Earthquake Basics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tracking Triggering Mechanisms for Soft-Sediment Deformation Structures in the Late Cretaceous Uberaba Formation, Bauru Basin, Brazil
SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S DOI: 10.1590/2317-4889202020190100 Brazilian Journal of Geology D ESDE 1946 Tracking triggering mechanisms for soft-sediment deformation structures in the Late Cretaceous Uberaba Formation, Bauru Basin, Brazil Luciano Alessandretti1* , Lucas Veríssimo Warren2 , Maurício Guerreiro Martinho dos Santos3 , Matheus Carvalho Virga1 Abstract Soft-sediment deformation (SSD) structures are widespread in the sedimentary record, and numerous triggering mechanisms can induce its development, including glaciation, earthquakes, overloading, ground-water fluctuations, and wave movement. The Late Cretaceous Ubera- ba Formation preserves SSD structures as small- and large-scale load casts and associated flame structures, pseudonodules, and convolute laminations observed in the contact of three well-defined intervals among fine- to coarse-grained lithic and conglomeratic sandstone with fine-grained arkose and mudstone beds. Based on the morphology of the SSD structures, sedimentary facies of the Uberaba Formation, and similarities with previous observations in the geological record and laboratory models, these features are assigned to liquefaction-fluidization processes as the major deformational mechanism triggered by seismic and aseismic agents. We propose that a deformation occurred just after the sedimentation triggered by seismic shock waves and overloading, induced by the sudden deposition of coarse-grained sandy debris on fine-grained sediments. Some of these structures can be classified as seismites, providing evidence of intraplate seismicity within the inner part of the South American Platform during the Late Cretaceous. This seismic activity is likely related to the uplift of the Alto Paranaíba High along reactivations of regional structures inherited from Proterozoic crustal discontinuities and coeval explosive magmatism of the Minas- Goiás Alkaline Province. -
Seismic Wavefield Imaging of Earth's Interior Across Scales
TECHNICAL REVIEWS Seismic wavefield imaging of Earth’s interior across scales Jeroen Tromp Abstract | Seismic full- waveform inversion (FWI) for imaging Earth’s interior was introduced in the late 1970s. Its ultimate goal is to use all of the information in a seismogram to understand the structure and dynamics of Earth, such as hydrocarbon reservoirs, the nature of hotspots and the forces behind plate motions and earthquakes. Thanks to developments in high- performance computing and advances in modern numerical methods in the past 10 years, 3D FWI has become feasible for a wide range of applications and is currently used across nine orders of magnitude in frequency and wavelength. A typical FWI workflow includes selecting seismic sources and a starting model, conducting forward simulations, calculating and evaluating the misfit, and optimizing the simulated model until the observed and modelled seismograms converge on a single model. This method has revealed Pleistocene ice scrapes beneath a gas cloud in the Valhall oil field, overthrusted Iberian crust in the western Pyrenees mountains, deep slabs in subduction zones throughout the world and the shape of the African superplume. The increased use of multi- parameter inversions, improved computational and algorithmic efficiency , and the inclusion of Bayesian statistics in the optimization process all stand to substantially improve FWI, overcoming current computational or data- quality constraints. In this Technical Review, FWI methods and applications in controlled- source and earthquake seismology are discussed, followed by a perspective on the future of FWI, which will ultimately result in increased insight into the physics and chemistry of Earth’s interior. -
Earthquake Measurements
EARTHQUAKE MEASUREMENTS The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs1. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. Seismograph/Seismometer Earthquake recording instrument, seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free2. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is Seismograph what is recorded. Measuring Size of Earthquakes The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake2. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip. -
Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes
Characteristics of Foreshocks and Short Term Deformation in the Source Area of Major Earthquakes Peter Molnar Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, Massachusetts 02139 USGS CONTRACT NO. 14-08-0001-17759 Supported by the EARTHQUAKE HAZARDS REDUCTION PROGRAM OPEN-FILE NO.81-287 U.S. Geological Survey OPEN FILE REPORT This report was prepared under contract to the U.S. Geological Survey and has not been reviewed for conformity with USGS editorial standards and stratigraphic nomenclature. Opinions and conclusions expressed herein do not necessarily represent those of the USGS. Any use of trade names is for descriptive purposes only and does not imply endorsement by the USGS. Appendix A A Study of the Haicheng Foreshock Sequence By Lucile Jones, Wang Biquan and Xu Shaoxie (English Translation of a Paper Published in Di Zhen Xue Bao (Journal of Seismology), 1980.) Abstract We have examined the locations and radiation patterns of the foreshocks to the 4 February 1978 Haicheng earthquake. Using four stations, the foreshocks were located relative to a master event. They occurred very close together, no more than 6 kilo meters apart. Nevertheless, there appear to have been too clusters of foreshock activity. The majority of events seem to have occurred in a cluster to the east of the master event along a NNE-SSW trend. Moreover, all eight foreshocks that we could locate and with a magnitude greater than 3.0 occurred in this group. The're also "appears to be a second cluster of foresfiocks located to the northwest of the first. Thus it seems possible that the majority of foreshocks did not occur on the rupture plane of the mainshock, which trends WNW, but on another plane nearly perpendicualr to the mainshock. -
Source Parameters of the 1933 Long Beach Earthquake
Bulletin of the Seismological Society of America, Vol. 81, No. 1, pp. 81- 98, February 1991 SOURCE PARAMETERS OF THE 1933 LONG BEACH EARTHQUAKE BY EGILL HAUKSSON AND SUSANNA GROSS ABSTRACT Regional seismographic network and teleseismic data for the 1933 (M L -- 6.3) Long Beach earthquake sequence have been analyzed, Both the teleseismic focal mechanism of the main shock and the distribution of the aftershocks are consistent with the event having occurred on the Newport-lnglewood fault. The focal mechanism had a strike of 315 °, dip of 80 o to the northeast, and rake of - 170°. Relocation of the foreshock- main shock-aftershock sequence using modern events as fixed refer- ence events, shows that the rupture initiated near the Huntington Beach-Newport Beach City boundary and extended unilaterally to the northwest to a distance of 13 to 16 km. The centroidal depth was 10 +_ 2 km. The total source duration was 5 sec, and the seismic moment was 5.102s dyne-cm, which corresponds to an energy magnitude of M w = 6.4. The source radius is estimated to have been 6.6 to 7.9 km, which corresponds to a Brune stress drop of 44 to 76 bars. Both the spatial distribution of aftershocks and inversion for the source time function suggest that the earthquake may have consisted of at least two subevents. When the slip estimate from the seismic moment of 85 to 120 cm is compared with the long-term geological slip rate of 0.1 to 1.0 mm I yr along the Newport-lnglewood fault, the 1933 earthquake has a repeat time on the order of a few thousand years. -
Chapter 2 the Evolution of Seismic Monitoring Systems at the Hawaiian Volcano Observatory
Characteristics of Hawaiian Volcanoes Editors: Michael P. Poland, Taeko Jane Takahashi, and Claire M. Landowski U.S. Geological Survey Professional Paper 1801, 2014 Chapter 2 The Evolution of Seismic Monitoring Systems at the Hawaiian Volcano Observatory By Paul G. Okubo1, Jennifer S. Nakata1, and Robert Y. Koyanagi1 Abstract the Island of Hawai‘i. Over the past century, thousands of sci- entific reports and articles have been published in connection In the century since the Hawaiian Volcano Observatory with Hawaiian volcanism, and an extensive bibliography has (HVO) put its first seismographs into operation at the edge of accumulated, including numerous discussions of the history of Kīlauea Volcano’s summit caldera, seismic monitoring at HVO HVO and its seismic monitoring operations, as well as research (now administered by the U.S. Geological Survey [USGS]) has results. From among these references, we point to Klein and evolved considerably. The HVO seismic network extends across Koyanagi (1980), Apple (1987), Eaton (1996), and Klein and the entire Island of Hawai‘i and is complemented by stations Wright (2000) for details of the early growth of HVO’s seismic installed and operated by monitoring partners in both the USGS network. In particular, the work of Klein and Wright stands and the National Oceanic and Atmospheric Administration. The out because their compilation uses newspaper accounts and seismic data stream that is available to HVO for its monitoring other reports of the effects of historical earthquakes to extend of volcanic and seismic activity in Hawai‘i, therefore, is built Hawai‘i’s detailed seismic history to nearly a century before from hundreds of data channels from a diverse collection of instrumental monitoring began at HVO. -
Temporal and Spatial Evolution Analysis of Earthquake Events in California and Nevada Based on Spatial Statistics
International Journal of Geo-Information Article Temporal and Spatial Evolution Analysis of Earthquake Events in California and Nevada Based on Spatial Statistics Weifeng Shan 1,2 , Zhihao Wang 2, Yuntian Teng 1,* and Maofa Wang 3 1 Institute of Geophysics, China Earthquake Administration, Beijing 100081, China; [email protected] 2 School of Emergency Management, Institute of Disaster Prevention, Langfang 065201, China; [email protected] 3 School of Computer and Information Security, Guilin University of Electronic Science and Technology, Guilin 541004, China; [email protected] * Correspondence: [email protected] Abstract: Studying the temporal and spatial evolution trends in earthquakes in an area is beneficial for determining the earthquake risk of the area so that local governments can make the correct decisions for disaster prevention and reduction. In this paper, we propose a new method for analyzing the temporal and spatial evolution trends in earthquakes based on earthquakes of magnitude 3.0 or above from 1980 to 2019 in California and Nevada. The experiment’s results show that (1) the frequency of earthquake events of magnitude 4.5 or above present a relatively regular change trend of decreasing–rising in this area; (2) by using the weighted average center method to analyze the spatial concentration of earthquake events of magnitude 3.0 or above in this region, we find that the weighted average center of the earthquake events in this area shows a conch-type movement law, where it moves closer to the center from all sides; (3) the direction of the spatial distribution of earthquake events in this area shows a NW–SE pattern when the standard deviational ellipse (SDE) Citation: Shan, W.; Wang, Z.; Teng, method is used, which is basically consistent with the direction of the San Andreas Fault Zone across Y.; Wang, M. -
Chapter 4: Earthquakes and Human Activities
Chapter 4: Earthquakes and Human Activities Anatolian vs. San Andreas Fault (Figure 1) The Nature of Earthquakes ¾ Earthquakes occur along faults, or ruptures/fractures in the lithosphere (where movement takes place along the fracture). How and when does this fracturing take place? ¾ Elastic Rebound Theory (Harold Reid, 1906) ¾ Stress: force per unit area ¾ Strain: deformation Stress produces strain Types of Faults Two major groups with 2 subtypes each Group 1: Dip Slip Faults 1) Normal Stress type: 2) Reverse Stress type: Group 2: Strike Slip Faults Stress Type: 1) Right Lateral 2) Left Lateral Fault Nomenclature ¾ Movement along the fault blocks produces friction. We know this friction as an Earthquake. When Earthquakes occur, energy waves are released. These waves can be divided into two major groups, body waves and surface waves. Body waves- travel through the interior of the Earth 1) P Waves (Longitudinal Waves) 2) S Waves (Transverse Waves) Surface waves- travel near the surface 1) Love Waves 2) Raleigh Waves Locating the Epicenter ¾ Seismograph: instrument designed specifically to detect, measure, and record vibrations in the Earth’s crust. ¾ Seismogram: data recorded on paper (typically) from an earthquake event. ¾ Mapping epicenters has been characteristically done via triangulation. Earthquake Measurement ¾ First known earthquake measuring device- Chang Heng, China- 130 A.D. ¾ Modified Mercalli Scale – measures intensity of an earthquake o Utilizes roman numerals o Utilizes human perceptions (typically from questionnaires) o Isoseismals are generated from perceptions and then plotted on maps these plots can then be used to look for areas of weak soil or rock as well as areas of substandard building construction. -
PEAT8002 - SEISMOLOGY Lecture 13: Earthquake Magnitudes and Moment
PEAT8002 - SEISMOLOGY Lecture 13: Earthquake magnitudes and moment Nick Rawlinson Research School of Earth Sciences Australian National University Earthquake magnitudes and moment Introduction In the last two lectures, the effects of the source rupture process on the pattern of radiated seismic energy was discussed. However, even before earthquake mechanisms were studied, the priority of seismologists, after locating an earthquake, was to quantify their size, both for scientific purposes and hazard assessment. The first measure introduced was the magnitude, which is based on the amplitude of the emanating waves recorded on a seismogram. The idea is that the wave amplitude reflects the earthquake size once the amplitudes are corrected for the decrease with distance due to geometric spreading and attenuation. Earthquake magnitudes and moment Introduction Magnitude scales thus have the general form: A M = log + F(h, ∆) + C T where A is the amplitude of the signal, T is its dominant period, F is a correction for the variation of amplitude with the earthquake’s depth h and angular distance ∆ from the seismometer, and C is a regional scaling factor. Magnitude scales are logarithmic, so an increase in one unit e.g. from 5 to 6, indicates a ten-fold increase in seismic wave amplitude. Note that since a log10 scale is used, magnitudes can be negative for very small displacements. For example, a magnitude -1 earthquake might correspond to a hammer blow. Earthquake magnitudes and moment Richter magnitude The concept of earthquake magnitude was introduced by Charles Richter in 1935 for southern California earthquakes. He originally defined earthquake magnitude as the logarithm (to the base 10) of maximum amplitude measured in microns on the record of a standard torsion seismograph with a pendulum period of 0.8 s, magnification of 2800, and damping factor 0.8, located at a distance of 100 km from the epicenter. -
Paper 4: Seismic Methods for Determining Earthquake Source
Paper 4: Seismic methods for determining earthquake source parameters and lithospheric structure WALTER D. MOONEY U.S. Geological Survey, MS 977, 345 Middlefield Road, Menlo Park, California 94025 For referring to this paper: Mooney, W. D., 1989, Seismic methods for determining earthquake source parameters and lithospheric structure, in Pakiser, L. C., and Mooney, W. D., Geophysical framework of the continental United States: Boulder, Colorado, Geological Society of America Memoir 172. ABSTRACT The seismologic methods most commonly used in studies of earthquakes and the structure of the continental lithosphere are reviewed in three main sections: earthquake source parameter determinations, the determination of earth structure using natural sources, and controlled-source seismology. The emphasis in each section is on a description of data, the principles behind the analysis techniques, and the assumptions and uncertainties in interpretation. Rather than focusing on future directions in seismology, the goal here is to summarize past and current practice as a companion to the review papers in this volume. Reliable earthquake hypocenters and focal mechanisms require seismograph locations with a broad distribution in azimuth and distance from the earthquakes; a recording within one focal depth of the epicenter provides excellent hypocentral depth control. For earthquakes of magnitude greater than 4.5, waveform modeling methods may be used to determine source parameters. The seismic moment tensor provides the most complete and accurate measure of earthquake source parameters, and offers a dynamic picture of the faulting process. Methods for determining the Earth's structure from natural sources exist for local, regional, and teleseismic sources. One-dimensional models of structure are obtained from body and surface waves using both forward and inverse modeling. -
Modelling Seismic Wave Propagation for Geophysical Imaging J
Modelling Seismic Wave Propagation for Geophysical Imaging J. Virieux, V. Etienne, V. Cruz-Atienza, R. Brossier, E. Chaljub, O. Coutant, S. Garambois, D. Mercerat, V. Prieux, S. Operto, et al. To cite this version: J. Virieux, V. Etienne, V. Cruz-Atienza, R. Brossier, E. Chaljub, et al.. Modelling Seismic Wave Propagation for Geophysical Imaging. Seismic Waves - Research and Analysis, Masaki Kanao, 253- 304, Chap.13, 2012, 978-953-307-944-8. hal-00682707 HAL Id: hal-00682707 https://hal.archives-ouvertes.fr/hal-00682707 Submitted on 5 Apr 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 130 Modelling Seismic Wave Propagation for Geophysical Imaging Jean Virieux et al.1,* Vincent Etienne et al.2†and Victor Cruz-Atienza et al.3‡ 1ISTerre, Université Joseph Fourier, Grenoble 2GeoAzur, Centre National de la Recherche Scientifique, Institut de Recherche pour le développement 3Instituto de Geofisica, Departamento de Sismologia, Universidad Nacional Autónoma de México 1,2France 3Mexico 1. Introduction − The Earth is an heterogeneous complex media from -
Three New Fundamental Problems in Physics of the Aftershocks
arXiv 2020 Three New Fundamental Problems in Physics of the Aftershocks Anatol V. Guglielmi, Alexey D. Zavyalov, Oleg D. Zotov Institute of Physics of the Earth RAS, Moscow, Russia [email protected], [email protected], [email protected] Abstract Recently, the physics of aftershocks has been enriched by three new problems. We will conditionally call them dynamic, inverse, and morphological problems. They were clearly formulated, partially resolved and are fundamental. Dynamic problem is to search for the cumulative effect of a round-the-world seismic echo appearing after the mainshock of earthquake. According to the theory, a converging surface seismic wave excited by the main shock returns to the epicenter about 3 hours after the main shock and stimulates the excitation of a strong aftershock. Our observations confirm the theoretical expectation. The second problem is an adequate description of the averaged evolution of the aftershock flow. We introduced a new concept about the coefficient of deactivation of the earthquake source, “cooling down” after the main mainshock, and proposed an equation that describes the evolution of aftershocks. Based on the equation of evolution, we posed and solved the inverse problem of the physics of the earthquake source and created an Atlas of aftershocks demonstrating the diversity of variations of the deactivation coefficient. The third task is to model the spatial and spatio-temporal distribution of aftershocks. Its solution refines our understanding of the structure of the earthquake source. We also discuss in detail interesting unsolved problems in the physics of aftershocks. Keywords: round-the-world echo, deactivation coefficient, evolution equation, inverse problem, spatio-temporal distribution of aftershocks 1 1.