Earthquakes in Wyoming
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Tracking Triggering Mechanisms for Soft-Sediment Deformation Structures in the Late Cretaceous Uberaba Formation, Bauru Basin, Brazil
SILEIR RA A D B E E G D E A O D L E O I G C I A O ARTICLE BJGEO S DOI: 10.1590/2317-4889202020190100 Brazilian Journal of Geology D ESDE 1946 Tracking triggering mechanisms for soft-sediment deformation structures in the Late Cretaceous Uberaba Formation, Bauru Basin, Brazil Luciano Alessandretti1* , Lucas Veríssimo Warren2 , Maurício Guerreiro Martinho dos Santos3 , Matheus Carvalho Virga1 Abstract Soft-sediment deformation (SSD) structures are widespread in the sedimentary record, and numerous triggering mechanisms can induce its development, including glaciation, earthquakes, overloading, ground-water fluctuations, and wave movement. The Late Cretaceous Ubera- ba Formation preserves SSD structures as small- and large-scale load casts and associated flame structures, pseudonodules, and convolute laminations observed in the contact of three well-defined intervals among fine- to coarse-grained lithic and conglomeratic sandstone with fine-grained arkose and mudstone beds. Based on the morphology of the SSD structures, sedimentary facies of the Uberaba Formation, and similarities with previous observations in the geological record and laboratory models, these features are assigned to liquefaction-fluidization processes as the major deformational mechanism triggered by seismic and aseismic agents. We propose that a deformation occurred just after the sedimentation triggered by seismic shock waves and overloading, induced by the sudden deposition of coarse-grained sandy debris on fine-grained sediments. Some of these structures can be classified as seismites, providing evidence of intraplate seismicity within the inner part of the South American Platform during the Late Cretaceous. This seismic activity is likely related to the uplift of the Alto Paranaíba High along reactivations of regional structures inherited from Proterozoic crustal discontinuities and coeval explosive magmatism of the Minas- Goiás Alkaline Province. -
Seismicity, Seismotectonics and Preliminary Earthquake Hazard Analysis of the Teton Region, WY
FINAL TECHNICAL REPORT DEVELOPMENT OF EARTHQUAKE GROUND SHAKING HAZARD MAPS FOR THE YELLOWSTONE- JACKSON HOLE-STAR VALLEY, WYOMING Submitted to the U.S. Geological Survey Under the National Earthquake Hazards Reduction Program Program Element II Evaluate Urban Hazard and Risk USGS Award 05HQGR0026 Prepared by Bonnie Jean Pickering White Department of Geology and Geophysics The University of Utah Salt Lake City, UT 94112 and Robert B. Smith Department of Geology and Geophysics The University of Utah Salt Lake City, UT 94112 Principal Investigator Ivan Wong Seismic Hazards Group URS Corporation 1333 Broadway, Suite 800, Oakland, CA 94612 Phone: (510) 874-3014, Fax: (510) 874-3268 E-mail: [email protected] 26 September 2006 __________________________ This research was supported by the U. S. Geological Survey (USGS), Department of the Interior, under USGS Award Number 05HQGR0026. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied of the U.S. Government. PREFACE The Yellowstone-Jackson Hole-Star Valley corridor is located within the seismically and tectonically active Intermountain Seismic Belt in westernmost Wyoming and eastern Idaho. The corridor has the highest seismic hazard in the Intermountain U.S. based on the U.S. Geological Survey’s National Hazard Maps. The region contains the heavily visited Yellowstone and Teton National Parks and the rapidly growing areas of Jackson Hole and Star Valley. Although there has only been one large earthquake in this region in historical times (1959 moment magnitude [M] 7.5 Hebgen Lake), abundant geologic evidence exists for the past occurrence of surface-faulting earthquakes of M 7 or greater. -
Wyoming SCORP Statewide Comprehensive Outdoor Recreation Plan 2014 - 2019 Wyoming Statewide Comprehensive Outdoor Recreation Plan (SCORP) 2014-2019
Wyoming SCORP Statewide Comprehensive Outdoor Recreation Plan 2014 - 2019 Wyoming Statewide Comprehensive Outdoor Recreation Plan (SCORP) 2014-2019 The 2014-2019 Statewide Comprehensive Outdoor Recreation Plan was prepared by the Planning and Grants Section within Wyoming’s Department of State Parks and Cultural Resources, Division of State Parks, Historic Sites and Trails. Updates to the trails chapter were completed by the Trails Section within the Division of State Parks, Historic Sites and Trails. The Wyoming Game and Fish Department provided the wetlands chapter. The preparation of this plan was financed through a planning grant from the National Park Service, Department of the Interior, under the provision of the Land and Water Conservation Fund Act of 1965 (Public Law 88-578, as amended). For additional information contact: Wyoming Department of State Parks and Cultural Resources Division of State Parks, Historic Sites and Trails 2301 Central Avenue, Barrett Building Cheyenne, WY 82002 (307) 777-6323 Wyoming SCORP document available online at www.wyoparks.state.wy.us. Table of Contents Chapter 1 • Introduction ................................................................................................ 3 Chapter 2 • Description of State ............................................................................. 11 Chapter 3 • Recreation Facilities and Needs .................................................... 29 Chapter 4 • Trails ............................................................................................................ -
Earthquake Measurements
EARTHQUAKE MEASUREMENTS The vibrations produced by earthquakes are detected, recorded, and measured by instruments call seismographs1. The zig-zag line made by a seismograph, called a "seismogram," reflects the changing intensity of the vibrations by responding to the motion of the ground surface beneath the instrument. From the data expressed in seismograms, scientists can determine the time, the epicenter, the focal depth, and the type of faulting of an earthquake and can estimate how much energy was released. Seismograph/Seismometer Earthquake recording instrument, seismograph has a base that sets firmly in the ground, and a heavy weight that hangs free2. When an earthquake causes the ground to shake, the base of the seismograph shakes too, but the hanging weight does not. Instead the spring or string that it is hanging from absorbs all the movement. The difference in position between the shaking part of the seismograph and the motionless part is Seismograph what is recorded. Measuring Size of Earthquakes The size of an earthquake depends on the size of the fault and the amount of slip on the fault, but that’s not something scientists can simply measure with a measuring tape since faults are many kilometers deep beneath the earth’s surface. They use the seismogram recordings made on the seismographs at the surface of the earth to determine how large the earthquake was. A short wiggly line that doesn’t wiggle very much means a small earthquake, and a long wiggly line that wiggles a lot means a large earthquake2. The length of the wiggle depends on the size of the fault, and the size of the wiggle depends on the amount of slip. -
Source Parameters of the 1933 Long Beach Earthquake
Bulletin of the Seismological Society of America, Vol. 81, No. 1, pp. 81- 98, February 1991 SOURCE PARAMETERS OF THE 1933 LONG BEACH EARTHQUAKE BY EGILL HAUKSSON AND SUSANNA GROSS ABSTRACT Regional seismographic network and teleseismic data for the 1933 (M L -- 6.3) Long Beach earthquake sequence have been analyzed, Both the teleseismic focal mechanism of the main shock and the distribution of the aftershocks are consistent with the event having occurred on the Newport-lnglewood fault. The focal mechanism had a strike of 315 °, dip of 80 o to the northeast, and rake of - 170°. Relocation of the foreshock- main shock-aftershock sequence using modern events as fixed refer- ence events, shows that the rupture initiated near the Huntington Beach-Newport Beach City boundary and extended unilaterally to the northwest to a distance of 13 to 16 km. The centroidal depth was 10 +_ 2 km. The total source duration was 5 sec, and the seismic moment was 5.102s dyne-cm, which corresponds to an energy magnitude of M w = 6.4. The source radius is estimated to have been 6.6 to 7.9 km, which corresponds to a Brune stress drop of 44 to 76 bars. Both the spatial distribution of aftershocks and inversion for the source time function suggest that the earthquake may have consisted of at least two subevents. When the slip estimate from the seismic moment of 85 to 120 cm is compared with the long-term geological slip rate of 0.1 to 1.0 mm I yr along the Newport-lnglewood fault, the 1933 earthquake has a repeat time on the order of a few thousand years. -
Systematic Variation of Late Pleistocene Fault Scarp Height in the Teton Range, Wyoming, USA: Variable Fault Slip Rates Or Variable GEOSPHERE; V
Research Paper THEMED ISSUE: Cenozoic Tectonics, Magmatism, and Stratigraphy of the Snake River Plain–Yellowstone Region and Adjacent Areas GEOSPHERE Systematic variation of Late Pleistocene fault scarp height in the Teton Range, Wyoming, USA: Variable fault slip rates or variable GEOSPHERE; v. 13, no. 2 landform ages? doi:10.1130/GES01320.1 Glenn D. Thackray and Amie E. Staley* 8 figures; 1 supplemental file Department of Geosciences, Idaho State University, 921 South 8th Avenue, Pocatello, Idaho 83209, USA CORRESPONDENCE: thacglen@ isu .edu ABSTRACT ously and repeatedly to climate shifts in multiple valleys, they create multi CITATION: Thackray, G.D., and Staley, A.E., 2017, ple isochronous markers for evaluation of spatial and temporal variation of Systematic variation of Late Pleistocene fault scarp height in the Teton Range, Wyoming, USA: Variable Fault scarps of strongly varying height cut glacial and alluvial sequences fault motion (Gillespie and Molnar, 1995; McCalpin, 1996; Howle et al., 2012; fault slip rates or variable landform ages?: Geosphere, mantling the faulted front of the Teton Range (western USA). Scarp heights Thackray et al., 2013). v. 13, no. 2, p. 287–300, doi:10.1130/GES01320.1. vary from 11.2 to 37.6 m and are systematically higher on geomorphically older In some cases, faults of known slip rate can also be used to evaluate ages landforms. Fault scarps cutting a deglacial surface, known from cosmogenic of glacial and alluvial sequences. However, this process is hampered by spatial Received 26 January 2016 Revision received 22 November 2016 radionuclide exposure dating to immediately postdate 14.7 ± 1.1 ka, average and temporal variability of offset along individual faults and fault segments Accepted 13 January 2017 12.0 m in height, and yield an average postglacial offset rate of 0.82 ± 0.13 (e.g., Z. -
Santa Fe New Mexican, 09-05-1908 New Mexican Printing Company
University of New Mexico UNM Digital Repository Santa Fe New Mexican, 1883-1913 New Mexico Historical Newspapers 9-5-1908 Santa Fe New Mexican, 09-05-1908 New Mexican Printing Company Follow this and additional works at: https://digitalrepository.unm.edu/sfnm_news Recommended Citation New Mexican Printing Company. "Santa Fe New Mexican, 09-05-1908." (1908). https://digitalrepository.unm.edu/sfnm_news/7031 This Newspaper is brought to you for free and open access by the New Mexico Historical Newspapers at UNM Digital Repository. It has been accepted for inclusion in Santa Fe New Mexican, 1883-1913 by an authorized administrator of UNM Digital Repository. For more information, please contact [email protected]. ANTA NEW "ME CAN VOL. 45. SANTA FE, NEW MEXICO, SATURDAY SEPTEMBER 5, 1908. NO, 175 FAIRBANKS MAY PROMINENT EDITOR PTTSBURG INK CAMPAIGN FOR TAFT REPUBLICANS OPEN DIES SUDDENLY K KILLED I Republican National Committee Dis- Alexander Group, Proprietor of New Haven cusses Advisability of Chartering Union, Stricken With HEAD-O- GAMP III CAMPAIGN III OHIO in N COLLISION a Special Train For Him. nil!HIS Heart Failure New York. ' ii New Indianapolis, Ind., Sept. 5. Follow- York, Sept. 5. Alexander ing out his policy of consulting with Troup, proprietor and editor of the Cosmopolitan Na- Republican leaders of former cam- Disastrous Fire Thousands Attend New Haven Union, and a former Passenger Dashes paigns whenever the opportunity of- Democratic national committeeman tional fers itself, Chairman Frank H. Hitch- Out Town Big Meeting at for Connecticut, was stricken witth Into Through Suspends cock arrived here at 5 p. m. -
Chapter 4: Earthquakes and Human Activities
Chapter 4: Earthquakes and Human Activities Anatolian vs. San Andreas Fault (Figure 1) The Nature of Earthquakes ¾ Earthquakes occur along faults, or ruptures/fractures in the lithosphere (where movement takes place along the fracture). How and when does this fracturing take place? ¾ Elastic Rebound Theory (Harold Reid, 1906) ¾ Stress: force per unit area ¾ Strain: deformation Stress produces strain Types of Faults Two major groups with 2 subtypes each Group 1: Dip Slip Faults 1) Normal Stress type: 2) Reverse Stress type: Group 2: Strike Slip Faults Stress Type: 1) Right Lateral 2) Left Lateral Fault Nomenclature ¾ Movement along the fault blocks produces friction. We know this friction as an Earthquake. When Earthquakes occur, energy waves are released. These waves can be divided into two major groups, body waves and surface waves. Body waves- travel through the interior of the Earth 1) P Waves (Longitudinal Waves) 2) S Waves (Transverse Waves) Surface waves- travel near the surface 1) Love Waves 2) Raleigh Waves Locating the Epicenter ¾ Seismograph: instrument designed specifically to detect, measure, and record vibrations in the Earth’s crust. ¾ Seismogram: data recorded on paper (typically) from an earthquake event. ¾ Mapping epicenters has been characteristically done via triangulation. Earthquake Measurement ¾ First known earthquake measuring device- Chang Heng, China- 130 A.D. ¾ Modified Mercalli Scale – measures intensity of an earthquake o Utilizes roman numerals o Utilizes human perceptions (typically from questionnaires) o Isoseismals are generated from perceptions and then plotted on maps these plots can then be used to look for areas of weak soil or rock as well as areas of substandard building construction. -
Lander Final Wilderness Environmental Impact Statement Lander Wilderness Environmental Impact Statement
United States Department of the interior Bureau of Land Management Rawlins District Office March 1990 Lander Final Wilderness Environmental Impact Statement Lander Wilderness Environmental Impact Statement ( ) Draft (X) Final Environmental Impact Statement Type of Action: ( ) Administrative (X) Legislative Responsible Agencies: Lead Agency: Department of the Interior, Bureau of Land Management Cooperating Agencies: None Abstract The Lander Final Wilderness Environmental Impact Statement analyzes six wilderness study areas (WSAs) in the Rawlins District to determine the re source impacts that could result from designation or nondesignation of those WSAs as wilderness. The following WSAs are recommended as nonsuitable for wilderness designation: Lankin Dome, WSA 030-120 (6,316 acres), Split Rock, 030-122 (12,749 acres), Savage Peak, 030-123a (7,041 acres), Miller Springs, 030-123b (6,429 acres), and Copper Mountain, 030-111 (6,858 acres). For the Sweetwater Canyon WSA, 030-101 (9,056 acres), 3,518 acres are rec ommended as nonsuitable for wilderness designation; the remaining portion (5,538 acres) is recommended for wilderness designation. Comments have been requested and received from the following: See the “Consultation" section. Date draft statement made available to the Environmental Protection Agency and the public. Draft EIS: Filed 11/7/85 Final EIS: United States Department of the interior JSraSTAKE BUREAU OF LAND MANAGEMENT WYOMING STATE OFFICE P.O. BOX 1828 CHEYENNE, WYOMING 82003 Dear Reader: Enclosed is the Final Environmental Impact Statement (EIS) prepared for six Wilderness Study Areas (WSAs) in the Lander Resource Area of our Rawlins District. The WSAs include; Sweetwater Canyon, Lankin Dome, Split Rock, Miller Springs, Savage Peak, and Copper Mountain. -
COPYRIGHTED MATERIAL COPYRIGHTED I
Avalanche Campground (MT), 66 Big Horn Equestrian Center (WY), Index Avenue of the Sculptures (Billings, 368 MT), 236 Bighorn Mountain Loop (WY), 345 Bighorn Mountains Trail System INDEX A (WY), 368–369 AARP, 421 B Bighorn National Forest (WY), 367 Absaroka-Beartooth Wilderness Backcountry camping, Glacier Big Red (Clearmont, WY), 370 (MT), 225–227 National Park (MT), 68 Big Red Gallery (Clearmont, WY), Academic trips, 44–45 Backcountry permits 370 Accommodations, 413–414 Glacier National Park (MT), Big Salmon Lake (MT), 113 best, 8–10 54–56 Big Sheep Creek Canyon (MT), 160 for families with children, 416 Grand Teton (WY), 325 Big Sky (MT), 8, 215–220 Active vacations, 43–52 Yellowstone National Park Big Sky Brewing Company AdventureBus, 45, 269 (MT—WY), 264 (Missoula, MT), 93 Adventure Sports (WY), 309, 334 Backcountry Reservations, 56 Big Sky Candy (Hamilton, MT), 96 Adventure trips, 45–46 Backcountry skiing, 48 Big Sky Golf Course (MT), 217 AdventureWomen, 201–202 Backroads, 45, 46 Big Sky Resort (MT), 216–217 Aerial Fire Depot and Baggs (WY), 390 Big Sky Waterpark (MT), 131 Smokejumper Center (Missoula, Ballooning, Teton Valley (WY), Big Spring (MT), 188 MT), 86–87 306 Big Spring Creek (MT), 187 Air tours Bannack (MT), 167, 171–172 Big Timber Canyon Trail (MT), 222 Glacier National Park (MT), 59 Bannack Days (MT), 172 Biking and mountain biking, 48 the Tetons (WY), 306 Barry’s Landing (WY), 243 Montana Air travel, 409, 410 Bay Books & Prints (Bigfork, MT), Big Sky, 216 Albright Visitor Center 105 Bozeman, 202 (Yellowstone), 263, 275 -
High Country News Vol. 2.29, Aug. 14, 1970
Th~ ,;~tdoor,OIJdr EnvironmentalBi - W,•• kl, Vol. %. No. 29 Ftiday, August 14. 1970 'Antelope Under Gun; One -ShotSchedul ed .This year's hunting season 'an outgrowth of the old North in Wyoming will start off with Rawlins-Table Rock area. a bang' on Sept. 5. The state's The season will close in these most popular game animal, areas (57 & 29) on Sept. 13, the pronghorn antelope, will 1970.This year, 950 resident come under fire for the first and non-resident antelope time this year in the Chain permits were made 'available Lakes and Table Rock areas. in these areas. 'These areas appear on the Bill Crump, 'district hunting orders' as' areas 57 supervisor of the Wyoming, and 29 respectively and are Game and Fish Commission, reported tha t the Chain Lakes and Table Rock areas are the best trophy hunting areas in the state. Crump also said Ski Meet Is that the broad, open desert country in this area was very popular for campers. He 'also At Casper noted that many hunters will be going out prior to opening The' Wyoming Open I'n- day with camping vehicles to vitational Water Ski Meet make "a .week of it" by will be hosted by the Casper combining camping and rock Water Ski Club this year. The hunting with their antelope meet will be held Sunday, hunt. SeptemberS, beginning at 8 Along wtth . the annual a m, a t the casper Clu b opening of hunting season quarters at Alcova Lake. comes the One Shot Antelope Registra tion will begin Hunt held here in Lander , Sa turday, Sept. -
Bighorn River Basin, Wyoming
Environmental and Recreational Water Use Analysis for the Wind – Bighorn River Basin, Wyoming Wind – Bighorn River Basin Plan Update Prepared for: Wyoming Water Development Commission 6920 Yellowstone Rd Cheyenne, Wyoming 82009 Prepared by: Western EcoSystems Technology, Inc. 415 W. 17th St., Suite 200 Cheyenne, Wyoming 82001 September 7, 2017 Draft Pre-Decisional Document - Privileged and Confidential - Not For Distribution Wind – Bighorn River Basin Plan Update EXECUTIVE SUMMARY In 2010, the Wyoming Water Development Commission (WWDC) requested a study to develop more robust and consistent methods for defining environmental and recreational (E&R) water uses for the River Basin Planning program. The study outlined that recreational and environmental uses needed to be identified and mapped, in a way that would assess their interactions with traditional water uses throughout the state of Wyoming. Harvey Economics completed the study in 2012, with a report and handbook being produced to identify a consistent viewpoint and accounting process for E&R water demands and to help guide river basin planning efforts in moving forward. The methods developed in the handbook were implemented on the Wind-Bighorn River Basin (Basin), and the results of the Basin plan update are provided in this report. In addition to the handbook guidelines, Western Ecosystems Technology, Inc. coordinated with the WWDC to further the analysis through the development of three models: 1) protection, 2) environmental, and 3) recreation. The Basin is located in central and northwestern Wyoming. Approximately 80% of Yellowstone National Park (YNP) is included in the Basin. Elevations in the Basin are variable as the Wind River and Bighorn Mountains funnel water from alpine areas to lower river corridors.