polymers Review Review on the Impact of Polyols on the Properties of Bio-Based Polyesters Kening Lang 1 , Regina J. Sánchez-Leija 1,2, Richard A. Gross 1,3,* and Robert J. Linhardt 1,3,4,* 1 Department of Chemistry and Chemical Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA;
[email protected] (K.L.);
[email protected] (R.J.S.-L.) 2 Pritzker School of Molecular Engineering, The University of Chicago, 5640 S Ellis Ave, Chicago, IL 60637, USA 3 Department of Biomedical Engineering and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA 4 Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY 12180, USA * Correspondence:
[email protected] (R.A.G.);
[email protected] (R.J.L.); Tel.: +1-518-276-3734 (R.A.G.); +1-518-276-3404 (R.J.L.) Received: 25 November 2020; Accepted: 9 December 2020; Published: 12 December 2020 Abstract: Bio-based polyol polyesters are biodegradable elastomers having potential utility in soft tissue engineering. This class of polymers can serve a wide range of biomedical applications. Materials based on these polymers are inherently susceptible to degradation during the period of implantation. Factors that influence the physicochemical properties of polyol polyesters might be useful in achieving a balance between durability and biodegradability. The characterization of these polyol polyesters, together with recent comparative studies involving creative synthesis, mechanical testing, and degradation, have revealed many of their molecular-level differences. The impact of the polyol component on the properties of these bio-based polyesters and the optimal reaction conditions for their synthesis are only now beginning to be resolved.