Comparative Analysis of the Karyotypes of the Greater Long-Tailed Hamster and the Chinese Hamster

Total Page:16

File Type:pdf, Size:1020Kb

Comparative Analysis of the Karyotypes of the Greater Long-Tailed Hamster and the Chinese Hamster C 1997 The Japan Mendel Society Cytologia 62: 315-321, 1997 Comparative Analysis of the Karyotypes of the Greater Long-Tailed Hamster and the Chinese Hamster Kazunori Fujimoto1, Sen-ichi Oda1,*, Kazuhiro Koyasu2, Masashi Harada3 and Shin-ichi Sonta4 1 Laboratory of Animal Management, School of Agricultural Sciences, Nagoya University, Nagoya 464-01, Japan 2Department of Anatomy , School of Dentistry, Aichi-Gakuin University, Nagoya 464, Japan 3 Laboratory Animal Center , Osaka City University, Osaka 545, Japan 4 Department of Genetics , Institute for Developmental Research, Aichi Human Service Center, Kasugai 480-03, Japan Accepted July 17, 1997 The subfamily Cricetinae (Rodentia) comprise 5 genera, including the genus Cricetulus of which comprise 11 species (Nowak and Paradiso 1983). The greater long-tailed hamster (Cricetulus trion or Tscherskia triton, abbreviated hereafter as a triton hamster) inhabits north-eastern Asia such as eastern Siberia, north-eastern China and Korea (Ellerman and Morrison-Scott 1951), and its diploid chromosome number is 28 (Tsuchiya and Won 1976). The Chinese hamster (Cricetulus griseus, 2n=22) has been successfully used as a laboratory animal, and its karyotype has been characterized by banding techniques (Ray and Mohandas 1976). In contrast, no cytogenetic analy- ses are available for a triton hamster. There are remarkable morphological differences between the two hamster species. The triton hamster is 5-6 times as weighty as Chinese hamster (Sonta and Semba 1980, Oda et al. 1995), and we are not able to obtain interspecific hybrid in cage. The coat color of the two hamster species also differs. That of the Chinese hamster is brown at back with black line in the center and white at belly, while that of a triton hamster is agouti at back. The triton hamster has a long tail, but Chinese ham- ster has a very short tail. Recently, it has been suggested that the two hamster species do not belong to the same genus Cricetulus, and the Chinese hamster is classified in Cricetulus but the triton hamster in Tscherskia (Musser and Carleton 1993). Cytogenetic data of the two hamster species may allow us the taxo- nomical approach. So, we analyzed the triton hamster karyotype based on the measurement and the banding pattern of chromosomes, in comparison with that of the Chinese hamster, and investigated the chromosome rearrangement that is related to evolutional process. Materials and methods The triton hamster stock was derived from one pair of animals that we captured and then bred in our laboratory (Oda et al. 1995). The Chinese hamster was an inbred strain (CHS/Idr) that we have already established. Fibroblasts from the spleen, lung and tail of the two hamster species ( 5 of each species) were cultured according to the standard techniques. The karyotype was then analyzed using conventional Giemsa staining. The banding pattern analyses were performed using G-band staining according to Sumner et al. (1971), C-band staining according to Sumner (1972) and R- band staining according to Dutrillaux et al. (1973). The chromosomes of the two hamster species were measured and the banding patterns were compared. * Correspondent author. 316 K. Fujimoto, S. Oda, K. Koyasu, M. Harada and S. Sonta Cytologia 62 Results Karyotype analysis of the triton hamster The average size (•} S.D.) of each short arm, long arm and whole chromosome, derived from the measurement of 15 Giemsa-stained cells (Fig. 1), is shown in Table 1. Autosomes of the triton hamster consisted of 11 pairs (nos. 1-11) of acrocentric chromosomes and 2 pairs (nos. 12, 13) of little metacentric ones. The size from chromosome no. 1 to no. 11 decreases gradually, and chromo- some no. 12 and 13 were much smaller than the other autosomes. In sex chromosomes, the X chro- mosome was a middle-sized subtelocentric chromosome and the Y chromosome a small metacen- tric chromosome. The X chromosome was smaller than chromosome no. 6 but slightly larger than chromosome no. 7, and the Y chromosome was between chromosome no. 10 and 11. A schematic diagram, constructed by analysis of 15 G-banded and 15 R-banded cells (Figs. 2, 3), is shown in Fig. 4. Each chromosome showed a characteristic pattern. The C-banding, on the other hand, re- vealed the presence of a large band in the centromeric region of all autosomes. In the X chromo- 1 2 3 4 5 6 8 9 10 11 12 13 XY Fig. 1. A karyotype of the greater long-tailed hamster (triton hamster, Cricetulus triton or Tscherskia triton), using conventional Giemsa staining. Table1.Comparative size of each triton hamster chromosome (•} S.D.) The values are calculated on the assumption that the total length of all chromosomes except Y chromosome is 100. 1997 Karyotype Analysis of the Greater Long-Tailed Hamster 317 1 2 3 4 5 6 7 8 9 10 11 12 13 X Y Fig . 2 . A GTG-banded karyotype of the triton hamster. 1 2 3 4 5 6 7 8 9 10 11 12 13 X Y Fig. 3 . A RBA-banded karyotype of the triton hamster. some, large dark bands in the short arm and the proximal-centromeric region of the long arm were present, and the whole Y chromosome was stained by C-banding (Fig. 5). Comparison with Chinese hamster chromosomes R-banded chromosomes of the triton hamster (abbreviated hereafter as RT) were compared with those of the Chinese hamster (RC) (Table 2, Fig. 6). Five chromosomes of the triton hamster showed banding patterns identical to five Chinese hamster chromosomes: Chromosome no. 7 of the triton hamster (RT7) was identical to chromosome no. 5 of the Chinese hamster (RC5). Similarly, RT9, RT10, RT12 and RT13 resembled RC6, RC7, RC9 and RC10, respectively. The other six chro- 318 K. Fujimoto, S. Oda, K. Koyasu, M. Harada and S. Sonta Cytologia 62 1 2 3 4 5 6 7 8 9 10 11 12 13 X Y Fig. 4 . Ideogram of GTG- and RBA-banding pattern of the triton hamster. Each chromosome is identi- fied by GTG-banding pattern. Fig . 5 . A C-banded karyotype of the triton hamster. mosomes of the triton hamster were homologous to the respective arms of three Chinese hamster chromosomes. RT1 was similar to the long arm of RC1. Similarly, RT3, RT6, RT5, RT4 and RT8 corresponded respectively to the short arm of RC1, the long arm of RC2, the short arm of RC2, the long arm of RC3 and the short arm of RC3. When we consider inversion at a certain region of chro- mosomes, the remaining two chromosomes of the triton hamster of RT2 and RT11, were similar to Chinese hamster chromosomes of RC4 and RC8, respectively. In sex chromosomes, the short arm of RCX was homologous to the proximal-telomeric region of the long arm of RTX, and a part of 1997 Karyotype Analysis of the Greater Long-Tailed Hamster 319 Table2.Chromosomal comparison of the Triton hamster the long arm of RCX also corresponded to the with the Chinese hamster RTX. RCY was almost similar to RTY. While large C-bands existed near centromeric region in most autosomes of the triton hamster, small C-bands near centromeric region in most auto- somes and bands in intermediate part of both arms of no. 1 were present in the Chinese ham- ster. Discussion While Musser and Carleton (1993) sug- gested recently that the triton hamster and the Chinese hamster do not belong to the same genus Cricetulus, others also reported that they did (Nowak and Paradiso 1983). Nevertheless, there is a significant difference in the diploid * inv.=pericentric inversion. chromosome number and chromosome mor- ** Xp of the Chinese hamster is homologous to Xq of the triton hamster, but no region homologous to the distal phology between them. However, the banding region of Xq of the Chinese hamster existed in the triton patterns showed clearly the homology of chro- hamster chromosome. mosomes; each chromosome of the triton ham- *** The centromeric region of Y of the Chinese hamster ster corresponded to one arm or one whole is similar to that of the triton hamster, but no segment of Y of the triton hamster corresponding to the distal region of chromosome of the Chinese hamster. Generally Yq of the Chinese hamster. speaking, morphological changes such as peri- T3 T8 T5 TX TY T1 C1 C2 C3 C4 T2 CX CY T6 T4 C5 T7 C6 T9 C7 T10 C8 T11 C9 T12 C10T13 Fig. 6. Comparison of RBA-banded chromosomes of the triton hamster (T) with those of the Chinese hamster (C). The banding pattern of each triton hamster chromosome is similar to that of an arm or a chromosome of the Chinese hamster. On the assumption of T2 and T11 is similar to that of C4 and C8, respectively. 320 K. Fujimoto, S. Oda, K. Koyasu, M. Harada and S. Sonta Cytologia 62 centric inversions, Robertsonian fusions or centromeric fissions play an important role in the process of karyotypical evolution (Fredga 1977, Holmquist and Dancis 1980, Schmid et al. 1986). Thus, the correspondence of chromosomes between two hamster species may serve as a plausible explanation for the karyotypical changes accompanying evolution. On the other hand, there were distinctly C-bands around the centromeric region in the triton hamster chromosomes but such centromeric bands were small or none in Chinese hamster chromo- somes. Data from G- and R-banding indicated that chromosome no. 1 of the Chinese hamster, for example, corresponded to a figure assumed by Robertsonian fusion between chromosome nos. 1 and 3 of the triton hamster, or the reverse case by fission. However, there is no C-band in the cen- tromeric region but pale bands in both intermediate regions of the short arm (1p26) and the long arm (1q17).
Recommended publications
  • Small Rodents
    All Creatures Animal Hospital Volume 1, Issue 1 Newsletter Date Basic Care of Small Rodents HAMSTERS Hamsters (Mesocricetus aura- sters were first introduced to less common than the Syrian Inside this issue: tus) are short tailed rodents the United States in 1938. hamster. The smaller, dark with large cheek pouches. The Since their domestication, sev- brown Chinese hamster (dwarf Housing 2 Syrian hamster’s (golden ham- eral color and hair coat varie- hamster), the Armenian (grey) ster) wild habitat extends ties of the Syrian hamster have hamster, and the European Nutrition 2 through the Middle East and arisen through selective breed- hamster are more often used in Southeastern Europe. In 1930, ing. The three basic groups research and seldom kept as Handling 3 a litter of eight baby hamsters that now exist include the com- pets. Hamsters live 1.5-2.5 was taken to Israel and raised mon “golden” hamster, colored years. Hamsters have pig- Veterinary Care 3 as research animals. Virtually short-haired “fancy” hamster, mented, hairless glands over all domesticated hamsters sold and long-haired “teddy bear” the hips. These should not be Teeth and Tears 3 in the pet trade and research are hamster. On occasion, one mistaken for tumors. descendents of three of the may encounter other species of Breeding 4 survivors of that litter. Ham- hamsters, but these are much GERBILS The Mongolian gerbil (Meriones abdomen, and darker back coat. or fight, are easy to keep clean unguiculatus) is a small rodent Other color varieties that exist and care for, and are relatively native to the desert regions of include black, white, and cinna- easy to handle.
    [Show full text]
  • G-, C-, and NOR-Stained Karyotype of the Eversmann's Hamster Allocricetulus Eversmanni and Comparison with the Karyotype of Cr
    Mammal Study 30: 89–91 (2005) © the Mammalogical Society of Japan Short communication G-, C-, and NOR-stained karyotype of the Eversmann’s hamster Allocricetulus eversmanni and comparison with the karyotype of Cricetulus species (Rodentia: Cricetinae) Irina V. Kartavtseva1,* and Aleksey V. Surov2 1 Institute of Biology and Soil Science, Far East Branch of Russian Academy of Sciences, Vladivostok, Russia, 690022 2 A. N. Severtsov Institute of Ecology and Evolution, Moscow, Russia, 119071 Differential chromosomal stainings for various species chromosomes was shown using Sumner’s (1972) modi- belonging to genera in the tribe Cricetini of the Eurasian fied C-banding technique. The locations of nucleolar Cricetinae including Cricetus, Cricetulus, Tscherskia, organizer regions (NORs) of metaphase chromosomes Phodopus, and Mesocricetus are available (Gamperl et were determined after 50% aqueous AgNO3 treatment al. 1978; Kartavtseva et al. 1979; Popescu and DiPaolo for 12 hours at 50–60°C (Bloom and Goodpasture 1976). 1980; Kral et al. 1984). Hitherto, however, no differen- The karyotype consisted of 24 autosomes (2n = 26, tial chromosomes stainings for species in the genus NF = 40): four pairs of metacentrics (M) and submeta- Allocricetulus have been described and the phylogenetic centrics (SM): one pair large, one pair medium and two position of this genus in the Cricetini, based on chro- pairs small, two pairs of large subtelocentrics (ST) and mosomal data, has not been determined. six pairs of acrocentrics (A), ranging from medium-sized The Eversmann’s hamster Allocricetus eversmanni to small. The X chromosome was a medium sized sub- Brandt, 1859 occurs in dry steppes and semi-deserts metacentric (Fig.
    [Show full text]
  • Interspecific Attack on Mice and Frogs by Golden Hamsters (Mesocricetus Auratus)
    Bulletin of the Psychonomic Society 1977, Vol. 9 (3),186-188 Interspecific attack on mice and frogs by golden hamsters (Mesocricetus auratus) PAUL E. VAN HEMEL Franklin and MarshaU College, Lancaster, Pennsylvania 17604 When tested for their reactions to mice, most male and female hamsters attacked with a pattern typical of hamster attacks on conspecifics_ Females attacked with shorter latency than did males, and the very few hamsters that consistently killed mice were all females. Latencies of attack decreased with repeated testing, even though most attacks were not followed by killing. When tested with frogs, hamsters typically avoided the frogs, although a few showed long-latency attacks and kills. A detailed description of the topography of interspecific attack by hamsters and other closely related groups would be useful as a beginning step in analysis of the function of interspecific attack. Psychologists investigating mouse-killing behavior in If hamsters attack mice and frogs, as rats do (Bandler rats have been primarily concerned with the causation & Moyer, 1970), then a comparison of behavioral and ontogeny of the behavior (polsky, 1975a). Studies phenotypes would be useful as a beginning step for that concentrate on such proximate determinants of functional analysis. Hamsters are known to attack behavior focus on issues quite different from those locusts (polsky, 1974, 1976) and may catch and raised by studies concerned with ultimate questions consume insects (Jacobs, 1945). There has even been about the function, or ecological significance, and the a report of spontaneous attacks by hamsters on mice evolution of behavior (Alcock, 1975). Some authors (Wnek & Leaf, 1973).
    [Show full text]
  • The Hibernation of the Common Hamster (A) Looks Different Compare to Hibernation of M
    N.Yu.Feoktistova1, G.A.Klevezal2, E.A.Zaytseva1,D.V.Shchepotkin2, M.M. Chunkov3,A.V. Surov1 WINTER WONDERS OF THE COMMON HAMSTER. TOUTH RECORDS AND THERMOLOGGING 1Kol’tsov Institute of Developmental Biology, RAS 2 Severtsov Institute of Ecology and Evolution, RAS 3Precaspian Institute of Biological Resources, Dagestan Scientific Center, RAS M. newtoni M. brandti M. n M. raddei Who is my closest relative, that’s the question? Cricetus cricetus Allocricetulus eversmanni A. curtatus Divergence time of Mesocricetus and Cricetus group (Cricetulus, Tscherskia, Cricetus, and Allocricetulus) is about 7.6–8.1 MY (Neumann et al., 2006). At the same time divergence between Cricetus and Allocricetulus genera is about 2 MY. Genetically and by a number of other biological features, the common hamster is the closest relative with Eversmann hamsters A. curtatus It is the first wonder of the common hamster – in taxonomy Subfamily Cricetinae demonstrates the whole spectrum of diversity - from the species with torpors to obligate and facultative hibernation. Torpid species Facultative hibernators Obligate hibernators Genera Phodopus, Genera Allocricetulus, Genus Mesocricetus Cricetulus Cricetus The hibernation of some Mesocricetus species looks like obligate hibernation of marmots and ground squirrels (1). It’s may last from 3 to 9 months, but it is periodically interrupted by short -for 6–10 h - awakenings. The maximum duration of uninterrupted hypothermia in M. raddei last 12 days and in some marmots up to 22 days, Body temperature record for ____________ Marmot male April October December February M. raddei male The hibernation of the common hamster (A) looks different compare to hibernation of M.
    [Show full text]
  • Lessons from the Hamster
    LESSONS FROM THE HAMSTER: CHARACTERIZATION OF CHINESE HAMSTER OVARY (CHO) CELL LINES AND CRICETULUS GRISEUS TISSUES VIA PROTEOMICS AND GLYCOPROTEOMICS by Kelley Marie Heffner A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland August, 2017 © 2017 Kelley Marie Heffner All Rights Reserved Abstract Chinese hamster ovary (CHO) cells were isolated in the late 1950’s and have been the workhorse of biotherapeutics production for decades. While previous efforts compared CHO cell lines by proteomics, research into the original Chinese hamster (Cricetulus griseus) host has not been conducted. Thus, we sought to understand proteomic differences across CHO-S and CHO DG44 cell lines in relation to brain, heart, kidney, liver, lung, ovary, and spleen tissues. As glycosylation is critical for recombinant protein quality, we additionally performed a glycoproteomics and sialoproteomics analysis of wild-type and mutant CHO cell lines that differ in glycosylation capacity. First, wild-type CHO was compared with tunicamycin-treated CHO and Lec9.4a cells, a mutant CHO cell line which shows 50% of wild-type glycosylation levels. A total of 381 glycoproteins were identified, including heavily-glycosylated membrane proteins and transporters. Proteins related to glycosylation downregulated in Lec9.4a include alpha-(1,3)-fucosyltransferase and dolichyl- diphosphooligosaccharide-protein glycosyltransferase subunit 1. Next, wild-type Pro-5 CHO was compared with Lec2 cells, which have a mutation in CMP-sialic acid transporter that reduces sialylation. A total of 272 sialylated proteins were identified. Downregulated sialoproteins, including dolichyl- diphosphooligosaccharide-protein glycosyltransferase subunit STT3A and beta-1,4- galactosyltransferase 3, detect glycosylation defects.
    [Show full text]
  • Hankering for a Hamster
    01_57440x ch01.qxd 8/26/04 9:51 PM Page 1 Chapter 1 Hankering for a Hamster In This Chapter ᮣ Getting acquainted ᮣ Tracing the hamster’s path to domesticity ᮣ Meeting the species of pet hamsters ᮣ Examining hamster anatomy he old comic line “What’s not to like?” fits hamsters perfectly. TWith their bright, inquisitive faces, agile bodies, and deft little paws, they’ve been engaging and entertaining families for generations. Your decision to purchase a hamster may have been prompted by memories of a childhood friend. But whether this is your first ham- ster or just the first one you’ve had since you earned your allowance by cleaning the cage, you’ll want to know how to make life safe and fun for your new companion, for yourself, and for your family. How to Use This Book Hamsters are hoarders, who stuff their cheek pouches full of good- ies they may want to eat later. Think of this book the same way: as your secret cache of knowledge that you can use a little at a time, or all at once. You may have picked up this book along with your new hamsterCOPYRIGHTED at the pet shop, or maybe youMATERIAL decided to read up on these animals before making a purchase. No matter where you started, this book tells you where to go next. If you’re interested in the history of the breed, I’ve included some tidbits of olde hamster for you to enjoy, but if you want to cut to the chase, I’ve made that easy too.
    [Show full text]
  • Common Hamster Cricetus Cricetus
    Common Hamster Cricetus cricetus Habitats Directive – Annex IV 1 Cricetus cricetus has a wide range that extends from Western Europe to Russia and Kazaskstan and beyond. AT BE BU CY CZ DE DK EE EL ES FI FR HU IR Present IT LV LT LU MA NL PL PT RO SL SV SE UK Present SPECIES INFORMATION ECOLOGY • The common hamster is a small mammal that lives for 1-2 years; because it is so short-lived it needs to produce 2 litters a year just to maintain its population levels; • The hamster lives in underground burrows. A typical burrow is usually several meters long and 0.5 – 2 m below the surface. It consists of a dwelling chamber, food stores, and toilet pits; • Hamsters are very territorial and one burrow is used by one individual only (except for when the mother has young); • Males occupy a larger territory (0,5-2ha) than females (0,1-0,6ha). The male is polygamous and will have several females within its territory; • Main period of reproduction is from early June to end of August. Each female usually produces two litters a year, the gestation period is 17-21 days and litter size can vary from 2-8 young depending on local conditions and food availability. The young become independent after 4-5 weeks; • Hamsters have occasional population explosions. In outbreak years, populations can increase 100 fold. The causes are not well known. Within the EU such population explosions have not occurred for many years, probably because of the species’ poor conservation status; • Hamsters often hibernate in their burrows during the winter; hibernation usually lasts from September/October to April but hibernation periods can alternate with wakeful phases during which the animal feeds on its winter stores; • The hamster’s diet consists of wheat and other cereals, clover, alfalfa, bean, rape, beet, potato tubers… which are collected from the ground.
    [Show full text]
  • Hamster Melatonin Receptors: Cloning and Binding Characterization of MT₁ and Attempt to Clone MT₂
    Hamster Melatonin Receptors: Cloning and Binding Characterization of MT and Attempt to Clone MT. Célia Gautier, Emilie Dufour, Clémence Dupré, Giulia Lizzo, Sarah Caignard, Isabelle Riest-Fery, Chantal Brasseur, Celine Legros, Philippe Delagrange, Olivier Nosjean, et al. To cite this version: Célia Gautier, Emilie Dufour, Clémence Dupré, Giulia Lizzo, Sarah Caignard, et al.. Hamster Mela- tonin Receptors: Cloning and Binding Characterization of MT and Attempt to Clone MT.. In- ternational Journal of Molecular Sciences, MDPI, 2018, 19 (7), pp.1957. 10.3390/ijms19071957. hal-02390091 HAL Id: hal-02390091 https://hal.archives-ouvertes.fr/hal-02390091 Submitted on 28 Aug 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. International Journal of Molecular Sciences Article Hamster Melatonin Receptors: Cloning and Binding Characterization of MT1 and Attempt to Clone MT2 Célia Gautier 1,2, Emilie Dufour 1, Clémence Dupré 1, Giulia Lizzo 1, Sarah Caignard 1, Isabelle Riest-Fery 1, Chantal Brasseur 1,Céline Legros 1, Philippe Delagrange 1, Olivier Nosjean
    [Show full text]
  • Hamsters by Catherine Love, DVM Updated 2021
    Hamsters By Catherine Love, DVM Updated 2021 Natural History Hamsters are a group of small rodents belonging to the same family as lemmings, voles, and new world rats and mice. There are at least 19 species of hamster, which vary from the large Syrian/golden hamster (Mesocricetus auratus), to the tiny dwarf hamster (Phodopus spp.). Syrian hamsters are the most popular pet hamsters, and also come in a long haired variety commonly known as “teddy bears”. There are numerous species of dwarf hamsters that may have multiple common names. The Djungarian dwarf (P. sungorus) is also sometimes called the “winter white dwarf” due to the fact that they may turn white during winter. Roborowski (Robo) dwarfs (P. roborovskii) are the smallest species of hamster, and also quite fast. The third type of dwarf hamster commonly kept is the Campbell’s dwarf (P. campbelli). Chinese or striped hamsters (Cricetulus griseus) can be distinguished from other species due to their comparatively long tail. The original pet and laboratory hamsters originated from a group of Syrian hamsters removed from wild burrows and bred in captivity. Wild hamsters are native to numerous countries in Europe and Asia. They spend most daylight hours underground to protect themselves from predators and are considered burrowing animals. While most wild hamster species are considered “Least Concern” by the IUCN, the European hamster is critically endangered due to habitat loss, pollution, and historical trapping for fur. Characteristics and Behavior Both Syrian and dwarf hamsters are very commonly found in pet stores. With gentle, consistent handling, hamsters can be tamed into fairly docile and easy to handle pets, but it is not uncommon for them to be bitey and skittish.
    [Show full text]
  • The Distribution and Genetic Diversity of the Common Hamster Cricetus Cricetus in Central and Western Romania
    Folia Zool. – 64 (2): 173–182 (2015) The distribution and genetic diversity of the common hamster Cricetus cricetus in Central and Western Romania Zsolt HEGYELI1,3*, Attila KECSKÉS1 , Zofia KORBUT2 and Agata BANASZEK2 1 Mammal Conservation Working Group, ”Milvus Group” Bird and Nature Protection Association, Crinului 22, Târgu Mureş, Romania; e-mail: [email protected] 2 Institute of Biology, University of Białystok, Świerkowa 20B, 15-950 Białystok, Poland; e-mail: [email protected] 3 Faculty of Sciences, Lucian Blaga University of Sibiu, Dr. I. Rațiu 5-7, Sibiu, Romania Received 22 April 2015; Accepted 20 July 2015 Abstract. The existing literature, museum records, personal reports of field biologists and our own field results were compiled to assess the present distribution of the common hamster within Transylvania and the Pannonian Plain of Romania. Combining available distribution data and the existence of natural barriers we were able to designate five, possibly separate, populations: the Pannonian Plain, the Transylvanian Plateau, the Olt Valley, the Braşov Depression and the Ciuc Depression population. The Pannonian Plain and the Transylvanian Plateau populations showed mass outbreaks in recent years. Twenty three individuals were available for the genetic analyses. The populations belonged to the Pannonia lineage, based on the sequences of 16SrRNA, cytb and ctr of mtDNA. In general we found very high diversity in mtDNA and 16 microsatellite loci. Moreover the most common ctr haplotypes for the Transylvanian Plateau were also present in the Pannonian Plain population and in populations from Hungary and Slovakia, which indicates recent or even current exchange of individuals. Summing up, recent mass outbreaks and high levels of genetic diversity, with some indication of current or very recent gene flow, showed that Romanian populations are in good state, at least compared to many other European countries.
    [Show full text]
  • List of Taxa for Which MIL Has Images
    LIST OF 27 ORDERS, 163 FAMILIES, 887 GENERA, AND 2064 SPECIES IN MAMMAL IMAGES LIBRARY 31 JULY 2021 AFROSORICIDA (9 genera, 12 species) CHRYSOCHLORIDAE - golden moles 1. Amblysomus hottentotus - Hottentot Golden Mole 2. Chrysospalax villosus - Rough-haired Golden Mole 3. Eremitalpa granti - Grant’s Golden Mole TENRECIDAE - tenrecs 1. Echinops telfairi - Lesser Hedgehog Tenrec 2. Hemicentetes semispinosus - Lowland Streaked Tenrec 3. Microgale cf. longicaudata - Lesser Long-tailed Shrew Tenrec 4. Microgale cowani - Cowan’s Shrew Tenrec 5. Microgale mergulus - Web-footed Tenrec 6. Nesogale cf. talazaci - Talazac’s Shrew Tenrec 7. Nesogale dobsoni - Dobson’s Shrew Tenrec 8. Setifer setosus - Greater Hedgehog Tenrec 9. Tenrec ecaudatus - Tailless Tenrec ARTIODACTYLA (127 genera, 308 species) ANTILOCAPRIDAE - pronghorns Antilocapra americana - Pronghorn BALAENIDAE - bowheads and right whales 1. Balaena mysticetus – Bowhead Whale 2. Eubalaena australis - Southern Right Whale 3. Eubalaena glacialis – North Atlantic Right Whale 4. Eubalaena japonica - North Pacific Right Whale BALAENOPTERIDAE -rorqual whales 1. Balaenoptera acutorostrata – Common Minke Whale 2. Balaenoptera borealis - Sei Whale 3. Balaenoptera brydei – Bryde’s Whale 4. Balaenoptera musculus - Blue Whale 5. Balaenoptera physalus - Fin Whale 6. Balaenoptera ricei - Rice’s Whale 7. Eschrichtius robustus - Gray Whale 8. Megaptera novaeangliae - Humpback Whale BOVIDAE (54 genera) - cattle, sheep, goats, and antelopes 1. Addax nasomaculatus - Addax 2. Aepyceros melampus - Common Impala 3. Aepyceros petersi - Black-faced Impala 4. Alcelaphus caama - Red Hartebeest 5. Alcelaphus cokii - Kongoni (Coke’s Hartebeest) 6. Alcelaphus lelwel - Lelwel Hartebeest 7. Alcelaphus swaynei - Swayne’s Hartebeest 8. Ammelaphus australis - Southern Lesser Kudu 9. Ammelaphus imberbis - Northern Lesser Kudu 10. Ammodorcas clarkei - Dibatag 11. Ammotragus lervia - Aoudad (Barbary Sheep) 12.
    [Show full text]
  • Phylogeographic Structure of the Common Hamster (Cricetus Cricetus L.): Late Pleistocene Connections Between Caucasus and Western European Populations
    RESEARCH ARTICLE Phylogeographic structure of the Common hamster (Cricetus cricetus L.): Late Pleistocene connections between Caucasus and Western European populations Natalia Yu. Feoktistova*, Ilya G. Meschersky, Pavel L. Bogomolov, Alexandra S. Sayan, Natalia S. Poplavskaya, Alexey V. Surov A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Leninsky pr., Moscow, Russia a1111111111 a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract The Common hamster (Cricetus cricetus) is one of the most endangered mammals in West- ern and Central Europe. Its genetic diversity in Russia and Kazakhstan was investigated for the first time. The analysis of sequences of an mtDNA control region and cytochrome b OPEN ACCESS gene revealed at least three phylogenetic lineages. Most of the species range (approxi- Citation: Feoktistova NY, Meschersky IG, 2 Bogomolov PL, Sayan AS, Poplavskaya NS, Surov mately 3 million km ), including central Russia, Crimea, the Ural region, and northern AV (2017) Phylogeographic structure of the Kazakhstan), is inhabited by a single, well-supported phylogroup, E0. Phylogroup E1, previ- Common hamster (Cricetus cricetus L.): Late ously reported from southeastern Poland and western Ukraine, was first described from Pleistocene connections between Caucasus and Russia (Bryansk Province). E0 and E1 are sister lineages but both are monophyletic and Western European populations. PLoS ONE 12(11): e0187527. https://doi.org/10.1371/journal. separated by considerable genetic distance. Hamsters inhabiting Ciscaucasia represent a pone.0187527 separate, distant phylogenetic lineage, named ªCaucasusº. It is sister to the North phy- Editor: Tzen-Yuh Chiang, National Cheng Kung logroup from Western Europe and the contemporary phylogeography for this species is dis- University, TAIWAN cussed considering new data.
    [Show full text]