Source Parameters of the 1933 Long Beach Earthquake

Total Page:16

File Type:pdf, Size:1020Kb

Source Parameters of the 1933 Long Beach Earthquake Bulletin of the Seismological Society of America, Vol. 81, No. 1, pp. 81- 98, February 1991 SOURCE PARAMETERS OF THE 1933 LONG BEACH EARTHQUAKE BY EGILL HAUKSSON AND SUSANNA GROSS ABSTRACT Regional seismographic network and teleseismic data for the 1933 (M L -- 6.3) Long Beach earthquake sequence have been analyzed, Both the teleseismic focal mechanism of the main shock and the distribution of the aftershocks are consistent with the event having occurred on the Newport-lnglewood fault. The focal mechanism had a strike of 315 °, dip of 80 o to the northeast, and rake of - 170°. Relocation of the foreshock- main shock-aftershock sequence using modern events as fixed refer- ence events, shows that the rupture initiated near the Huntington Beach-Newport Beach City boundary and extended unilaterally to the northwest to a distance of 13 to 16 km. The centroidal depth was 10 +_ 2 km. The total source duration was 5 sec, and the seismic moment was 5.102s dyne-cm, which corresponds to an energy magnitude of M w = 6.4. The source radius is estimated to have been 6.6 to 7.9 km, which corresponds to a Brune stress drop of 44 to 76 bars. Both the spatial distribution of aftershocks and inversion for the source time function suggest that the earthquake may have consisted of at least two subevents. When the slip estimate from the seismic moment of 85 to 120 cm is compared with the long-term geological slip rate of 0.1 to 1.0 mm I yr along the Newport-lnglewood fault, the 1933 earthquake has a repeat time on the order of a few thousand years. INTRODUCTION The 1933 Long Beach earthquake was the second largest earthquake (after the 1971 San Fernando earthquake) to strike the Los Angeles area in the twentieth century. It caused extensive damage in the greater Los Angeles area and in particular, throughout the southern part of the Los Angeles basin (Fig. 1). Many hundreds of people were injured and 120 people died (Wood, 1933). This widespread damage was in part caused by the lack of a seismic safety element in building codes (Richter, 1958). The Richter magnitude scale had not been devised at this time, and Wood (1933) described the main shock not as a great earthquake but as "a fairly strong, moderately large local shock." Richter (1935) assigned a magnitude of about 6.2 to the main shock by comparing the recorded amplitudes at Tinemaha and Haiwee in eastern California with the amplitudes of a M L = 5.5 aftershock. Later, Rich'ter (1958) refers to the more commonly known value of M L = 6.3 of the 1933 earthquake. In the late 1920s, the Caltech seismographic network with seven stations was installed to monitor earthquake activity in southern California (Wood, 1933). The 1933 Long Beach earthquake was the first damaging large earthquake to occur within this network and was well recorded. In addition, the main shock was recorded by three strong motion accelerographs, one in Long Beach and two in downtown Los Angeles (Heck, 1933; Heck and Neumann, 1933). The earth- 81 82 E. HAUKSSON AND S. GROSS T T i i a'2 o' i i if" oo' S I i 0 /[, AREA OF SERIOUS DAMAGE TO WEAK MASONRY &MOUNT WILSON ( MODIFIED MERCALLI G A B R l ~" L M 0 U N "I- A l N INTENSITY -Ol'rr ) h,~/~ ........ OUATERNARY ALLUVIUM PASADENA .. l ...................::::: c'..., ::........ :"~ oo, ........ ........ .......... O oMO-- .,,"' ,..," .......... %. " r WHITTtE~,,,.,d:' 34"o0'" \ I~ ..... ~x ~ ''['~..,"~.OCT. "22 1941 ~"~#:.. ............ -- ,~ "4. v..%~uEs °~/~i'~"~-~ ~ ;% ' k_)G~ovE ] ', 4~ oo, ..... Y ............. *4 \ ....... .......... % \ - ,0" -- ~ HUNTINGTON'~%I~ // .......%, "~ ,Z~ . f'3~4o' uC, ~ , EACH "%'~.,~,~" # '... ., ,,:7/ ',,c "~ <" 4~'-'¢ 4/ ~ ............., , , ,OKM. *'.9 MAR lO 1933 0 * i n I0 MILES FIG. 1. Map of the Los Angeles and Orange County areas shaken by the 1933 Long Beach earthquake. Important epicenters (solid circles) and the Modified Mercalli intensity line of VIII are also shown. Dotted curve outlines the Quaternary alluvium. Solid triangles indicate the location of seismograph stations. Adopted from Richter (1958) with modifications from Barrows (1974). quake was also recorded at teleseismic distances by long-period seismographs in operation throughout the world and, in particular, in the United States and many European countries. The 1933 Long Beach earthquake has not been studied in as much detail as some other similar damaging earthquakes, such as the 1971 San Fernando earthquake. This paper reanalyzes some of these old regional and teleseismic data using modern techniques to enhance our understanding of this sequence and to confirm or negate previous findings. Newer and more advanced tech- niques make it possible to resolve more of the temporal and spatial details of the earthquake faulting and to determine or refine the existing estimates of source parameters such as focal mechanism, seismic moment, and centroidal depth for the main shock. At the time of the earthquake, epicenters were calculated by hand. Because the volume of data was large, many of the aftershocks that occurred during the first few weeks were arbitrarily assigned identical epicenters (Fig. 2; Wood, 1933; C. F. Richter, unpublished data, 1933). Because one reliable felt report was available from south Long Beach, most of the aftershocks were assigned this location (Wood, 1933). It is therefore impossible to evaluate the spatial extent of the aftershock zone or possible spatial clustering of the aftershocks from these locations. The first objective of this study has been to remedy this problem by rereading the old seismograms and relocating the aftershocks. The second major objective of this study is to determine the teleseismic focal mechanism of the main shock. The source mechanism of the 1933 earthquake SOURCE PARAMETERS OF THE 1933 LONG BEACH EARTHQUAKE 83 1933 Long Beach Sequence CIT Catalog; First 6 Days of Aftershocks LOS ~i~ MAGNITUDES Angeles / ~ o 0,0+ .\ • • • , ~ 5.0+ " . ~ 6.0+ 50' Nearly all aftershocks were 'o~ Iz_ . -" assigned this location \ \ 40' \ M=6.3 \ Huntington Beac \ \ \ \ Ne" Beach \\ 0 \ \\ x 20 KM [ I I I I I h i i i I i I I I I I I l l \\\ 33 ° ,\ 20' 10' 118 ° 50' FIG. 2. The epicenters of the main shock and first 6 days of aftershocks as published in the Caltech Earthquake Catalog (Hileman et al., 1973). Events with M >_ 5.3 are shown as stars and events with M < 5.3 are shown as open circles. Most of the events are assigned one location in southern Long Beach. was first studied by Benioff (1938), who used the elastic rebound theory to show that the source was not a point source but had a finite spatial extent. He also reinterpreted the azimuthal distribution of tombstones, as determined by Clements (1933), to show that the faulting was strike-slip. Barrows (1974) reviewed the geological and seismological aspects of the earthquake and argued that the event occurred on the Newport-Inglewood fault (NIF). In a more recent study, Woodward-Clyde (1979) determined a strike-slip focal mechanism that was not consistent with the earthquake being caused by the Newport-Inglewood fault, unless some complex effects of the three-dimensional velocity structure of the Los Angeles Basin were included. Recent studies of the seismotectonics of the Los Angeles basin (Hauksson, 1987, 1990) and compressional structures such as folds (Davis et al., 1989) suggest that thrust faulting in the Los Angeles basin is more common than previously thought. Recently, Suppe (1989) suggested that the NIF has a significant thrust faulting component. Therefore it is important to reevaluate the data from the 1933 Long Beach earthquake to investigate whether it had a significant thrust faulting component. The focal mechanism is also used to determine other source parameters, such as seismic moment and stress drop. The seismic moment estimated by Thatcher 84 E, HAUKSSON AND S. GROSS Seismograph Stotions in 1935 119 ° 118 ° 117 ° FIG. 3. The Caltech seismographic network that began operating in the late 1920s. The stations PV and LG were temporary sites were one portable station was deployed to record the 1933 aftershocks. and Hanks (1973) using a single station determination at Pasadena (PAS) and by Woodward-Clyde (1979) using teleseismic waveforms are reevaluated using the focal mechanism determined in this study. The average stress drop is determined using the seismic moment and the source radius derived from the source time function. EARTHQUAKE LOCATIONS Seismographic Network The Caltech seismographic network in operation at the time of the 1933 earthquake is shown in Figure 3. Richter (unpublished data, 1933) used data from these stations to determine the epicenters of the earthquake and some of the aftershocks. Each station was equipped with both vertical and horizontal seismometers and photographic recording. Two stations, PV and LG, were temporary sites occupied with a portable station for a few days at each site (C. F. Richter, unpublished notes, 1933). Time Corrections To relocate the aftershocks, the P and S arrival times for 94 events were reread from the photographic records. An additional 12 events, with four arrival times each, that C. F. Richter had read himself and listed in his unpublished SOURCE PARAMETERS OF THE 1933 LONG BEACH EARTHQUAKE 85 data were also included in the dataset. The P and S arrival times measured off the records were corrected to a common time base by adding time corrections read from radio records for each station. These radio records are the same size as a seismogram and have the same time ticks generated by the local clock, but they are attached to a short-wave radio that received signals in morse code. Richter determined detailed time corrections for two of the stations, Mount Wilson (MWC) and Riverside (RVR).
Recommended publications
  • Tracking Triggering Mechanisms for Soft-Sediment Deformation Structures in the Late Cretaceous Uberaba Formation, Bauru Basin, Brazil
    SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S DOI: 10.1590/2317-4889202020190100 Brazilian Journal of Geology D ESDE 1946 Tracking triggering mechanisms for soft-sediment deformation structures in the Late Cretaceous Uberaba Formation, Bauru Basin, Brazil Luciano Alessandretti1* , Lucas Veríssimo Warren2 , Maurício Guerreiro Martinho dos Santos3 , Matheus Carvalho Virga1 Abstract Soft-sediment deformation (SSD) structures are widespread in the sedimentary record, and numerous triggering mechanisms can induce its development, including glaciation, earthquakes, overloading, ground-water fluctuations, and wave movement. The Late Cretaceous Ubera- ba Formation preserves SSD structures as small- and large-scale load casts and associated flame structures, pseudonodules, and convolute laminations observed in the contact of three well-defined intervals among fine- to coarse-grained lithic and conglomeratic sandstone with fine-grained arkose and mudstone beds. Based on the morphology of the SSD structures, sedimentary facies of the Uberaba Formation, and similarities with previous observations in the geological record and laboratory models, these features are assigned to liquefaction-fluidization processes as the major deformational mechanism triggered by seismic and aseismic agents. We propose that a deformation occurred just after the sedimentation triggered by seismic shock waves and overloading, induced by the sudden deposition of coarse-grained sandy debris on fine-grained sediments. Some of these structures can be classified as seismites, providing evidence of intraplate seismicity within the inner part of the South American Platform during the Late Cretaceous. This seismic activity is likely related to the uplift of the Alto Paranaíba High along reactivations of regional structures inherited from Proterozoic crustal discontinuities and coeval explosive magmatism of the Minas- Goiás Alkaline Province.
    [Show full text]
  • Seismic Rate Variations Prior to the 2010 Maule, Chile MW 8.8 Giant Megathrust Earthquake
    www.nature.com/scientificreports OPEN Seismic rate variations prior to the 2010 Maule, Chile MW 8.8 giant megathrust earthquake Benoit Derode1*, Raúl Madariaga1,2 & Jaime Campos1 The MW 8.8 Maule earthquake is the largest well-recorded megathrust earthquake reported in South America. It is known to have had very few foreshocks due to its locking degree, and a strong aftershock activity. We analyze seismic activity in the area of the 27 February 2010, MW 8.8 Maule earthquake at diferent time scales from 2000 to 2019. We diferentiate the seismicity located inside the coseismic rupture zone of the main shock from that located in the areas surrounding the rupture zone. Using an original spatial and temporal method of seismic comparison, we fnd that after a period of seismic activity, the rupture zone at the plate interface experienced a long-term seismic quiescence before the main shock. Furthermore, a few days before the main shock, a set of seismic bursts of foreshocks located within the highest coseismic displacement area is observed. We show that after the main shock, the seismic rate decelerates during a period of 3 years, until reaching its initial interseismic value. We conclude that this megathrust earthquake is the consequence of various preparation stages increasing the locking degree at the plate interface and following an irregular pattern of seismic activity at large and short time scales. Giant subduction earthquakes are the result of a long-term stress localization due to the relative movement of two adjacent plates. Before a large earthquake, the interface between plates is locked and concentrates the exter- nal forces, until the rock strength becomes insufcient, initiating the sudden rupture along the plate interface.
    [Show full text]
  • Foreshock Sequences and Short-Term Earthquake Predictability on East Pacific Rise Transform Faults
    NATURE 3377—9/3/2005—VBICKNELL—137936 articles Foreshock sequences and short-term earthquake predictability on East Pacific Rise transform faults Jeffrey J. McGuire1, Margaret S. Boettcher2 & Thomas H. Jordan3 1Department of Geology and Geophysics, Woods Hole Oceanographic Institution, and 2MIT-Woods Hole Oceanographic Institution Joint Program, Woods Hole, Massachusetts 02543-1541, USA 3Department of Earth Sciences, University of Southern California, Los Angeles, California 90089-7042, USA ........................................................................................................................................................................................................................... East Pacific Rise transform faults are characterized by high slip rates (more than ten centimetres a year), predominately aseismic slip and maximum earthquake magnitudes of about 6.5. Using recordings from a hydroacoustic array deployed by the National Oceanic and Atmospheric Administration, we show here that East Pacific Rise transform faults also have a low number of aftershocks and high foreshock rates compared to continental strike-slip faults. The high ratio of foreshocks to aftershocks implies that such transform-fault seismicity cannot be explained by seismic triggering models in which there is no fundamental distinction between foreshocks, mainshocks and aftershocks. The foreshock sequences on East Pacific Rise transform faults can be used to predict (retrospectively) earthquakes of magnitude 5.4 or greater, in narrow spatial and temporal windows and with a high probability gain. The predictability of such transform earthquakes is consistent with a model in which slow slip transients trigger earthquakes, enrich their low-frequency radiation and accommodate much of the aseismic plate motion. On average, before large earthquakes occur, local seismicity rates support the inference of slow slip transients, but the subject remains show a significant increase1. In continental regions, where dense controversial23.
    [Show full text]
  • Earthquake Measurements
    EARTHQUAKE MEASUREMENTS The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs1. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. Seismograph/Seismometer Earthquake recording instrument, seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free2. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is Seismograph what is recorded. Measuring Size of Earthquakes The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake2. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip.
    [Show full text]
  • BY JOHNATHAN EVANS What Exactly Is an Earthquake?
    Earthquakes BY JOHNATHAN EVANS What Exactly is an Earthquake? An Earthquake is what happens when two blocks of the earth are pushing against one another and then suddenly slip past each other. The surface where they slip past each other is called the fault or fault plane. The area below the earth’s surface where the earthquake starts is called the Hypocenter, and the area directly above it on the surface is called the “Epicenter”. What are aftershocks/foreshocks? Sometimes earthquakes have Foreshocks. Foreshocks are smaller earthquakes that happen in the same place as the larger earthquake that follows them. Scientists can not tell whether an earthquake is a foreshock until after the larger earthquake happens. The biggest, main earthquake is called the mainshock. The mainshocks always have aftershocks that follow the main earthquake. Aftershocks are smaller earthquakes that happen afterwards in the same location as the mainshock. Depending on the size of the mainshock, Aftershocks can keep happening for weeks, months, or even years after the mainshock happened. Why do earthquakes happen? Earthquakes happen because all the rocks that make up the earth are full of fractures. On some of the fractures that are known as faults, these rocks slip past each other when the crust rearranges itself in a process known as plate tectonics. But the problem is, rocks don’t slip past each other easily because they are stiff, rough and their under a lot of pressure from rocks around and above them. Because of that, rocks can pull at or push on each other on either side of a fault for long periods of time without moving much at all, which builds up a lot of stress in the rocks.
    [Show full text]
  • Chapter 4: Earthquakes and Human Activities
    Chapter 4: Earthquakes and Human Activities Anatolian vs. San Andreas Fault (Figure 1) The Nature of Earthquakes ¾ Earthquakes occur along faults, or ruptures/fractures in the lithosphere (where movement takes place along the fracture). How and when does this fracturing take place? ¾ Elastic Rebound Theory (Harold Reid, 1906) ¾ Stress: force per unit area ¾ Strain: deformation Stress produces strain Types of Faults Two major groups with 2 subtypes each Group 1: Dip Slip Faults 1) Normal Stress type: 2) Reverse Stress type: Group 2: Strike Slip Faults Stress Type: 1) Right Lateral 2) Left Lateral Fault Nomenclature ¾ Movement along the fault blocks produces friction. We know this friction as an Earthquake. When Earthquakes occur, energy waves are released. These waves can be divided into two major groups, body waves and surface waves. Body waves- travel through the interior of the Earth 1) P Waves (Longitudinal Waves) 2) S Waves (Transverse Waves) Surface waves- travel near the surface 1) Love Waves 2) Raleigh Waves Locating the Epicenter ¾ Seismograph: instrument designed specifically to detect, measure, and record vibrations in the Earth’s crust. ¾ Seismogram: data recorded on paper (typically) from an earthquake event. ¾ Mapping epicenters has been characteristically done via triangulation. Earthquake Measurement ¾ First known earthquake measuring device- Chang Heng, China- 130 A.D. ¾ Modified Mercalli Scale – measures intensity of an earthquake o Utilizes roman numerals o Utilizes human perceptions (typically from questionnaires) o Isoseismals are generated from perceptions and then plotted on maps these plots can then be used to look for areas of weak soil or rock as well as areas of substandard building construction.
    [Show full text]
  • STATE of OREGON DEPARTMENT of GEOLOGY and MINERAL INDUSTRIES • the Ore Bin •
    /1:;f1;:z v 5(1;7'7:L..7 /.4'. ' iiiis <7 NOv i808 LIBRARY ."..„3 OREGON STATL .T. UNiVERStTY .6' Cr 4 r '..:- --" - -. Vol. 30, No. 10 October 1968 STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES • The Ore Bin • Published Monthly By STATE OF OREGON DEPARTMENT OF GEOLOGY AND MINERAL INDUSTRIES Head Office: 1069 State Office Bldg., Portland, Oregon - 97201 Telephone: 226 - 2161, Ext. 488 Field Offices 2033 First Street 521 N. E. "E" Street Baker 97814 Grants Pass 97526 Subscription rate $1.00 per year. Available back issues 10 cents each. Second class postage paid at Portland, Oregon GOVERNING BOARD Frank C. McColloch, Chairman, Portland Fayette I. Bristol, Grants Pass Harold Banta, Baker STATE GEOLOGIST Hollis M. Dole GEOLOGISTS IN CHARGE OF FIELD OFFICES Norman S. Wagner, Baker Len Romp, Grants Pass Permission is granted to reprint information contained herein. Any credit given the State of Oregon Department of Geology and Mineral Industries for compiling this information will be appreciated. State of Oregon The ORE BIN Department of Geology Volume 30, No. 10 and Mineral Industries October 1968 1069 State Office Bldg. Portland Oregon 97201 THE PORTLAND EARTHQUAKE OF MAY 13, 1968 AND EARTHQUAKE ENERGY RELEASE IN THE PORTLAND AREA By Richard Couch*, Stephen Johnson*, and John Gallagher* Introduction The earthquake of May 13, 1968 occurred at 10:52 a.m., PST. The earthquake epi- center was between the northeastern edge of the city of Portland and the Columbia River. The estimated magnitude is 3.8. This compares with the 3.7 magnitude shock of January 27, 1968 (Heinrichs and Pietralesa, 1968) but is smaller than the magni- tude 5 shock of November 5, 1962 Portland earthquake (Dehlinger and others, 1963).
    [Show full text]
  • Earthquakes in Wyoming
    111˚ Additional information on earthquakes, earthquake preparedness, 110˚ 104˚ Introduction 109˚ 108˚ 107˚ 106˚ 105˚ 45˚ 45˚ and earthquake response can be obtained from: Yellowstone Earthquakes are common in Wyoming. National WYOMING STATE Park Historically, earthquakes have occurred in Sheridan Wyoming State Geological Survey Crook GEOLOGICAL SURVEY every county in Wyoming over the past 120 P.O. Box 3008 Park Bighorn �� ���� years, with some causing significant damage. Laramie, WY 82071-3008 �� �� Lance Cook, State Geologist �� � Campbell Phone: (307) 766-2286 � Figure 1 shows the generalized distribution of Johnson 44˚ 44˚ historical earthquakes in Wyoming. Washakie Fax: (307) 766-2605 � � � Teton Weston � ���� � Email: [email protected] � �� The first recorded earthquake in the ������ �� Hot Springs [email protected] state occurred in the area now known as Agency Web: http://wsgsweb.uwyo.edu EARTHQUAKES IN Yellowstone National Park on July 20, 1871. Earthquake Web: http://www.wrds.uwyo.edu During the early geologic investigations of WYOMING Yellowstone, Ferdinand V. Hayden of the U.S. Fremont Natrona Niobrara 43˚ Converse 43˚ Wyoming Emergency Management Agency Geological Survey reported that “on the night 5500 Bishop Blvd. of the 20th of July, we experienced several se- Sublette Cheyenne, WY 82009-3320 vere shocks of an earthquake, and these were Phone: (307) 777-4900 felt by two other parties, fifteen or twenty-five Fax: (307) 635-6017 miles distant, on different sides of the lake.” Email: [email protected] Platte Goshen Yellowstone National Park is now known as 42˚ 42˚ Agency Web: http://132.133.10.9 one of the more seismically active areas in Lincoln FEMA Web: http://www.fema.gov the United States.
    [Show full text]
  • Mamuju–Majene
    Supendi et al. Earth, Planets and Space (2021) 73:106 https://doi.org/10.1186/s40623-021-01436-x EXPRESS LETTER Open Access Foreshock–mainshock–aftershock sequence analysis of the 14 January 2021 (Mw 6.2) Mamuju–Majene (West Sulawesi, Indonesia) earthquake Pepen Supendi1* , Mohamad Ramdhan1, Priyobudi1, Dimas Sianipar1, Adhi Wibowo1, Mohamad Taufk Gunawan1, Supriyanto Rohadi1, Nelly Florida Riama1, Daryono1, Bambang Setiyo Prayitno1, Jaya Murjaya1, Dwikorita Karnawati1, Irwan Meilano2, Nicholas Rawlinson3, Sri Widiyantoro4,5, Andri Dian Nugraha4, Gayatri Indah Marliyani6, Kadek Hendrawan Palgunadi7 and Emelda Meva Elsera8 Abstract We present here an analysis of the destructive Mw 6.2 earthquake sequence that took place on 14 January 2021 in Mamuju–Majene, West Sulawesi, Indonesia. Our relocated foreshocks, mainshock, and aftershocks and their focal mechanisms show that they occurred on two diferent fault planes, in which the foreshock perturbed the stress state of a nearby fault segment, causing the fault plane to subsequently rupture. The mainshock had relatively few after- shocks, an observation that is likely related to the kinematics of the fault rupture, which is relatively small in size and of short duration, thus indicating a high stress-drop earthquake rupture. The Coulomb stress change shows that areas to the northwest and southeast of the mainshock have increased stress, consistent with the observation that most aftershocks are in the northwest. Keywords: Mamuju–Majene, Earthquake, Relocation, Rupture, Stress-change Introduction mainshock from two of the nearest stations in Mamuju On January 14, 2021, a destructive earthquake (Mw 6.2) and Majene are 95.9 and 92.8 Gals, respectively, equiva- between Mamuju and Majene, West Sulawesi, Indonesia, lent to VI on the MMI scale (Additional fle 1: Figure S1).
    [Show full text]
  • High Probability of Foreshock Occurrence and Significant Probability of Multiple Events Associated with Magnitude Greater Than O
    High Probability of Foreshock Occurrence and Significant Probability of Multiple Events Associated with Magnitude ≥6 Earthquakes in Nevada, U.S.A. by Craig M. dePolo INTRODUCTION moment magnitudes (M w) when possible; otherwise they are catalog or historical values (M; dePolo, 2013). Sixty percent of magnitude 5.5 and larger earthquakes in the western Cordillera were preceded by foreshocks (Doser, 1989). M ≥6 M FORESHOCKS PRIOR TO NEVADA Foreshocks also preceded the 2008 Wells ( w 6.0; Smith et al., EARTHQUAKES 2011) and the 2008 Mogul (M w 5.0; Smith et al., 2008; de- Polo, 2011) earthquakes in Nevada. Understanding foreshocks There have been several studies of earthquake foreshocks, in- and their behavior is important because of their potential use cluding a classic paper on foreshocks along the San Andreas for earthquake forecasting and foreshocks felt by communities fault system by Jones (1984), which concluded that 35% of act as a natural alarm that can motivate people to engage in M ≥5 earthquakes were preceded by an immediate foreshock seismic mitigation. A majority of larger earthquakes in Nevada within one day and 5 km of the mainshock. Considering a two- had foreshocks, and several were multiple earthquakes of mag- ≥6 month time window and a 40 km radius, Doser (1989) studied nitude . Multiple major earthquakes can shake a community M ≥5:5 earthquakes in the western Cordillera and found that with damaging ground motion multiple times within a short 60% of these events had foreshocks and that 58% of these fore- period of time, such as happened in Christchurch, New shocks occurred within 24 hours of their mainshock (35% of Zealand, in 2010 and 2011 (Gledhill et al., 2011; Bradley the total).
    [Show full text]
  • Foreshock Seismic-Energy-Release Functions: Tools for Estimating Time and Magnitude of Main Shocks
    DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Foreshock Seismic-Energy-Release Functions: Tools for Estimating Time and Magnitude of Main Shocks David J. Varnes Open-File Report 87-^29 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards. Golden, Colorado 1987 CONTENTS Page Abstract......................................................... 1 Introduction..................................................... 1 Theoretical and Experimental Background in Deformation Kinetics....................................................... 3 Interim Discussion............................................... 13 Method of Foreshock Analysis..................................... 15 Example Solution, Cremasta Lake Earthquake....................... 1 6 Analyses of Other Foreshock Sequences............................ 23 Synthetic Foreshock Series Controlled by IMPORT SERF............. 33 Discussion and Conclusions ....................................... 35 References....................................................... 37 ILLUSTRATIONS Page Figure 1. Typical curves showing primary and tertiary creep..... 10 2. A creep curve illustrating the "pure Saito" relation in which the product of the strain rate and the time remaining is a constant........................ 11 3. Foreshocks of the Cremasta, Greece, earthquake of February 5, 1966.................................... 17 /T I/O M. Log(Z/E/10 )ergs versus time, Cremasta earthquake of February 5, 1966, M=5.9.......................... 19 5. Log1Q
    [Show full text]
  • Earthquake Basics
    RESEARCH DELAWARE State of Delaware DELAWARE GEOLOGICAL SURVEY SERVICEGEOLOGICAL Robert R. Jordan, State Geologist SURVEY EXPLORATION SPECIAL PUBLICATION NO. 23 EARTHQUAKE BASICS by Stefanie J. Baxter University of Delaware Newark, Delaware 2000 CONTENTS Page INTRODUCTION . 1 EARTHQUAKE BASICS What Causes Earthquakes? . 1 Seismic Waves . 2 Faults . 4 Measuring Earthquakes-Magnitude and Intensity . 4 Recording Earthquakes . 8 REFERENCES CITED . 10 GLOSSARY . 11 ILLUSTRATIONS Figure Page 1. Major tectonic plates, midocean ridges, and trenches . 2 2. Ground motion near the surface of the earth produced by four types of earthquake waves . 3 3. Three primary types of fault motion . 4 4. Duration Magnitude for Delaware Geological Survey seismic station (NED) located near Newark, Delaware . 6 5. Contoured intensity map of felt reports received after February 1973 earthquake in northern Delaware . 8 6. Model of earliest seismoscope invented in 132 A. D. 9 TABLES Table Page 1. The 15 largest earthquakes in the United States . 5 2. The 15 largest earthquakes in the contiguous United States . 5 3. Comparison of magnitude, intensity, and energy equivalent for earthquakes . 7 NOTE: Definition of words in italics are found in the glossary. EARTHQUAKE BASICS Stefanie J. Baxter INTRODUCTION Every year approximately 3,000,000 earthquakes occur worldwide. Ninety eight percent of them are less than a mag- nitude 3. Fewer than 20 earthquakes occur each year, on average, that are considered major (magnitude 7.0 – 7.9) or great (magnitude 8 and greater). During the 1990s the United States experienced approximately 28,000 earthquakes; nine were con- sidered major and occurred in either Alaska or California (Source: U.S.
    [Show full text]