Species‐related variability of hydrological properties of the branches of 12 tree

Klamerus‐Iwan Anna1*, Łagan Sylwia2 Zarek Marcin3, Słowik‐Opoka Ewa1, Bartłomiej Wojtan1

Supplementary Materials

a) b) c)

Syringa vulgaris L upper surface: a) water, b) diiodomethane, c) glycerin

a) b) c)

Syringa vulgaris L lower surface: a) water, b) diiodomethane, c) glycerin

a) b) c)

Betula pendula upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Betula pendula lower surface a) water, b) diiodomethane, c) glycerin

a) b) c) Quercus robur upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Quercus robur lower surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Fraxinus excelsior upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Fraxinus excelsior lower surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Aesculus hippocastanum upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Aesculus hippocastanum upper surface a) water, b) diiodomethane, c) glycerin a) b) c)

Acer platanoides upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Acer platanoides lower surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Ligustrum vulgare upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Ligustrum vulgare upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Tilia cordata upper surface a) water, b) diiodomethane, c) glycerin a) b) c)

Tilia cordata lower surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Elaeagnus angustifolia upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Elaeagnus angustifolia lower surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Robinia pseudoacacia upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Robinia pseudoacacia lower surface a) water, b) diiodomethane, c) glycerin a) b) c)

Rhus typhina upper surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Rhus typhina lower surface a) water, b) diiodomethane, c) glycerin

a) b) c)

Salix caprea upper area a) water, b) diiodomethane, c) glycerin

a) b) c)

Salix caprea lower area a) water, b) diiodomethane, c) glycerin

Figure S1. Droplets of the liquids measured Table S1. Measurements of the angle of the droplet to the surface

Species Surface Water Diiodomethane Glycerin

Syringa vulgaris upper 110,83±12,87 78,20±4,15 106,24±6,19

lower 103,42±4,73 66,80±4,80 98,84±7,50

Betula pendula upper 105,56±2,97 66,01±2,83 105,90±5,20

lower 124,07±6,18 81,84±3,89 118,68±2,34

Quercus robur upper 112,98±6,84 70,10±5,16 111,50±3,48

lower 120,93±10,10 88,08±7,99 121,31±837

Fraxinus excelsior upper 107,76±3,95 59,70±6,97 101,38±6,22

lower 113,76±2,63 63,87±4,82 104,11±3,08

Aesculus hippocastanum upper 113,11±7,81 64,85±4,15 116,60±4,42

lower 118,35±7,88 65,37±4,87 123,88±4,10

Acer platanoides upper 107,21±6,17 63,18±5,56 96,35±6,51

lower 141,53±4,26 105,17±5,29 135,60±3,48

Ligustrum vulgare upper 107,74±5,39 67,09±2,86 104,44±6,37

lower 111,45±6,49 66,68±4,17 96,32±5,62

Tilia cordata upper 95,22±3,18 58,00±7,17 105,33±7,29

lower 132,56±8,30 100,22±5,06 129,05±5,45

Elaeagnus angustifolia upper 111,70±12,39 62,14±7,03 120, 00±5,31

lower 129,06±6,31 95,17±3,58 115,62±3,79

Robinia pseudoacacia upper 135,14±2,95 110,94±3,66 133,08±4,26

lower 136,37±4,93 113,57±5 130,82±5,67

Rhus typhina upper 113,65±8,06 68,33±5,51 111,21±3,66

lower 136,56±5,12 104,12±5,91 134,69±6,98

Salix caprea upper 74,47±5,18 50,49±3,89 98,24±4,27

lower 123,04±3,75 95,60±2,21 137,08±5,91

Table.S2. Components necessary to calculate the surface free energy

Species Surface

𝑳𝑾 𝑨𝑩 𝑳𝑾 𝑨𝑩 𝜸𝑺 𝜸𝑺 𝜸𝑺 𝜸𝑺 𝜸𝑺 𝜸𝑺 𝜸𝑺 𝜸𝑺

Syringa vulgaris upper 18,65 18,42 0,23 19,93 18,42 1,50 0,35 1,61

lower 25,12 24,68 0,44 26,84 24,68 2,16 0,45 2,60

Betula pendula upper 25,33 25,13 0,21 30,16 25,13 5,03 1,68 3,76

lower 16,74 16,56 0,18 17,54 16,56 0,98 1,12 0,22

Quercus robur upper 22,82 22,82 0,00 26,38 22,82 3,56 1,81 1,75

lower 13,57 13,57 0,00 16,32 13,57 2,75 1,27 1,50

Fraxinus upper 28,75 28,75 0,00 30,92 28,75 2,17 1,03 1,14 excelsior lower 26,45 26,35 0,10 27,09 26,35 0,74 0,75 0,18

Aesculus upper 25,84 25,79 0,05 32,69 25,79 6,90 4,09 2,91 hippocastanum lower 25,88 25,49 0,39 32,92 25,49 7,42 5,85 2,36

Acer platanoides upper 26,79 26,75 0,04 27,32 26,75 0,57 0,17 0,49

lower 7,30 6,92 0,38 7,03 6,92 0,11 0,64 0,00

Ligustrum upper 24,61 24,51 0,10 27,49 24,51 2,98 1,04 2,13 vulgare lower 24,74 24,74 0,00 24,75 24,74 0,01 0,01 0,00

Tilia cordata upper 30,87 29,73 1,14 43,88 29,73 14,15 4,04 12,40

lower 8,67 8,59 0,07 9,28 8,59 0,69 0,65 0,18

Elaeagnus upper 27,39 27,34 0,04 38,80 27,34 11,45 6,47 5,07 angustifolia lower 10,57 10,51 0,06 10,52 10,51 0,01 0,00 0,10

Robinia upper 5,25 5,25 0 5,87 5,25 0,62 0,32 0,30 pseudoacacia lower 4,57 4,57 0 4,71 4,57 0,13 0,06 0,07

Rhus typhina upper 23,83 23,81 0,02 27,01 23,81 3,20 1,86 1,37

lower 7,39 7,26 0,13 8,02 7,26 0,76 0,86 0,17

Salix caprea upper 41,02 34,00 7,02 65,29 34,00 31,29 6,26 39,06

lower 10,39 10,34 0,05 18,95 10,34 8,61 3,72 4,98

Table. S3. Mutual relations between the studied features.

Correlation Direction of Strength of Variables p coefficient dependence dependence

Wax [µg/cm2] S [g/g] ‐0,021 0,827 ‐‐‐ ‐‐‐

Wax [µg/cm2] SEP_ad 0,103 0,276 ‐‐‐ ‐‐‐

Wax [µg/cm2] SEP_ab 0,136 0,152 ‐‐‐ ‐‐‐

Wax [µg/cm2] Angle_ad ‐0,275 0,003 negative very weak

Wax [µg/cm2] Angle_ab ‐0,245 0,009 negative very weak

S [g/g] SEP_ad 0,587 <0,001 positive average

S [g/g] SEP_ab ‐0,038 0,692 ‐‐‐ ‐‐‐

S [g/g] Angle_ad ‐0,608 <0,001 negative average

S [g/g] Angle_ab 0,155 0,102 ‐‐‐ ‐‐‐

SEP_ad SEP_ab 0,034 0,723 ‐‐‐ ‐‐‐

SEP_ad Angle_ad ‐0,629 <0,001 negative average

SEP_ad Angle_ab 0,043 0,651 ‐‐‐ ‐‐‐

SEP_ab Angle_ad ‐0,045 0,637 ‐‐‐ ‐‐‐

SEP_ab Angle_ab ‐0,806 <0,001 negative Strong

Angle_ad Angle_ab 0,049 0,605 ‐‐‐ ‐‐‐