Hankering for a Hamster
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Comparative Analysis of the Karyotypes of the Greater Long-Tailed Hamster and the Chinese Hamster
C 1997 The Japan Mendel Society Cytologia 62: 315-321, 1997 Comparative Analysis of the Karyotypes of the Greater Long-Tailed Hamster and the Chinese Hamster Kazunori Fujimoto1, Sen-ichi Oda1,*, Kazuhiro Koyasu2, Masashi Harada3 and Shin-ichi Sonta4 1 Laboratory of Animal Management, School of Agricultural Sciences, Nagoya University, Nagoya 464-01, Japan 2Department of Anatomy , School of Dentistry, Aichi-Gakuin University, Nagoya 464, Japan 3 Laboratory Animal Center , Osaka City University, Osaka 545, Japan 4 Department of Genetics , Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-03, Japan Accepted July 17, 1997 The subfamily Cricetinae (Rodentia) comprise 5 genera, including the genus Cricetulus of which comprise 11 species (Nowak and Paradiso 1983). The greater long-tailed hamster (Cricetulus trion or Tscherskia triton, abbreviated hereafter as a triton hamster) inhabits north-eastern Asia such as eastern Siberia, north-eastern China and Korea (Ellerman and Morrison-Scott 1951), and its diploid chromosome number is 28 (Tsuchiya and Won 1976). The Chinese hamster (Cricetulus griseus, 2n=22) has been successfully used as a laboratory animal, and its karyotype has been characterized by banding techniques (Ray and Mohandas 1976). In contrast, no cytogenetic analy- ses are available for a triton hamster. There are remarkable morphological differences between the two hamster species. The triton hamster is 5-6 times as weighty as Chinese hamster (Sonta and Semba 1980, Oda et al. 1995), and we are not able to obtain interspecific hybrid in cage. The coat color of the two hamster species also differs. That of the Chinese hamster is brown at back with black line in the center and white at belly, while that of a triton hamster is agouti at back. -
Lessons from the Hamster
LESSONS FROM THE HAMSTER: CHARACTERIZATION OF CHINESE HAMSTER OVARY (CHO) CELL LINES AND CRICETULUS GRISEUS TISSUES VIA PROTEOMICS AND GLYCOPROTEOMICS by Kelley Marie Heffner A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland August, 2017 © 2017 Kelley Marie Heffner All Rights Reserved Abstract Chinese hamster ovary (CHO) cells were isolated in the late 1950’s and have been the workhorse of biotherapeutics production for decades. While previous efforts compared CHO cell lines by proteomics, research into the original Chinese hamster (Cricetulus griseus) host has not been conducted. Thus, we sought to understand proteomic differences across CHO-S and CHO DG44 cell lines in relation to brain, heart, kidney, liver, lung, ovary, and spleen tissues. As glycosylation is critical for recombinant protein quality, we additionally performed a glycoproteomics and sialoproteomics analysis of wild-type and mutant CHO cell lines that differ in glycosylation capacity. First, wild-type CHO was compared with tunicamycin-treated CHO and Lec9.4a cells, a mutant CHO cell line which shows 50% of wild-type glycosylation levels. A total of 381 glycoproteins were identified, including heavily-glycosylated membrane proteins and transporters. Proteins related to glycosylation downregulated in Lec9.4a include alpha-(1,3)-fucosyltransferase and dolichyl- diphosphooligosaccharide-protein glycosyltransferase subunit 1. Next, wild-type Pro-5 CHO was compared with Lec2 cells, which have a mutation in CMP-sialic acid transporter that reduces sialylation. A total of 272 sialylated proteins were identified. Downregulated sialoproteins, including dolichyl- diphosphooligosaccharide-protein glycosyltransferase subunit STT3A and beta-1,4- galactosyltransferase 3, detect glycosylation defects. -
Hamsters (Cricetus Cricetus) 3.1
3. Genetische Diversität, Populationsstruktur und Phylogeografie des Feld- hamsters (Cricetus cricetus) 3.1. Zur Biologie des Feldhamsters Der Feldhamster ist mit 200 – 600 g der größte Vertreter der Cricetinae (Abb. 2). Sein Verbreitungsgebiet reicht vom Jenissej in Westsibirien bis nach Belgien und den Niederlanden (Niethammer 1982). Feldhamster sind ein typisches Element der Of- fenlandschaften (Steppe, Waldsteppe) und kommen in Mitteleuropa vor allem auf Agrarflächen vor. Im östlichen Kernverbreitungsareal werden aber auch Auen und krautreiche Wälder besiedelt, wobei der Hamster im Alatau bis auf Höhen von mehr als 2000 m vordringen kann (Berdyugin und Bolshakov 1998). Die relativ komplexen Baue werden bevorzugt in Löss oder tiefen lehmreichen Böden angelegt. Abb. 2 Feldhamster Cricetus cricetus (Foto: K. Neumann) Feldhamster sind weitgehend solitär lebende Nager, doch ergaben neuere Untersu- chungen in Sachsen-Anhalt (Kayser 2003), dass Interaktionen zwischen Individuen sehr häufig sind. Eine noch laufende Studie auf einer Versuchsfläche in Sachsen- 36 Anhalt zeigt, dass die Aktivität adulter Feldhamster vor allem in den Morgen- und Abendstunden liegt (Mundt, Dissertation in Vorbereitung). Es gibt keine ausgeprägte Nachtaktivität. Eine ähnliche bimodale Aktivitätsverteilung mit Maxima am Morgen und in der Abenddämmerung wurde auch bei anderen mitteleuropäischen Populatio- nen belegt (Nechay et al. 1977; Wendt 1989a; Kayser 2003). Im Gegensatz dazu werden ausgedehnte Streifzüge bis 2,5 km während der Nacht und ganztägige Akti- vität in der Fortpflanzungsperiode für russische Hamster angeben (Berdyugin und Bolshakov 1998). Relative einheitlich sind die Befunde zum Raumnutzungsverhalten. Männliche Feldhamster haben größere Streifgebiete als Weibchen und halten sich öfter außerhalb und in größerer Entfernung der Baue auf (Karaseva 1962; Weinhold 1998; Kayser 2003). -
Hamster Melatonin Receptors: Cloning and Binding Characterization of MT₁ and Attempt to Clone MT₂
Hamster Melatonin Receptors: Cloning and Binding Characterization of MT and Attempt to Clone MT. Célia Gautier, Emilie Dufour, Clémence Dupré, Giulia Lizzo, Sarah Caignard, Isabelle Riest-Fery, Chantal Brasseur, Celine Legros, Philippe Delagrange, Olivier Nosjean, et al. To cite this version: Célia Gautier, Emilie Dufour, Clémence Dupré, Giulia Lizzo, Sarah Caignard, et al.. Hamster Mela- tonin Receptors: Cloning and Binding Characterization of MT and Attempt to Clone MT.. In- ternational Journal of Molecular Sciences, MDPI, 2018, 19 (7), pp.1957. 10.3390/ijms19071957. hal-02390091 HAL Id: hal-02390091 https://hal.archives-ouvertes.fr/hal-02390091 Submitted on 28 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Journal of Molecular Sciences Article Hamster Melatonin Receptors: Cloning and Binding Characterization of MT1 and Attempt to Clone MT2 Célia Gautier 1,2, Emilie Dufour 1, Clémence Dupré 1, Giulia Lizzo 1, Sarah Caignard 1, Isabelle Riest-Fery 1, Chantal Brasseur 1,Céline Legros 1, Philippe Delagrange 1, Olivier Nosjean -
Hamsters by Catherine Love, DVM Updated 2021
Hamsters By Catherine Love, DVM Updated 2021 Natural History Hamsters are a group of small rodents belonging to the same family as lemmings, voles, and new world rats and mice. There are at least 19 species of hamster, which vary from the large Syrian/golden hamster (Mesocricetus auratus), to the tiny dwarf hamster (Phodopus spp.). Syrian hamsters are the most popular pet hamsters, and also come in a long haired variety commonly known as “teddy bears”. There are numerous species of dwarf hamsters that may have multiple common names. The Djungarian dwarf (P. sungorus) is also sometimes called the “winter white dwarf” due to the fact that they may turn white during winter. Roborowski (Robo) dwarfs (P. roborovskii) are the smallest species of hamster, and also quite fast. The third type of dwarf hamster commonly kept is the Campbell’s dwarf (P. campbelli). Chinese or striped hamsters (Cricetulus griseus) can be distinguished from other species due to their comparatively long tail. The original pet and laboratory hamsters originated from a group of Syrian hamsters removed from wild burrows and bred in captivity. Wild hamsters are native to numerous countries in Europe and Asia. They spend most daylight hours underground to protect themselves from predators and are considered burrowing animals. While most wild hamster species are considered “Least Concern” by the IUCN, the European hamster is critically endangered due to habitat loss, pollution, and historical trapping for fur. Characteristics and Behavior Both Syrian and dwarf hamsters are very commonly found in pet stores. With gentle, consistent handling, hamsters can be tamed into fairly docile and easy to handle pets, but it is not uncommon for them to be bitey and skittish. -
Draft European Action Plan for the Conservation of the Common Hamster (Cricetus Cricetus , L
Strasbourg, 15 September 2008 T-PVS/Inf (2008) 9 [Inf09e_2008.doc] CONVENTION ON THE CONSERVATION OF EUROPEAN WILDLIFE AND NATURAL HABITATS Standing Committee 28 th meeting Strasbourg, 24-27 November 2008 __________ PRELIMINARY DOCUMENT Draft European Action Plan For the conservation of the Common hamster (Cricetus cricetus , L. 1758) Second Version – 12 September 2008 Document prepared by Dr. Ulrich Weinhold, Dipl.-Biol This document will not be distri buted at the meeting. Please bri ng this copy. Ce document ne sera plus distribué en réunion. Prièr e de vous munir de cet exe mpl aire. T-PVS/Inf (2008) 9 - 2 – CONTENTS Acknow ledgements .......................................................................................................................3 Introduction...................................................................................................................................3 Conservation status .......................................................................................................................3 Approach.......................................................................................................................................3 General Biology ............................................................................................................................4 1. Appearance........................................................................................................................4 2. Fossil records and taxonomy ...............................................................................................4 -
Full Text in Pdf Format
Vol. 31: 119–145, 2016 ENDANGERED SPECIES RESEARCH Published October 6 doi: 10.3354/esr00749 Endang Species Res OPEN ACCESS FEATURE ARTICLE REVIEW Dramatic global decrease in the range and reproduction rate of the European hamster Cricetus cricetus Alexey Surov1, Agata Banaszek2, Pavel Bogomolov1, Natalia Feoktistova1, Stefanie Monecke3,* 1Severtsov Institute of Ecology and Evolution, Russian Academy of Science, Leninsky pr. 33, Moscow, 119071, Russia 2Institute of Biology, University of Białystok, Ciołkowskiego 1J, 15-245 Białystok, Poland 3Institute of Chronoecology, Bismarckstr. 1, 77694 Kehl, Germany ABSTRACT: Although the European hamster is probably the fastest-declining Eurasian mammal, its IUCN Red List status is still Least Concern. In addition to the huge distribution area, this categorization is based on the as- sumptions (1) that the decline affects only Western Europe, where (2) modern agriculture has led to (3) an increase in the mortality of the species. Since mortality- reducing protection measures in Western Europe have been un- able to stop the decline, we reviewed the literature from 1765 to the present and reappraised the situation. We found support for none of these assumptions. The species has also vanished from more than 75% of its range in Central and Eastern Europe. In 48 of 85 Russian, Be- larussian, Ukrainian and Moldovan provinces, its relative occurrence has decreased. It is now rare in 42 provinces and extinct in 8. Mortality has not increased, but the re- production rate has shrunk since 1954 throughout the distribution area. Today the reproduction rate is only Adult female European hamster Cricetus cricetus. 23% of that between 1914 and 1935. -
Saving the Common Hamster from Extinction Through the Eu Habitats Directive
SAVING THE COMMON HAMSTER FROM EXTINCTION THROUGH THE EU HABITATS DIRECTIVE: A MANDATORY RECOVERY EFFORT, A REMEDIATION OF PAST NON-COMPLIANCE OR AN EXERCISE IN FUTILITY? “Hope has two beautiful daughters: their names are anger and courage. Anger that things are the way they are. Courage to make them the way they ought to be.” Saint Augustine (354-430) Abstract In spite of having being a strict protected species under the framework of the EU Habitats Directive for more than twenty years, the populations of Common hamster continue to plummet throughout Western-Europe. This is mainly the result of the intensification agriculture and the increasing fragmentation of the remaining populations. This article demonstrates that the Habitats Directive is not merely concerned with maintaining the status quo but also requires Member States to restore strictly protected species to a favourable conservation status. This is especially the case when the ongoing decline is partly the result of previous non-compliance with the relatively strict protection rules that are included in Articles 12-16 of the Habitats Directive. Through a case-study of the recently adopted Flemish hamster protection programme it is revealed that the concrete implementation of the restoration imperative underlying the Habitats Directive gives rise to certain ambiguities. Even so, Member States should aim to restore an endangered species to resilient populations of several thousand individuals, that go beyond the so-called ‘Minimum Viable Population’-levels, and consider reintroduction and habitat restoration measures. Also, recovery programmes should not exclusively rely on voluntary measures, even when more collaborative approaches might be crucial for bolstering support amongst stakeholders. -
Front Matter (PDF)
VOLUME 35 ^NO. 3 CNREA8 •¿PP 473 - 864 March 1975 COVER LEGEND The Israeli zoologist Israel Aharoni in 1930 captured for Professor Israel Aharoni (right) was born in Lithuania in 1882 and died in Saul Adler at the University of Jerusalem one male and two female Israel in 1946. He studied zoology and Semitic languages at the littermates of Mesocricetus auratus (Nature, 162: 256, 1948). From University of Prague, Czechoslovakia, and later became lecturer in these three animals H. Ben Menahem in Adler's laboratory quickly zoology at the Hebrew University of Jerusalem. He was a pioneer in established that this species breeds readily in captivity. Thus, the the study of the fauna of Israel and its neighboring countries, es Syrian golden hamster, M. auratus, replaced the hard to obtain pecially Syria and Turkey. Aharoni discovered many species of Chinese hamster, Cricetus griseus, which Adler had to import from the animals hitherto unknown, and he succeeded in raising the golden Orient for his studies on kala azar. Since then Syrian hamsters have hamster that became one of the important experimental animals been used in laboratory research throughout the world at the rate for medical research. His work is narrated in his autobiography, of some 800,000 per year in the U.S.A. alone. Many inbred strains Memoirs of a Hebrew Zoologist, Tel-Aviv: Am Oved Publishers, have been developed and much knowledge has been gained on the 1942. physiology and pathology of this species (cf. R. A. Hoffman et a!. Saul Adler (left) was born in Russia in 1895 and died in Israel in (eds.), The Golden Hamster, Its Biology and Use in Medical Re 1966. -
UMI Dissertation • • Information Service
PHOTOPERIODIC REGULATION OF THE FEMALE REPRODUCTIVE SYSTEM IN THE SYRIAN HAMSTER (OVARY, PINEAL, HORMONES, PITUITARY). Item Type text; Dissertation-Reproduction (electronic) Authors HAUSER, URSULA ESTHER. Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 09:59:21 Link to Item http://hdl.handle.net/10150/183862 INFORMATION TO USERS This reproduction was made from a copy of a manuscript sent to us for publication and microfilming. While the most advanced technology has been used to pho tograph and reproduce this manuscript, the quality of the reproduction is heavily dependent upon the quality of the material submitted. Pages in any manuscript may have indistinct print. In all cases the best available copy has been filmed. The following explanation of techniques is provided to help clarify notations which may appear on this reproduction. 1. Manuscripts may not always be complete. When it is not possible to obtain missing pages, a note appears to indicate this. 2. When copyrighted materials are removed from the manuscript, a note ap pears to indicate this. 3. Oversize materials (maps, drawings, and charts) are photographed by sec tioning the original, beginning at the upper left hand comer and continu ing from left to right in equal sections with small overlaps. Each oversize page is also filmed as one exposure and is available, for an additional charge, as a standard 35mm slide or in black and white paper format. -
“South Africa's 800” by Henry Katzew
SOUTH AFRICA’S 800 The Story of South African Volunteers in Israel’s War of Birth by Henry Katzew Compiled and produced by Maurice and Marcia Ostroff from Henry Katzew’s original manuscript Edited by Joe Woolf Key to the Front Cover Top to bottom: • The famous Haganah immigrant ship S.S Exodus 1947, in which 4500 refugees were forcibly returned to Hamburg in September 1947. (See foreword & Palestine Post article page 23) • Boris Senior in a Spitfire constructed from bits and pieces. • A group of Machalniks, in the Tank Corps. • A column of the 9th Palmach, Commando Battalion. Revised and reprinted November 2003 COPYRIGHT© All rights reserved No part of this document may be reproduced by any means whatsoever, except with the prior express written permission of the South African Zionist Federation. Correspondence should be addressed to: Telfed, 19/1 Schwartz Street, Ra’anana, 43212 Israel Telephone +972 9-7446110 Fax + 972 9-7446112 E-mail: [email protected] About this book “South Africa’s 800” is about Machal, the collective Hebrew acronym for volunteers from abroad and about individual volunteers, colloquially known as Machalniks. The book reveals details never previously documented and provides a valuable new perspective on Israel’s birth and struggle for survival. It includes eye witness reports by active participants in the events. While written mainly through South African eyes, the book also contains gripping anecdotes about volunteers from the USA, Britain and other countries. It throws new light on important events and personalities of the time. In his engaging eloquent style, Henry Katzew takes the reader on a fascinating expedition through recent historical events including: • Adventures of 8 young South Africans in their ill-fated attempt to bypass British restrictions on immigration to Palestine, by travelling overland from Pretoria. -
Zeitschrift Für Säugetierkunde)
ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Mammalian Biology (früher Zeitschrift für Säugetierkunde) Jahr/Year: 1975 Band/Volume: 41 Autor(en)/Author(s): Vistorin Gerda, Rosenkranz W., Gamperl Roswitha Artikel/Article: Analysis of mitotic and meiotic chromosomes of the European Hamster, Cricetus cricetus (L.) 342-348 © Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Analysis of mitotic and meiotic chromosomes of the European Hamster, Cricetus cricetus (L.) By G. ViSTORiN, R. Gamperl, and W. Rosenkranz Aus dem Institut für Medizinische Biologie und Humangenetik der Universität Graz Receipt of Ms. 15. 9. 1975 Introduction The various staining techniques recently developed (e. g. Caspersson et al. 1970, Arrighi and Hsu 1971, Schnede 1971, Sumner et al. 1971, Müller and Rosen- kranz 1972, Seabright 1972, Sumner 1972) simplify karyological analyses of mammalian chromosomes. The application of G-banding technique allows the Identi- fication of each chromosome of a complement, C-banding exhibits the distribution of heterochromatin. Several hamster species (Cricetulus griseus, Cricetulus harahensis, Cricetulus migratorius, Cricetus cricetus etc.) are favourable animals for cytogenetical studies because of their low number of chromosomes mainly meta- and submetacentric. For Our investigations, we have chosen Cricetus cricetus, a species with a chromo- some number of 2 n = 22. We intend to give a representation of G-bands and C-bands in mitotic chromosomes and, in addition, C-bands in meiotic chromosomes. Materials and methods For this study, we used four male and four female European hamsters captured in the surroundings of the "Neusiedler See" (Eastern Austria). Chromosome preparations were obtained from fibroblast cultures.