A Nonstop* Kernel Joel F. Bartlett Tandem Computers Inc. Cupertino

Total Page:16

File Type:pdf, Size:1020Kb

A Nonstop* Kernel Joel F. Bartlett Tandem Computers Inc. Cupertino A NonStop* Kernel Joel F. Bartlett Tandem Computers Inc. Cupertino, Ca. Abstract significantly expanded over its lifetime. The Tandem system is intended to fit these The Tandem NonStop System is a fault- requirements. tolerant [1], expandable, and distributed computer system designed expressly for i. Hardware Organization online transaction processing. This paper describes the key primitives of the kernel A network consists of up to 255 nodes. of the operating system. The first section Each node is composed of multiple processor describes the basic hardware building and I/O controller modules interconnected blocks and introduces their software by redundant buses [2,3] as shown in PMS analogs: processes and messages. Using [3] notation in Figure i. A node consists these primitives, a mechanism that allows of two to sixteen processors, where each fault-tolerant resource access, the processor (Pcentral) has its own power process-pair, is described. The paper supply, memory, backup battery, and I/O concludes with some observations on this channel (Sio). All processors are type of system structure and on actual use interconnected by redundant interprocessor of the system. buses (Sipb). Each I/O controller (Kdisc, Ksync, etc.) is connected to two I/O channels and is powered from two different Introduction power supplies using a diode ORing scheme. Fault-tolerant computing systems have been Finally, dual-ported I/O devices such as built over the last two decades in a number discs (Tdisc) may be connected to a second of places to satisfy a variety of goals. I/O controller. The contents of a disc may These results and differing approachs have be "mirrored" on a second volume, but this been summarized in [1,3,11]. In the past, function is supported primarily by software many of these systems have been designed rather than by hardware. I/O devices other for specific tasks, such as telephone than discs are normally single ported and switching, where the costs of ~ailure are are connected to one I/O controller. significant. In addition, the designers of most of the systems did not intend to The processors are 16 bits wide with up to provide general purpose hardware and 2mb of memory per processor. The internal software modules which the end user would clock speed of the processor is 100ns, customize to form a reliable system. resulting in a register-to-register add in .6 microseconds and a load of a word from An increasing number of online applications memory in i.i microseconds. in commercial data processing has created a demand for fault-tolerant general purpose The two interprocessor buses (Sipb) provide computing. These applications are also each processor with two point-to-point characterized by their high rate of growth, paths to each other processor and to which requires that the computing system be itself. Data transfers to and from the buses are buffered in high speed 16-word * NonStop and Tandem are Trademarks of packet buffers in each processor, allowing Tandem Computers Inc. data transfers at a rate of 13.5 megabytes/sec. This is more than three times faster than the processor's memory, Permission to copy without fee all or part of this material is granted which assures that interprocessor messages provided that the copies are not made or distributed for direct are not delayed by the bus bandwidth. commercial advantage, the ACM copyright notice and the title of the publication and its date appear, and notice is given that copying is by i.i Hardware fault model permission of the Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission. The system design goal is to provide continuous operation in the presence of a single fault. This requires that all © 1981ACM0-89791-062-1-12/81-0022 $00.75 single faults be detectable, diagnosable, 22 and repairable online. In addition, the Sometimes these occur during normal software must allow reintegration of the operations, but often their actions are in repaired module into the system. response to another fault at which point a single misstep may cause the entire system Error recovery analysis needs some to fail. assumptions to be made about the types of faults that the system can tolerate. 2. Software Structure First, a fault in either a processor, its memory, or its power supply must be The operating system [4] provides many of contained in and therefore at most disable the user services usually associated with that processor. Second, a fault in either medium-size systems: multiprogramming, an interprocessor bus or an I/O channel access to a gigabyte of virtual memory per will at most disable that bus. Third, a processor, a file system, and extensive fault in an I/O controller will at most communications facilities. However, it disable that I/O controller. With these offers these services in a fault-tolerant assumptions, it can be seen that a single manner on a modular, expandable computer fault will at most make I/O devices system. To do this, its structure has been attached only to one controller designed as an analogue of the hardware unavailable. structure. As the hardware consists of multiple processors and I/O controllers, Physical events affecting the system's the operating system functions are hardware can be divided into three classes distributed over multiple processes; and as [i]. The first class, permanent hardware the hardware modules are interconnected via failures, will be detected either on the redundant buses, the operating system initial instance of the failure or shortly processes communicate via fault-tolerant thereafter by background tests. These give messages. rise to two kinds of problems: error in recovery algorithms and contamination of At the time this structure was proposed and data bases that takes place before failure development started, December 1974, there detection. were few precedents for it. Our main inspiration was found in the work of Intermittent component failures share the Dijkstra [5] and Brinch Hansen [6], whose previously mentioned problem areas. In ideas and examples provided the key kernel addition, unless there is immediate primitives and structure for the system detection, there is a far higher design. probability of data base corruption as the background tests are much less likely to 2.1 Processes see the problem• Each processor supports up to 256 A final source of problems, and perhaps the concurrent processes. Each process has a most serious in actual operation, is that private data space, but may share code with caused by external interference with the other processes in the same processor. A system. This class includes such items as major portion of the cost of a process air conditioning failures, but is primarily switch is chargeable to memory mapping composed of operational errors by either which is required to designate the new the computer operator or service personnel. process" code and data spaces. This •- .......... Sipb I I II Pcentral Pcentral Pcentral I I I Sio Sio Sio ---Kdisc .... Ksync ] .... Tdisc .... ---Tmodem (to another node) ----Tdisc .... ---Tmodem (to another node) Kdisc--- Ktape ........ I Ttape ........ Kasync ....... I Tterminal's Figure i: PMS Diagram of a Node. 23 results in a cost of approximately .5 acknowledgement for each logical request, milliseconds to switch processes. which is the first key to providing fault tolerance in this system. All processors contain both a monitor process and a memory manager process. The In addition, the application program is not Monitor's functions include process allowed direct access to the message management within its processor (e.g., system. This is done by providing a process creation and deletion), information conventional user/privileged mode in the return, message system control, and fault processor. User programs may only enter recovery. When a process is created, it is the operating system (and privileged mode) given a unique "processid" composed of two at certain defined entry points, e.g. parts. The first is its location (node NEWPROCESS in the previous example. This number, processor number, and process restriction provides obvious protection and number) and the second is either a unique information hiding benefits and allows the timestamp or a symbolic name. operating system to control error recovery on message failures, a second key to the Process synchronization primitives include system's fault tolerance. counting semaphores and process-local event flags. Semaphores are used within the kernel to control such things as access to 2.2.1 Message primitives shared I/O controllers. Event flags are used to signal a process that events such Before the error recovery strategies can be as device interrupt, message arrival, and shown, the kernel's message Primitives must message completion have occurred. These be introduced. A message exchange using primitives were chosen using the author's these primitives takes the following form: experience at the time rather than following an exhaustive survey of available A process "R", the requestor, sends a methods. They have been more than adequate message to process "S", the server, by for the resource control involced in I/O calling the procedure LINK. The caller operations and in the implementation of the supplies a processid, six message parameter message system. More complex resource words, and an optional resident buffer control is handled by requesters sending which may contain additional data related messages to the process which "owns" the to the message or may be used to return a resource. result. If the message can be sent, then the address of the sender's Link Control 2.2 Messages Block (LCB) is returned to R, a matching LCB (which contains the six message Almost all information flow, even within a parameter words, R~s processid, S's single processor, is carried in messages processid, and the address of R's LCB) is rather than through shared storage.
Recommended publications
  • Multiple Instruction Issue in the Nonstop Cyclone System
    ~TANDEM Multiple Instruction Issue in the NonStop Cyclone System Robert W. Horst Richard L. Harris Robert L. Jardine Technical Report 90.6 June 1990 Part Number: 48007 Multiple Instruction Issue in the NonStop Cyclone Processorl Robert W. Horst Richard L. Harris Robert L. Jardine Tandem Computers Incorporated 19333 Vallco Parkway Cupertino, CA 95014 Abstract This paper describes the architecture for issuing multiple instructions per clock in the NonStop Cyclone Processor. Pairs of instructions are fetched and decoded by a dual two-stage prefetch pipeline and passed to a dual six-stage pipeline for execution. Dynamic branch prediction is used to reduce branch penalties. A unique microcode routine for each pair is stored in the large duplexed control store. The microcode controls parallel data paths optimized for executing the most frequent instruction pairs. Other features of the architecture include cache support for unaligned double­ precision accesses, a virtually-addressed main memory, and a novel precise exception mechanism. lA previous version of this paper was published in the conference proceedings of The 17th Annual International Symposium on Computer Architecture, May 28-31, 1990, Seattle, Washington. Dynabus+ Dynabus X Dvnabus Y IIIIII I 20 MBIS Parallel I I II 100 MbiVS III I Serial Fibers CPU CPU CPU CPU 0 3 14 15 MEMORY ••• MEMORY • •• MEMORY MEMORY ~IIIO PROC110 IIPROC1,0 PROC1,0 ROC PROC110 IIPROC1,0 PROC110 F11IOROC o 1 o 1 o 1 o 1 I DISKCTRL ~ DISKCTRL I I Q~ / \. I DISKCTRL I TAPECTRL : : DISKCTRL : I 0 1 2 3 /\ o 1 2 3 0 1 2 3 0 1 2 3 Section 0 Section 3 Figure 1.
    [Show full text]
  • Fault Tolerance in Tandem Computer Systems
    1'TANDEM Fault Tolerance in Tandem Computer Systems Joel Bartlett * Wendy Bartlett Richard Carr Dave Garcia Jim Gray Robert Horst Robert Jardine Dan Lenoski DixMcGuire • Preselll address: Digital Equipmelll CorporQlioll Western Regional Laboralory. Palo Alto. California Technical Report 90.5 May 1990 Part Number: 40666 ~ TANDEM COMPUTERS Fault Tolerance in Tandem Computer Systems Joel Bartlett* Wendy Bartlett Richard Carr Dave Garcia Jim Gray Robert Horst Robert Jardine Dan Lenoski Dix McGuire * Present address: Digital Equipment Corporation Western Regional Laboratory, Palo Alto, California Technical Report 90.5 May 1990 Part Nurnber: 40666 Fault Tolerance in Tandem Computer Systems! Wendy Bartlett, Richard Carr, Dave Garcia, Jim Gray, Robert Horst, Robert Jardine, Dan Lenoski, Dix McGuire Tandem Computers Incorporated Cupertino, California Joel Bartlett Digital Equipment Corporation, Western Regional Laboratory Palo Alto, California Tandem Technical Report 90.5, Tandem Part Number 40666 March 1990 ABSTRACT Tandem produces high-availability, general-purpose computers that provide fault tolerance through fail­ fast hardware modules and fault-tolerant software2. This chapter presents a historical perspective of the Tandem systems' evolution and provides a synopsis of the company's current approach to implementing these systems. The article does not cover products announced since January 1990. At the hardware level, a Tandem system is a loosely-coupled multiprocessor with fail-fast modules connected with dual paths. A system can include a range of processors, interconnected through a hierarchical fault-tolerant local network. A system can also include a variety of peripherals, attached with dual-ported controllers. A novel disk subsystem allows a choice between low cost-per-byte and low cost-per-access.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • HP Nonstop Systems Deployments
    HP NonStop systems – as you haven’t seen them before HP NonStop systems as you haven’t seen them before Deployed in support of mission-critical applications in manufacturing and distribution, telecommunications, retail and wholesale banking, transportation and entertainment Richard Buckle Founder and CEO Pyalla Technologies, LLC Pyalla Technologies, LLC Page 1 HP NonStop systems – as you haven’t seen them before About the Author Richard Buckle is the founder and CEO of Pyalla Technologies, LLC. He has enjoyed a long association with the IT industry as a user, vendor, and more recently, as an industry commentator. Richard has over 25 years of research experience with HP’s NonStop platform, including eight years working at Tandem Computers, followed by just as many years at InSession Inc. and ACI Worldwide, as well as four years at Golden Gate, now a part of Oracle. Well known to the user communities of HP and IBM, Richard served as a Director of ITUG (2000-2006), as its Chairman (2004-2005), and as the Director of Marketing of the IBM user group, SHARE, (2007-2008). Richard provides industry commentary and opinions through his community blog as well as through his industry association and vendor blogs, web publications and eNewsletters. You can follow him at www.itug- connection.blogspot.com and at ATMmarketplace.com as well read his editorial, Musings on NonStop, published monthly in Tandemworld.net Pyalla Technologies, LLC Page 2 HP NonStop systems – as you haven’t seen them before Introduction The strength of NonStop systems has always been its support of real time, mission critical, transaction processing, starting out with an application built on a fault tolerant system continues to be the simplest way to assure its availability.
    [Show full text]
  • Atalla HSM & HPE Nonstop
    Data Security Overview GTUG – May 2018 Darren Burkey, Senior PreSales Consultant Atalla [email protected] The New Combined Company: built on stability, acquisition and innovation Network Management/ COBOL Data Protector 40 30 2 Years Years “Better Together” Portfolio Has Breadth and Depth Information Linux & DevOps IT Operations Cloud Security Governance Open Source Service Management, Cloud Service Digital Safe, Data Protector, Operations Bridge, Automation, Control Point, Data Center Hybrid Cloud Structured Data Manager, Automation, Management Storage Optimizer Network Management Mainframe Solutions, IT Operations Enterprise Linux, Management, OpenStack Private Cloud, Cobol Development, Host Connectivity, Identity-based Software-defined Software Delivery Collaboration Workload Migration Access Governance Storage and Testing and Security Big Data Analytics IDOL Data security portfolio: Voltage & Atalla Data privacy & security compliance Secure analytics, privacy and Hybrid cloud data protection & & risk reduction pseudonymization collaboration Voltage SecureData Enterprise, Big Data, Cloud, Mobile and Payments Data Security Tokenization, Encryption, Masking Voltage SecureMail Voltage SecureMail Cloud Easy, scalable email encryption Enterprise email encryption SaaS Atalla HSM Enterprise Secure Key Manager Payments crypto appliances & key storage KMIP Key Management for Storage, 3rd party apps 4 ® Atalla Product Overview History of Atalla • Established in 1972 • Mission: Protect financial transactions • Atalla introduced first
    [Show full text]
  • Why Do Computers Stop and What Can Be Done About It?
    "1,TANDEMCOMPUTERS Why Do Computers Stop and What Can Be Done About It? Jim Gray Technical Report 85.7 June 1985 PN87614 Why Do Computers Stop and What Can Be Done About It? Jim Gray June 1985 Tandem Technical report 85.7 Tandem TR 85.7 Why Do Computers Stop and What Can Be Done About It? Jim Gray June, 1985 Revised November, 1985 ABSTRACT An analysis of the failure statistics of a commercially available fault-tolerant system shows that administration and software are the major contributors to failure. Various approachs to software fault- tolerance are then discussed notably process-pairs, transactions and reliable storage. It is pointed out that faults in production software are often soft (transient) and that a transaction mechanism combined with persistent process-pairs provides fault-tolerant execution -- the key to software fault-tolerance. DISCLAIMER This paper is not an "official" Tandem statement on fault-tolerance. Rather, it expresses the author's research on the topic. An early version of this paper appeared in the proceedings of the German Association for Computing Machinery Conference on Office Automation, Erlangen, Oct. 2-4, 1985. TABLE OF CONTENTS Introduct ion 1 Hardware Availability by Modular Redundancy....•.•.....•..•..•• 3 Analysis of Failures of a Fault-tolerant System•.••......•••.•. 7 Implications of the Analysis of MTBF ...•••.•.•••••...•........ 12 Fault-tolerant Execution 15 Software Modularity Through Processes and Messages 16 Fault Containment Through Fail-Stop Software Modules 16 Software Faults Are Soft, the Bohrbug-Heisenbug Hypothesis.17 Process-pairs For Fault-tolerant Execution 20 Transactions for Data Integrity..•......................... 24 Transactions for Simple Fault-tolerant Execution 25 Fault-tolerant Communication .......•..•.....•.•.•.•.•.•......
    [Show full text]
  • Tandem Computers Unplugged: a People's History
    Tandem Computers Unplugged: A People’s History company’s leadership in general and the charisma oF Jimmy Treybig, the company’s key Founder, in specific? Again a resounding yes, but not entirely as Jimmy hasn’t been the only charismatic leader in Silicon Valley - a number come to mind. Was it because oF the company’s offbeat corporate culture such as no private parking places, an on campus swimming pool and oF course the inFamous beer busts. Well yes, but!!! How can it be that over 16 years since From an insiders point of view it was its merger with Compaq and nearly a all oF these things wrapped in a decade since it’s reabsorption back cocoon of an integrated corporate into Hewlett Packard a vibrant and value system that permeated all active online Tandem Computers corners oF the company, world wide alumni community still exists on and deeply touched the souls and Yahoo!Groups and Linked In? How can minds oF all employees through the it be that in many countries in the good and bad times. world groups oF Tandem Alumni still get together in local pubs or other Tandem Computers Unplugged – A types oF venues at least yearly? How People’s History is an attempt to can it be that many Former employees capture not just the history of an maintain their collection oF T-shirts, important foundational contributor to double-handled cups, pens, and what is today’s Silicon Valley, but to trophies almost like shrines oF some share the experience through the eyes kind? How can it be that so many and hearts oF the employees and employees when asked to look back through this process bring to light on their working liFe almost to a some oF the important ‘lessons person claim that working at Tandem learned’ about how to manage and was one oF the best places they have motivate talent.
    [Show full text]
  • Dennis Adams Associates Tandem Concepts
    Dennis Adams a s s o c i a t e s Tandem Concepts: An Introduction for UNIX techies Introduction This document was prepared from some investigation work on the Tandem Non-Stop system. Background to Tandem Tandem was founded as a company to develop fault-tolerant systems in 1976 by ex-Hewlett Packard engineers, and the first Tandem NonStop system was based on HP3000 CPUs with a custom bus called Dynabus to provide fault-tolerance of the I/O and CPU. The Operating System was called Guardian, which implemented message passing on a common stack to ensure resilience. The key architecture of Tandem is the (RPC-like) message-passing mechanism. The kernel automatically re-routes a message from a failing component to a functioning one. This same approach is used both within a system and between systems. In 1983, the FOX fibre-optic interconnect was launched which enabled up to 14 individual nodes to participate in a closely coupled network and share workloads between them. In 1986, FOX II enabled the network to be up to 4 Km distance, as well as introducing NonStop VLX, which increased the Dynabus speed from 13 to 40 MB/s. The same year, NonStop SQL was introduced. 1991 saw the first of several changes of architecture, with the introduction of the MIPS CPU, later replaced by the MIPS R4400 in the NonStop Himalaya K-Series in 1993. Tandem computers introduced the S-Series in 1997. This replaced Dynabus and FOX with a new ServerNet interconnect. ServerNet is a true peer-to-peer network (instead of the ring protocol of the earlier networks) and is the basis of the InfiniBand interconnect architect.
    [Show full text]
  • Strategic Interactions in Dram and Risc Technology: a Network Approach
    Strategic interactions in dram and risc technology: A network approach Geert Duysters & Wim Vanhaverbeke 93.023 September 1993 MERIT, P.O. Box 616, 6200 MD Maastricht (Netherlands) - telephone (31)43-883875- fax: (31)43-216518 1 STRATEGIC INTERACTIONS IN DRA AND RISC TECHNOLOGY: A NETWORK APPROACH Geert Duysters and WiI Vanhaverbeke1 INTRODUCTION Cooperative agreements have been ignored in business literature for a veiy long time. Only recently, the use of cooperative agreements as part of corporate strategies gained substantial interest. This increase in attention is above all due to the fact that in the last decade the number of cooperative agreements by firms has rocketed. In fact cooperative agreements have outnumbered the fully owned foreign subsidiaries (Contractor and Lorange, 1988). In this paper we will use the term cooperation to denote cooperative agreements between partners which are not connected through (majority) ownership. A cooperative agreement can be seen as an agreement which is positioned between two extremes, arm's length transactions on the one hand and the merger of the two firs on the other hand. Cooperation among companies is usually analyzed in strategic management literature on the dyadic level or on the level of the partcipating firs. Only recently, interest by economists has grown to study cooperative efforts of firs within an inter-organisational network framework (see e.g. Hagedoom and Schakenraad. 1990, 1992, 1993). In high- tech industries where almost all incumbents are linked to each other by means of a network of cooperative agreements, an analysis on the level of the individual players or allances is not appropriate to understand the strategic value of cooperative strategies.
    [Show full text]
  • Software Fault Tolerance in Computer Operating Systems
    Chapter 11 in Software Fault Tolerance, Michael Lyu, Ed., Wiley, 1995. NASA-CR-1 97999 (NASA-CR-197999) SOFTWARE FAULT N95-24993 TOLERANCE IN COMPUTER OPERATING SYSTEMS (Illinois Univ.) 30 p G3/61 0045355 11 Software Fault Tolerance in Computer Operating Systems RAVISHANKAR K. IYER and INHWAN LEE University of Illinois at Urbana-Champaign ABSTRACT This chapter provides, data and analysis of the dependability and fault tolerance for three operating systems: the Tandem/GUARDIAN fault-tolerant system, the VAX/VMS distributed system, and the IBM/MVS system. Based on measurements from these systems, basic software error characteristics are investigated. Fault tolerance in operating systems resulting from the use of process pairs and recovery routines is evaluated. Two levels of models are developed to analyze error and recovery processes inside an operating system and interactions among multiple instances of an operating system running in a distributed environment. The measurements show that the use of process pairs in Tandem systems, which was originally intended for tolerating hardware faults, allows the system to tolerate about 70% - of defects in system software that result in processor failures. The loose coupling between processors which results in the backup execution (the processor state and the sequence of events occurring) being different from the original execution is a major reason for the measured software fault tolerance. The IBM/MVS system fault tolerance almost doubles when recovery routines are provided, in comparison to the case in which no recovery routines are available. However, even when recovery routines are provided, there is almost a 50% chance of system failure when critical system jobs are involved.
    [Show full text]
  • 1 Fault Tolerance & Reliability CDA 5140 Chapter 3 – RAID & Sample
    Fault Tolerance & Reliability CDA 5140 Chapter 3 – RAID & Sample Commercial FT Systems - basic concept in these, as with codes, is redundancy to allow system to continue operation even if some components fail - hot standby refers to components that can fail, being associated with components that run in parallel (i.e. powered up) and can take over upon a failure - cold standby refers to having just one component powered up and others available but powered down (standby) that can be powered up upon detection of failure - once one standby takes over upon failure, either repair the failed unit or replace it, before the new operating component can fail - various techniques for improving system/component reliability: o improve manufacturing or design process to decrease component failure rate o parallel redundancy – sometimes synchronization, if multiple parallel components, can be difficult o cold standby can require complex switching o stage of repairing or replacing components is important RAID - increase of performance for processors & main memory has received considerable attention, unlike secondary storage - secondary storage is primarily a mechanical process & hence performance can only be pushed so far without using multiple parallel components - RAID, redundant arrays of independent disks, provides arrays of disks that can operate independently and in parallel, and is an industry standard so can be used on different platforms and operating systems - if data is on separate disks, then I/O requests can be done in parallel 1 - levels
    [Show full text]
  • Software Dependability in the Tandem GUARDIAN System
    NASA-CR'200160 /'_/_ /- G/_.._ IBBBTRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 21, NO. 5, MAY 1995 455 '/'_..-/._/?j J'7_" _(.,/<// :./ /;:_ Software Dependability in the Tandem GUARDIAN System Inhwan Lee, Member, IEEE, and Ravishankar K. Iyer, Fellow, IEEE /,' "5 / £,-'" " _; .' LZ; / Abstmct_Based on extensive field failure data for Tandem's [1], [2], [31. The dependability issues for operational software ? GUARDIAN operating system, this paper discusses evaluation of are typically very different from those for software under de- the dependability of operational software. Software faults consid- ered are major defects that result in processor failures and invoke velopment, due to differences in the operational environment backup processes to take over. The paper categorizes the underly- and software maturity. Also, the dependability of operational ing causes of software failures and evaluates the effectiveness of software needs to be investigated in the context of the overall the process pair technique in tolerating software faults. A model system. to describe the impact of software faults on the reliability of an A study of the dependability of operational software based overall system is proposed. The model is used to evaluate the sig- nificance of key factors that determine software dependability on real measurements requires, in addition to instrumentation and to identify areas for imProvement. and data collection, an understanding of the system architec- An analysis of the data shows that about 77% of processor ture, hardware, and software. It also requires an understanding failures that are initially considered due to software are con- of the development, service, and operational environments.
    [Show full text]