Amaranthaceae ..................................................................................................................................................................37 Ptilotus species foxtails 37 Anacardiaceae ................................................................................................................................................................... 38 Schinus molle var areira pepper tree 38 Schinus terebinthifolius Brazilian pepper tree 39 Apiaceae .................................................................................................................................................................................. 40 Daucus carota carrot 40 Foeniculum vulgare fennel 41 Araliaceae ................................................................................................................................................................................42
    [Show full text]
  • The Vascular Flora of Tetraclinis Ecosystem in the Moroccan Central Plateau
    European Scientific Journal November 2017 edition Vol.13, No.33 ISSN: 1857 – 7881 (Print) e - ISSN 1857- 7431 The Vascular Flora of Tetraclinis Ecosystem in the Moroccan Central Plateau Youssef Dallahi Driss Chahhou Laboratory for Physical Geography, Department of Geography, Faculty of Arts and Humanities, Mohammed V University, Rabat, Morocco Abderrahman Aafi National Forestry Engineering School Salé, Morocco Mohamed Fennane Scientific Institute, Mohammed V University, Rabat, Morocco Doi: 10.19044/esj.2017.v13n33p104 URL:http://dx.doi.org/10.19044/esj.2017.v13n33p104 Abstract The main objective of this study is to quantify the floral richness and diversity of Tetraclinis ecosystem in the Moroccan Central Plateau. The approach was based on over 300 floristic surveys covering the different parts of the Moroccan Central Plateau forests. It also entails the analysis and processing of data from studies in the region. The results indicate that there are 233 taxa belonging to 56 families. Keywords: Floral richness, Tetraclinis ecosystem, Moroccan Central Plateau Introduction Due to its typical and geographical position between the Atlantic Ocean to the west and the Mediterranean Sea to the north, Morocco is characterized by high vascular plant diversity with approximately 4200 species and subspecies belonging to 135 families and 940 genera (Benabid, 2000). The endemic flora includes 951 species and subspecies, representing 21 % of the Moroccan vascular plants. The richest floristic regions for endemic species are located at the top of high mountains. By its geographical position, its varied topography, geology, ecoregion and climate, the Central Plateau of Morocco includes a large area of forest ecosystems with an important floristic diversity.
    [Show full text]
  • Cynara Scolymus L.), Folium Final
    27 March 2018 EMA/HMPC/194013/2017 Committee on Herbal Medicinal Products (HMPC) Assessment report on Cynara cardunculus L. (syn. Cynara scolymus L.), folium Final Based on Article 16d(1), Article 16f and Article 16h of Directive 2001/83/EC (traditional use) Herbal substance(s) (binomial scientific name Cynara cardunculus (=Cynara scolymus L.), of the plant, including plant part) folium Herbal preparation(s) a) Comminuted dried leaves for herbal tea b) Powdered dried leaves c) Dry extract of dried leaves (DER 2-7.5:1), extraction solvent water d) Dry extract of fresh leaves (DER 15-35:1), extraction solvent water e) Soft extract of fresh leaves (DER 15-30:1), extraction solvent water f) Soft extract of dried leaves (DER 2.5-3.5:1), extraction solvent ethanol 20% (V/V) Pharmaceutical form(s) Comminuted herbal substance as herbal tea for oral use. Herbal preparations in solid or liquid form for oral use Rapporteur(s) I. Chinou Peer-reviewer Z. Biró-Sándor and B. Kroes 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2019. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ................................................................................................................... 2 1. Introduction ....................................................................................................................... 4 1.1. Description of the herbal substance(s), herbal preparation(s) or combinations thereof .. 4 1.2. Search and assessment methodology ..................................................................... 6 2. Data on medicinal use ........................................................................................................ 6 2.1. Information about products on the market .............................................................
    [Show full text]
  • Nuclear and Plastid DNA Phylogeny of the Tribe Cardueae (Compositae
    1 Nuclear and plastid DNA phylogeny of the tribe Cardueae 2 (Compositae) with Hyb-Seq data: A new subtribal classification and a 3 temporal framework for the origin of the tribe and the subtribes 4 5 Sonia Herrando-Morairaa,*, Juan Antonio Callejab, Mercè Galbany-Casalsb, Núria Garcia-Jacasa, Jian- 6 Quan Liuc, Javier López-Alvaradob, Jordi López-Pujola, Jennifer R. Mandeld, Noemí Montes-Morenoa, 7 Cristina Roquetb,e, Llorenç Sáezb, Alexander Sennikovf, Alfonso Susannaa, Roser Vilatersanaa 8 9 a Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s.n., 08038 Barcelona, Spain 10 b Systematics and Evolution of Vascular Plants (UAB) – Associated Unit to CSIC, Departament de 11 Biologia Animal, Biologia Vegetal i Ecologia, Facultat de Biociències, Universitat Autònoma de 12 Barcelona, ES-08193 Bellaterra, Spain 13 c Key Laboratory for Bio-Resources and Eco-Environment, College of Life Sciences, Sichuan University, 14 Chengdu, China 15 d Department of Biological Sciences, University of Memphis, Memphis, TN 38152, USA 16 e Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA (Laboratoire d’Ecologie Alpine), FR- 17 38000 Grenoble, France 18 f Botanical Museum, Finnish Museum of Natural History, PO Box 7, FI-00014 University of Helsinki, 19 Finland; and Herbarium, Komarov Botanical Institute of Russian Academy of Sciences, Prof. Popov str. 20 2, 197376 St. Petersburg, Russia 21 22 *Corresponding author at: Botanic Institute of Barcelona (IBB, CSIC-ICUB), Pg. del Migdia, s. n., ES- 23 08038 Barcelona, Spain. E-mail address: [email protected] (S. Herrando-Moraira). 24 25 Abstract 26 Classification of the tribe Cardueae in natural subtribes has always been a challenge due to the lack of 27 support of some critical branches in previous phylogenies based on traditional Sanger markers.
    [Show full text]
  • Taxonomic Studies of Cirsium (Asteraceae) in Japan XXIII. a New Species from Hachiôji, Tokyo Prefecture, Central Japan
    Bull. Natl. Mus. Nat. Sci., Ser. B, 38(1), pp. 1–10, February 22, 2012 Taxonomic Studies of Cirsium (Asteraceae) in Japan XXIII. A New Species from Hachiôji, Tokyo Prefecture, Central Japan Yuichi Kadota Department of Botany, National Museum of Nature and Science, Amakubo 4–1–1, Tsukuba, Ibaraki 305–0005, Japan E-mail: [email protected] (Received 14 November 2011; accepted 28 December 2011) Abstract A new species, Cirsium tamastoloniferum Kadota is described from a small marshy land in Hachiôji, Tokyo Pref., central Honshu, Japan, as a member of subsect. Reflexae (the Cirsium kagamontanum group), sect. Onotrophe of the genus Cirsium. Cirsium tamastoloniferum is similar to C. tenuipedunculatum Kadota described from Yamanashi Pref., Chubu District, central Honshu, in having hardly glutinous involucres and paniculate inflorescence with small, numerous heads, however, the former is distinguished from the latter by gynodioecy, subterranean stolons, ovate to broadly ovate cauline leaves with ascending lobes and inner and involucral phyllaries with short- recurved apices in hermaphrodite plants or with short-ascending apices in female plants. Cirsium tamastoloniferum is a dweller of marshy lands exceptionally in the Cirsium kagamontanum group and occurs in Tokyo and Kanagawa Prefs., Kanto District, central Honshu, Japan. Kew words : Cirsium tamastoloniferum, Cirsium tenuipedunculatum, Japan, new species, wet- land. This is part of a revisional work on Japanese Hideshige Uchino, Nagaike Park Nature Center, Cirsium (Asteraceae) (Kadota, 1989–2011; Hachiôji. This thistle seemed to be included in Kadota and Nagase, 1988). In this paper a new the Cirsium kagamontanum group because it had species of subsect. Reflexae (Kitam.) Kadota of paniculate compound inflorescences with small, sect.
    [Show full text]
  • Bighead Knapweed
    WRITTEN FINDINGS OF THE WASHINGTON STATE NOXIOUS WEED CONTROL BOARD (Updated NOVEMBER 1998) Scientific Name: Centaurea macrocephala Puschk. ex Willd. Common Name: Bighead knapweed Family: Asteraceae (Compositae) Legal Status: Class A Description and Variation: Bighead knapweed, Centaurea macrocephala, is a member of the thistle tribe (Cynareae) in the sunflower family. This perennial species is the tallest knapweed growing in the Pacific Northwest, ranging from 2 feet to 5 feet tall, depending on the habitat. The plant stems are upright and unbranched, terminating in a single flower head. The leaves are broadly lance shaped with toothed edges and pointed tips, and they have a rough surface. Basal, or rosette, leaves are stalked, and they can reach 15 inches long and 3 inches wide. The leaves and leaf stalks are progressively smaller upward on the plant stem, with the top leaves being stalkless. The solitary flower heads are globe shaped, and 1 inch to 3 inches in diameter. The bracts beneath the flower head have thin, papery, fringed margins. The lower bracts show evidence of spines. The flowers are yellow. The seeds are medium brown and ridged, with a ring of light- colored bristles. C. macrocephala has a taprooted woody crown. Economic Importance: Detrimental: C. macrocephala has escaped cultivation to establish in an abandoned homestead in Pend Orielle, County, WA. Beneficial: Sold as a garden ornamental and in seed packets, C. macrocephala is also found in dried flower arrangements. This species is sold under a variety of common names - including Lemon Fluff and Globe Centaury. Habitat: In its native habitat, C. macrocephala is found in high elevation grassy fields and subalpine meadows.
    [Show full text]