Metabolism of Carbohydrates by Pasteurella Pseudotuberculosis' R

Total Page:16

File Type:pdf, Size:1020Kb

Metabolism of Carbohydrates by Pasteurella Pseudotuberculosis' R JOURNAL OF BACrERiOLOGY, May 1968, p. 1698-1705 Vol. 95, No. 5 Copyright 0) 1968 American Society for Microbiology Printed In U.S.A. Metabolism of Carbohydrates by Pasteurella pseudotuberculosis' R. R. BRUBAKER2 Department ofMicrobiology, The University ofChicago, Chicago, Illinois 60637 Received for publication 26 February 1968 Cell-free extracts of Pasteurella pseudotuberculosis and P. pestis catalyzed a rapid and reversible exchange of electrons between pyridine nucleotides. Although the extent of this exchange approximated that promoted by the soluble nicotinamide adenine dinucleotide (phosphate) transhydrogenase of Pseudomonas fluorescens, the reaction in the pasteurellae was associated with a particulate fraction and was not influenced by adenosine-2'-monophosphate. The ability of P. pseudotubercu- losis to utilize this system for the maintenance of a large pool of nicotinamide ade- nine dinucleotide phosphate could not be correlated with significant participation of the Entner-Doudoroff path or catabolic use of the hexose-monophosphate path during metabolism of glucose. As judged by the distribution of radioactivity in metabolic pyruvate, glucose and gluconate were fermented via the Embden-Meyerhof and Entner-Doudoroff paths, respectively. With the exception of hexosediphospha- tase, all enzymes of the three paths were detected, although little or no glucono- kinase or phosphogluconate dehydrase was present unless the organisms were cultivated with gluconate. The significance of these findings is discussed with respect to the regulation of carbohydrate metabolism in the pasteurellae, related enteric bacteria, and P. fluorescens. Glucose is catabolized by Pasteurella pestis, fate of glucose-6-phosphate in P. pestis. The the causative agent of bubonic plague, via the possibility exists, however, that excess NADP Embden-Meyerhof path (29), whereas gluconate in P. pseudotuberculosis might increase the is metabolized by a combination of the Entner- turnover of glucose-6-phosphate dehydrogenase Doudoroff and hexose-monophosphate paths and thus permit hexose catabolism to occur via (24). Due to a deficiency of glucose-6-phosphate the nonglycolytic paths (8). The purpose of this dehydrogenase (2, 24, 25), P. pestis cannot utilize study was to define the central paths of carbo- the nonglycolytic paths during growth on hexose. hydrate metabolism in P. pseudotuberculosis In contrast, this key enzyme is present in P. and to determine the effect, if any, of the trans- pseudotuberculosis (25), an organism very closely hydrogenase activity on the participation of related to P. pestis (27). Few studies have been these paths. reported on the catabolism of carbohydrates by P. pseudotuberculosis; however, the biosynthesis MATERIALS AND METHODS of uncommon sugar compounds by this organism Bacteria. P. pseudotuberculosis strain PBI/+ was has received intensive study (23, 31). isolated by Burrows and Bacon (6) during a spon- Cell-free extracts of P. pestis and P. pseudo- taneous epidemic in laboratory guinea pigs. The tuberculosis catalyze a rapid oxidation of reduced properties of virulent (V+) and avirulent (V-) cells of this strain have already been described (5, 6). nicotinamide adenine dinucleotide phosphate P. pestis strain EV76, Pseudomonas fluorescens strain (NADPH2) at the expense of nicotinamide ade- B-10, and Escherichia coli strain B were used in com- nine dinucleotide (NAD). The resulting large parative experiments. pool of nicotinamide adenine dinucleotide phos- Media and cultivation. A modification of the salt phate (NADP) cannot, because of the metabolic component of Higuchi and Carlin (15), consisting of block already noted, influence the metabolic 0.025 M K2HPO4, 0.01 M citric acid, 0.0025 M MgC92, and 0.0001 M FeC12, was used in all culture media. I Presented in part at the 64th Annual Meeting Flasks (1-liter) containing 100 ml of this base plus of the American Society for Microbiology, Wash- 4 g of Casitone (Difco) were autoclaved and neu- ington, D.C., 3-7 May 1964. tralized with NaOH. Then the medium received 1 2 Present address: Department of Microbiology ml of stock solutions of 0.25 M CaCl2, 0.25 M Na2S2O3, and Public Health, Michigan State University, East and 1.0 M carbohydrate (sterilized by filtration). Lansing, Mich. 48823. After inoculation with 107 cells per rnl, the cultures 1698 VOL. 95,1968 CARBOHYDRATE METABOLISM IN P. PSEUDOTUBERCULOSIS 1699 were vigorously aerated at 37 C on a wrist-action Results are expressed in terms of specific activity or shaker, and the organisms were harvested during the units of enzyme per mg of protein. early stationary phase by centrifugation at 27,000 X g The rate of formation of glucose-6-phosphate was for 10 min in the cold. measured in 33.3 mM potassium phosphate buffer Isotopic experiments. Methods for the isolation and (pH 7.2), 3.3 mM MgCl2, 3.3 mM L-cysteine (pH 7.2), degradation of metabolic pyruvate were similar to 0.33 mm NADP, and excess yeast glucose-6-phosphate those used by Fraenkel and Horecker (12) and dehydrogenase. Phosphoglucomutase, glucosephos- Eisenberg and Dobrogosz (10). Bacteria were culti- phate isomerase, and glucokinase were determined in vated with glucose or gluconate, washed once with this system by the addition of 3.3 mm each of glucose- ;0.033 M potassium phosphate buffer (pH 7.2), and 1-phosphate, fructose-6-phosphate, and glucose, then suspended to yield a final concentration of 2 mg plus adenosine triphosphate (ATP), respectively. (dry weight) per ml in a reaction mixture containing The basal incubation mixture, without added glucose- 0.05 M potassium phosphate buffer (pH 7.0) and 6-phosphate dehydrogenase, was used to determine '0.002 M sodium arsenite. After aeration for 10 min endogenous levels of this enzyme plus phospho- -at 37 C, the volume was brought to 5 ml by addition gluconate dehydrogenase by the method of Glock of 0.005 M radioactive glucose or gluconate. Utili- and McLean (14); gluconokinase was also estimated zation of substrate and accumulation of pyruvate in the presence of 3.3 mm potassium gluconate, 3.3 -were complete after further incubation for 1 hr. The mM ATP, and the excess phosphogluconate dehy- incubation mixture was then acidified with 1 ml of drogenase present in 1.5 mg of protein obtained from 5 N HC104 and centrifuged at 27,000 X g for 10 min; glucose-adapted cells of E. coli. the clear supernatant fluid was neutralized by drop- Glyceraldehyde phosphate was estimated in a wise addition of 10 N KOH. After filtration to remove reaction mixture consisting of 73 mm Tris buffer KC104, pyruvate was assayed in a portion of the (pH 8.0), 10 mm sodium arsenate, 3.3 mM L-cysteine sample with lactic dehydrogenase, and other radio- (pH 7.8), 1 mM MgCl2, and 0.33 mM NADP. This -active products were determined by cochromatog- system was used to determine endogenous glyceral- raphy and radioautography. dehydephosphate dehydrogenase after addition of Essentially all radioactivitity was associated with 3 mm glyceraldehydephosphate. An excess of this pyruvate, although insignificant amounts of radio- enzyme in the presence of 3.3 mm fructose diphosphate active mannitol were sometimes noted. Therefore, the or dihydroxyacetone phosphate was used to measure radioactivity remaining in the incubation mixture was aldolase and triosephosphate isomerase, respectively. estimated directly (as pyruvate), and samples were The production of pyruvate was followed in an degraded with ceric sulfate to decarboxylate a-keto incubation mixture consisting of 33 mm potassium acids (12, 20). Evolved CO2 was collected in 0.2 ml phosphate buffer (pH 7.2), 3.3 mM reduced gluta- of 1 N KOH, transferred to a closed vessel, acidified thione, 3.3 mM MgCl2, and 0.17 mm reduced nicotin- with excess H2SO4, and collected in 1.0 ml of 1 N amide adenine dinucleotide (NADH2). Pyruvate Hyamine hydroxide in methanol. Radioactivity was kinase was determined with this reaction system in measured with a Packard Tri-Carb liquid scintilla- the presence of excess lactic dehydrogenase, plus tion counter (Packard Instrument Co., Inc., Downers 3.3 mm phosphoenolypyruvate, and 3.3 mm adenosine Grove, Ill.) in Bray's scintillation liquid (3). No more diphosphate; endogenous lactic dehydrogenase was than 0.1 ml of aqueous sample (in 2 ml of methanol) assayed directly with 3.3 mm potassium pyruvate. was mixed with scintillation fluid. The same proce- Phosphofructokinase was determined by estima- dures were used to determine '4CO2 released during tion of triose phosphate (28); pyruvate dehydrogenase, metabolism of glucose-1-'4C and glucose-6-14C. phosphate acetyltransferase, and acetate kinase were Cell-free extracts. Washed whole cells were sus- measured by minor modifications of the procedures pended to a concentration of approximately 101" outlined by Colowick and Kaplan (7). Methods for per ml in cold 0.1 M tris(hydroxymethyl)amino- determination of enzymes of the Entner-Doudoroff methane (Tris buffer, pH 7.8). After treatment for path and for qualitative assay of phosphoglycerate 1 min with an ultrasonic probe (Instrumentation kinase, phosphoglyceromutase, and phosphopyruvate Associates, New York, N.Y.), cellular debris was hydratase are given in Results. The exchange of elec- removed by centrifugation at 27,000 X g for 10 min, trons between pyridine nucleotides was measured and the resulting clear extract was dialyzed overnight by a procedure similar to that used by Eagon (8, 9). against cold 0.01 M potassium phosphate buffer Chromatography. Reactions involving the destruc- plus 0.001 M mercaptoethanol. tion of ribose-5-phosphate were stopped by addition Enzyme determinations. Most enzymes were deter- of 1 volume of 1 M HC104 to the reaction mixture. mined by methods similar to those used by Mortlock After removal of protein by centrifugation, the sam- (24) and Vandermark and Wood (32). Unless stated ples were neutralized with 5 N KOH, filtered, and then otherwise, a volume of 3 ml was used for spectro- adjusted to pH 5.5 by dropwise addition of 1 N photometric assays.
Recommended publications
  • Glucose Oxidase
    Catalog Number: 100289, 100330, 195196 Glucose Oxidase Molecular Weight: ~160,0001 CAS #: 9001-34-0 Physical Description: Yellow lyophilized powder Source: Aspergillus niger Isoelectric Point: 4.2 Michaelis Constants: phosphate buffer, pH 5.6; 25°C, air: Glucose: 3.3 x 10-2 mol/l(2) Glucose: 1.1 x 10-1 mol/l(3) 2-Deoxyglucose: 2.5 x 10-2 mol/l O2: 2.0 x 10-4 mol/l Structure: The enzyme contains 2 moles FAD/mole GOD. Inhibitors: Ag+, Hg2+, Cu2+ (4), 4-chloromercuribenzoate, D-arabinose (50%). FAD binding is inhibited by several nucleotides.5 pH Optimum: 6.5 pH Stability: 8.0 pH Range: 4-7 Thermal Stability: Below 40°C Description: Glucose oxidase is an FAD-containing glycoprotein. The enzyme is specific for b-D-glucose. O2 can be replaced by hydrogen acceptors such as 2.6-dichlorophenol indophenol. Relative Rates: D-glucose, 100; D-mannose, 20; 2-Deoxy-D-glucose, 20; negligible on other hexoses. Solubility: Dissolves readily at 5 mg/ml in 0.1 M potassium phosphate pH 7.0, giving a clear, yellow solution, also soluble in water Assay Procedure 1: Unit Definition: One unit of glucose oxidase is the activity which causes the liberation of 1 micromole of H2O2 per minute at 25°C and pH 7.0 under the specified conditions. Reaction: Reagents: 1. 0.1 M Phosphate Buffer, pH 6.8: dissolve 6.8 g of potassium phosphate, monobasic, anhydrous and 7.1 g of sodium phosphate, dibasic, anhydrous in about 800 ml of deionized water. Adjust the pH to 6.8 ± 0.05 @ 25°C with 1 N HCl or 1N NaOH if necessary.
    [Show full text]
  • Yeast Genome Gazetteer P35-65
    gazetteer Metabolism 35 tRNA modification mitochondrial transport amino-acid metabolism other tRNA-transcription activities vesicular transport (Golgi network, etc.) nitrogen and sulphur metabolism mRNA synthesis peroxisomal transport nucleotide metabolism mRNA processing (splicing) vacuolar transport phosphate metabolism mRNA processing (5’-end, 3’-end processing extracellular transport carbohydrate metabolism and mRNA degradation) cellular import lipid, fatty-acid and sterol metabolism other mRNA-transcription activities other intracellular-transport activities biosynthesis of vitamins, cofactors and RNA transport prosthetic groups other transcription activities Cellular organization and biogenesis 54 ionic homeostasis organization and biogenesis of cell wall and Protein synthesis 48 plasma membrane Energy 40 ribosomal proteins organization and biogenesis of glycolysis translation (initiation,elongation and cytoskeleton gluconeogenesis termination) organization and biogenesis of endoplasmic pentose-phosphate pathway translational control reticulum and Golgi tricarboxylic-acid pathway tRNA synthetases organization and biogenesis of chromosome respiration other protein-synthesis activities structure fermentation mitochondrial organization and biogenesis metabolism of energy reserves (glycogen Protein destination 49 peroxisomal organization and biogenesis and trehalose) protein folding and stabilization endosomal organization and biogenesis other energy-generation activities protein targeting, sorting and translocation vacuolar and lysosomal
    [Show full text]
  • K319-100 Gluconokinase Activity Assay Kit (Colorimetric)
    FOR RESEARCH USE ONLY! Gluconokinase Activity Assay Kit (Colorimetric) 7/16 (Catalog # K319-100; 100 assays; Store at -20°C) I. Introduction: Gluconokinase (ATP:D-gluconate 6-phosphotransferase or Gluconate Kinase; EC:2.7.1.12) is a key enzyme for Gluconate degradation pathway. In E. coli and yeast, Gluconokinase can convert gluconate into 6-Phosphate-D-Gluconate in an ATP dependent manner. Through Hexose Monophosphate Shunt (HMS) pathway, 6-Phosphate-D-Gluconate generates ribose-6-phosphate, which is critical for nucleotides and nucleic acid synthesis. Little is known of the mechanism of gluconate metabolism in humans despite its widespread use in medicine and consumer products. BioVision’s Gluconokinase Assay kit provides a quick and easy way for monitoring Gluconokinase activity in a variety of samples. In this kit, Gluconokinase converts Gluconate into 6-Phosphate-D-Gluconate in an ATP dependent manner. 6-Phosphate-D-Gluconate and ADP in turn undergoe a series of reactions to form an intermediate, which reacts with the probe to form a colored product with strong absorbance (OD 450 nm). The assay is simple, sensitive, and high-throughput adaptable. Detection limit: < 0.1mU. Gluconokinase D-Gluconate + ATP 6-Phosphate-D-Gluconate + ADP Intermediate + Probe Color Product (OD 450 nm) II. Application: Measurement of Gluconokinase activity in various samples Mechanistic study of Pentose Phosphate Pathway III. Sample Type: Prokaryote such as: E.coli Animal tissues such as liver, kidney, etc. Adherent or suspension cells. IV. Kit Contents: Components K319-100 Cap Code Part Number Gluconokinase Assay Buffer 25 ml WM K319-100-1 Gluconokinase Substrate 1 Vial Blue K319-100-2 ATP 1 Vial Orange K319-100-3 Gluconokinase Converting Enzyme 1 Vial Purple K319-100-4 Gluconokinase Developer 1 Vial Green K319-100-5 Gluconokinase Probe 1 Vial Red K319-100-6 NADH Standard 1 Vial Yellow K319-100-7 Gluconokinase Positive Control 1 Vial Brown K319-100-8 V.
    [Show full text]
  • Fructose As an Endogenous Toxin
    HEPATOCYTE MOLECULAR CYTOTOXIC MECHANISM STUDY OF FRUCTOSE AND ITS METABOLITES INVOLVED IN NONALCOHOLIC STEATOHEPATITIS AND HYPEROXALURIA By Yan (Cynthia) Feng A thesis submitted in the conformity with the requirements for the degree of Master of Science Graduate Department of Pharmaceutical Sciences University of Toronto © Copyright by Yan (Cynthia) Feng 2010 ABSTRACT HEPATOCYTE MOLECULAR CYTOTOXIC MECHANISM STUDY OF FRUCTOSE AND ITS METABOLITES INVOLVED IN NONALCOHOLIC STEATOHEPATITIS AND HYPEROXALURIA Yan (Cynthia) Feng Master of Science, 2010 Department of Pharmaceutical Sciences University of Toronto High chronic fructose consumption is linked to a nonalcoholic steatohepatitis (NASH) type of hepatotoxicity. Oxalate is the major endpoint of fructose metabolism, which accumulates in the kidney causing renal stone disease. Both diseases are life-threatening if not treated. Our objective was to study the molecular cytotoxicity mechanisms of fructose and some of its metabolites in the liver. Fructose metabolites were incubated with primary rat hepatocytes, but cytotoxicity only occurred if the hepatocytes were exposed to non-toxic amounts of hydrogen peroxide such as those released by activated immune cells. Glyoxal was most likely the endogenous toxin responsible for fructose induced toxicity formed via autoxidation of the fructose metabolite glycolaldehyde catalyzed by superoxide radicals, or oxidation by Fenton’s hydroxyl radicals. As for hyperoxaluria, glyoxylate was more cytotoxic than oxalate presumably because of the formation of condensation product oxalomalate causing mitochondrial toxicity and oxidative stress. Oxalate toxicity likely involved pro-oxidant iron complex formation. ii ACKNOWLEDGEMENTS I would like to dedicate this thesis to my family. To my parents, thank you for the sacrifices you have made for me, thank you for always being there, loving me and supporting me throughout my life.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Optimization of Immobilized Aldose Reductase Isolated from Bovine Liver Sığır Karaciğerinden İzole Edilen İmmobilize Aldoz Redüktazın Optimizasyonu
    Turk J Pharm Sci 2019;16(2):206-210 DOI: 10.4274/tjps.galenos.2018.81894 ORIGINAL ARTICLE Optimization of Immobilized Aldose Reductase Isolated from Bovine Liver Sığır Karaciğerinden İzole Edilen İmmobilize Aldoz Redüktazın Optimizasyonu Marya Vakıl NASLIYAN, Sidar BEREKETOĞLU, Özlem YILDIRIM* Ankara University, Faculty of Science, Department of Biology, Ankara, Turkey ABSTRACT Objectives: Isolation of enzymes and experiments on them require great effort and cost and are time-consuming. Therefore, it is important to extend the usability of the enzymes by immobilizing them. In this study our purpose was to immobilize the enzyme aldose reductase (AR) and to optimize the experimental conditions of the immobilized AR and compare them to those of free AR. Materials and Methods: AR was isolated from bovine liver and the enzyme immobilized in photographic gelatin by cross-linking with glutaraldehyde. Then the optimum conditions for free and immobilized AR in terms of pH, temperature, and storage were characterized by determining the enzyme activity. Results: Following immobilization, the optimum pH and temperature levels for free AR, which were pH 7.0 and 60°C, slightly altered to pH 7.5 and 50°C. The enzyme activity of the immobilized AR was maintained at about 65% after reusing 15 times. Moreover, immobilized AR maintained 95% of its original activity after 20 days of storage at 4°C, while the retained activity of the free AR was 85% of the original. Conclusion: Our experiments indicated that the conditions that affect enzyme activity might alter following immobilization. Once the optimum experimental conditions are fixed, the immobilized AR can be stored and reused with efficiency higher than that of free AR.
    [Show full text]
  • A High-Throughput Screening System Based on Droplet Microfluidics For
    molecules Article A High-Throughput Screening System Based on Droplet Microfluidics for Glucose Oxidase Gene Libraries Radivoje Prodanovi´c 1,2,* , W. Lloyd Ung 2, Karla Ili´c Đurđi´c 1 , Rainer Fischer 3, David A. Weitz 2 and Raluca Ostafe 4 1 Faculty of Chemistry, University of Belgrade, Studentski trg 12, 11000 Belgrade, Serbia; [email protected] 2 Department of Physics, School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; [email protected] (W.L.U.); [email protected] (D.A.W.) 3 Departments of Biological Sciences and Chemistry, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA; fi[email protected] 4 Purdue Institute of Inflammation, Immunology and Infectious Disease, Molecular Evolution, Protein Engineering and Production, Purdue University, 207 S. Martin Jischke Dr., West Lafayette, IN 47907, USA; [email protected] * Correspondence: [email protected]; Tel.: +38-111-333-6660 Academic Editors: Goran T. Vladisavljevi´cand Guido Bolognesi Received: 20 April 2020; Accepted: 15 May 2020; Published: 22 May 2020 Abstract: Glucose oxidase (GOx) is an important industrial enzyme that can be optimized for specific applications by mutagenesis and activity-based screening. To increase the efficiency of this approach, we have developed a new ultrahigh-throughput screening platform based on a microfluidic lab-on-chip device that allows the sorting of GOx mutants from a saturation mutagenesis library expressed on the surface of yeast cells. GOx activity was measured by monitoring the fluorescence of water microdroplets dispersed in perfluorinated oil. The signal was generated via a series of coupled enzyme reactions leading to the formation of fluorescein.
    [Show full text]
  • Product Sheet Info
    Master Clone List for NR-19279 ® Vibrio cholerae Gateway Clone Set, Recombinant in Escherichia coli, Plates 1-46 Catalog No. NR-19279 Table 1: Vibrio cholerae Gateway® Clones, Plate 1 (NR-19679) Clone ID Well ORF Locus ID Symbol Product Accession Position Length Number 174071 A02 367 VC2271 ribD riboflavin-specific deaminase NP_231902.1 174346 A03 336 VC1877 lpxK tetraacyldisaccharide 4`-kinase NP_231511.1 174354 A04 342 VC0953 holA DNA polymerase III, delta subunit NP_230600.1 174115 A05 388 VC2085 sucC succinyl-CoA synthase, beta subunit NP_231717.1 174310 A06 506 VC2400 murC UDP-N-acetylmuramate--alanine ligase NP_232030.1 174523 A07 132 VC0644 rbfA ribosome-binding factor A NP_230293.2 174632 A08 322 VC0681 ribF riboflavin kinase-FMN adenylyltransferase NP_230330.1 174930 A09 433 VC0720 phoR histidine protein kinase PhoR NP_230369.1 174953 A10 206 VC1178 conserved hypothetical protein NP_230823.1 174976 A11 213 VC2358 hypothetical protein NP_231988.1 174898 A12 369 VC0154 trmA tRNA (uracil-5-)-methyltransferase NP_229811.1 174059 B01 73 VC2098 hypothetical protein NP_231730.1 174075 B02 82 VC0561 rpsP ribosomal protein S16 NP_230212.1 174087 B03 378 VC1843 cydB-1 cytochrome d ubiquinol oxidase, subunit II NP_231477.1 174099 B04 383 VC1798 eha eha protein NP_231433.1 174294 B05 494 VC0763 GTP-binding protein NP_230412.1 174311 B06 314 VC2183 prsA ribose-phosphate pyrophosphokinase NP_231814.1 174603 B07 108 VC0675 thyA thymidylate synthase NP_230324.1 174474 B08 466 VC1297 asnS asparaginyl-tRNA synthetase NP_230942.2 174933 B09 198
    [Show full text]
  • The Genome of an Industrial Workhorse
    NEWS AND VIEWS The genome of an industrial workhorse Dan Cullen Sequencing of the filamentous fungus Aspergillus niger offers new opportunities for the production of specialty chemicals and enzymes. Few microbes compare with the filamentous fungus Aspergillus niger in its ability to pro­ Environment CAT (2) H O H O + O duce prodigious amounts of useful chemicals 2 2 2 2 and enzymes. This fungus is the principal GOX (3) GLN (1) source of citric acid for food, beverages and D-glucono­ Glucose Gluconate Oxalate pharmaceuticals1 and of several important 1,5-lactone Citrate http://www.nature.com/naturebiotechnology http://www.nature.com/naturebiotechnology commercial enzymes, including glucoamy­ lase, which is widely used for the conversion of starch to food syrups and to fermentative Oxalate + acetate PEP feedstocks for ethanol production. Although OAH most of these fermentation processes are well cMDH (3) established, the underlying genetics are still cPYC (1) cACO (2) cIDH (1) poorly understood. In this issue, Pel et al.2 Pyruvate OAA MAL Citrate Isocitrate 2-ketoglutarate report the genome sequence of A. niger strain Cytosol CBS 513.88. The availability of this sequence OAT (1) CMC (2) mPYC (1) should provide invaluable aid toward improv­ Pyruvate OAA MAL Citrate Isocitrate 2-ketoglutarate ing the production of chemicals and enzymes PDH Nature Publishing Group Group Nature Publishing 7 in this organism. mMDH (1) mACO (2) mIDH (3) Pel et al. sequenced tiled bacterial artificial CS (3) 200 Acetyl-CoA TCA cycle © chromosomes representing the entire A. niger genome to produce a high-quality assembly of Mitochondrion 19 supercontigs with a combined length of 33.9 Mb.
    [Show full text]
  • WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/174282 A2 20 December 2012 (20.12.2012) P O P C T (51) International Patent Classification: David [US/US]; 13539 N . 95th Way, Scottsdale, AZ C12Q 1/68 (2006.01) 85260 (US). (21) International Application Number: (74) Agent: AKHAVAN, Ramin; Caris Science, Inc., 6655 N . PCT/US20 12/0425 19 Macarthur Blvd., Irving, TX 75039 (US). (22) International Filing Date: (81) Designated States (unless otherwise indicated, for every 14 June 2012 (14.06.2012) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, English (25) Filing Language: CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, Publication Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, (30) Priority Data: KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, 61/497,895 16 June 201 1 (16.06.201 1) US MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 61/499,138 20 June 201 1 (20.06.201 1) US OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, 61/501,680 27 June 201 1 (27.06.201 1) u s SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, 61/506,019 8 July 201 1(08.07.201 1) u s TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW.
    [Show full text]
  • Glucose-Binding of Periplasmic Protein Gltb Activates Gtrs-Gltr Two-Component System in Pseudomonas Aeruginosa
    microorganisms Article Glucose-Binding of Periplasmic Protein GltB Activates GtrS-GltR Two-Component System in Pseudomonas aeruginosa Chenchen Xu 1,2 , Qiao Cao 2 and Lefu Lan 1,2,3,4,* 1 University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China; [email protected] 2 State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; [email protected] 3 School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China 4 NMPA Key Laboratory for Testing Technology of Pharmaceutical Microbiology, Shanghai Institute for Food and Drug Control, Shanghai 201203, China * Correspondence: [email protected]; Tel.: +86-21-5080-3109; Fax: +86-21-5080-7088 Abstract: A two-component system GtrS-GltR is required for glucose transport activity in P. aeruginosa and plays a key role during P. aeruginosa-host interactions. However, the mechanism of action of GtrS-GltR has not been definitively established. Here, we show that gltB, which encodes a periplasmic glucose binding protein, is essential for the glucose-induced activation of GtrS-GltR in P. aeruginosa. We determined that GltB is capable of binding to membrane regulatory proteins including GtrS, the sensor kinase of the GtrS-GltR TCS. We observed that alanine substitution of glucose-binding residues abolishes the ability of GltB to promote the activation of GtrS-GltR. Importantly, like the gtrS deletion mutant, gltB deletion mutant showed attenuated virulence in both Drosophila melanogaster and mouse Citation: Xu, C.; Cao, Q.; Lan, L. models of infection. In addition, using CHIP-seq experiments, we showed that the promoter of gltB Glucose-Binding of Periplasmic is the major in vivo target of GltR.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 4,458,686 Clark, Jr
    United States Patent (19) 11 Patent Number: 4,458,686 Clark, Jr. 45) Date of Patent: Jul. 10, 1984 (54), CUTANEOUS METHODS OF MEASURING 4,269,516 5/1981 Lubbers et al. ..................... 356/427 BODY SUBSTANCES 4,306,877 12/1981 Lubbers .............................. 128/633 Primary Examiner-Benjamin R. Padgett 75) Inventor: Leland C. Clark, Jr., Cincinnati, Ohio Assistant Examiner-T. J. Wallen 73. Assignee: Children's Hospital Medical Center, Attorney, Agent, or Firm-Wood, Herron & Evans Cincinnati, Ohio 57 ABSTRACT (21) Appl. No.: 491,402 Cutaneous methods for measurement of substrates in 22 Filed: May 4, 1983 mammalian subjects are disclosed. A condition of the skin is used to measure a number of important sub - Related U.S. Application Data stances which diffuse through the skin or are present (62) Division of Ser. No. 63,159, Aug. 2, 1979, Pat. No. underneath the skin in the blood or tissue. According to 4,401,122. the technique, an enzyme whose activity is specific for a particular substance or substrate is placed on, in or 51). Int. Cl. ................................................ A61B5/00 under the skin for reaction. The condition of the skin is 52). U.S. Cl. .................................... 128/635; 128/636; then detected by suitable means as a measure of the 436/11 amount of the substrate in the body. For instance, the (58), Field of Search ............... 128/632, 635, 636, 637, enzymatic reaction or by-product of the reaction is 128/633; 356/41, 417, 427; 422/68; 23/230 B; detected directly through the skin as a measure of the 436/11 amount of substrate.
    [Show full text]