Development of a Dilatant Damage Zone Along a Thrust Relay in a Low-Porosity Quartz Arenite
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Significance of Brittle Deformation in the Footwall
Journal of Structural Geology 64 (2014) 79e98 Contents lists available at SciVerse ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone J.-E. Lund Snee a,*,1, V.G. Toy a, K. Gessner b a Geology Department, University of Otago, PO Box 56, Dunedin 9016, New Zealand b Western Australian Geothermal Centre of Excellence, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia article info abstract Article history: The Smithy Creek Fault represents a rare exposure of a brittle fault zone within Australian Plate rocks that Received 28 January 2013 constitute the footwall of the Alpine Fault zone in Westland, New Zealand. Outcrop mapping and Received in revised form paleostress analysis of the Smithy Creek Fault were conducted to characterize deformation and miner- 22 May 2013 alization in the footwall of the nearby Alpine Fault, and the timing of these processes relative to the Accepted 4 June 2013 modern tectonic regime. While unfavorably oriented, the dextral oblique Smithy Creek thrust has Available online 18 June 2013 kinematics compatible with slip in the current stress regime and offsets a basement unconformity beneath Holocene glaciofluvial sediments. A greater than 100 m wide damage zone and more than 8 m Keywords: Fault zone wide, extensively fractured fault core are consistent with total displacement on the kilometer scale. e Fluid flow Based on our observations we propose that an asymmetric damage zone containing quartz carbonate Hydrofracture echloriteeepidote veins is focused in the footwall. -
Lithology and Internal Structure of the San Andreas Fault at Depth Based
1 1 Lithology and Internal Structure of the San Andreas Fault at depth based on 2 characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at 3 Depth (SAFOD) Borehole 4 By Kelly K. Bradbury1, James P. Evans1, Judith S. Chester2, Frederick M. Chester2, and David L. Kirschner3 5 1Geology Department, Utah State University, Logan, UT 84321-4505 6 2Center for Tectonophysics and Department of Geology and Geophysics, Texas A&M University, College Station, 7 Texas 77843 8 3Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, Missouri 63108 9 10 Abstract 11 We characterize the lithology and structure of the spot core obtained in 2007 during 12 Phase 3 drilling of the San Andreas Fault Observatory at Depth (SAFOD) in order to determine 13 the composition, structure, and deformation processes of the fault zone at 3 km depth where 14 creep and microseismicity occur. A total of approximately 41 m of spot core was taken from 15 three separate sections of the borehole; the core samples consist of fractured arkosic sandstones 16 and shale west of the SAF zone (Pacific Plate) and sheared fine-grained sedimentary rocks, 17 ultrafine black fault-related rocks, and phyllosilicate-rich fault gouge within the fault zone 18 (North American Plate). The fault zone at SAFOD consists of a broad zone of variably damaged 19 rock containing localized zones of highly concentrated shear that often juxtapose distinct 20 protoliths. Two zones of serpentinite-bearing clay gouge, each meters-thick, occur at the two 21 locations of aseismic creep identified in the borehole on the basis of casing deformation. -
Stress and Fluid Control on De Collement Within Competent Limestone
Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement. -
Physical Properties of Surface Outcrop Cataclastic Fault Rocks, Alpine Fault, New Zealand
Article Volume 13, Number 1 28 January 2012 Q01018, doi:10.1029/2011GC003872 ISSN: 1525-2027 Physical properties of surface outcrop cataclastic fault rocks, Alpine Fault, New Zealand C. Boulton Department of Geological Sciences, University of Canterbury, PB 4800, Christchurch 8042, New Zealand ([email protected]) B. M. Carpenter Department of Geosciences, Pennsylvania State University, 522 Deike Building, University Park, Pennsylvania 16802, USA V. Toy Department of Geology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand C. Marone Department of Geosciences, Pennsylvania State University, 522 Deike Building, University Park, Pennsylvania 16802, USA [1] We present a unified analysis of physical properties of cataclastic fault rocks collected from surface exposures of the central Alpine Fault at Gaunt Creek and Waikukupa River, New Zealand. Friction experi- ments on fault gouge and intact samples of cataclasite were conducted at 30–33 MPa effective normal stress (sn′) using a double-direct shear configuration and controlled pore fluid pressure in a true triaxial pressure vessel. Samples from a scarp outcrop on the southwest bank of Gaunt Creek display (1) an increase in fault normal permeability (k=7.45 Â 10À20 m2 to k = 1.15 Â 10À16 m2), (2) a transition from frictionally weak (m = 0.44) fault gouge to frictionally strong (m = 0.50–0.55) cataclasite, (3) a change in friction rate depen- dence (a-b) from solely velocity strengthening, to velocity strengthening and weakening, and (4) an increase in the rate of frictional healing with increasing distance from the footwall fluvioglacial gravels contact. At Gaunt Creek, alteration of the primary clay minerals chlorite and illite/muscovite to smectite, kaolinite, and goethite accompanies an increase in friction coefficient (m = 0.31 to m = 0.44) and fault- perpendicular permeability (k=3.10 Â 10À20 m2 to k = 7.45 Â 10À20 m2). -
Rock Properties and Internal Structure of the San Andreas Fault Near
Utah State University DigitalCommons@USU Geosciences Presentations Geosciences 12-2010 Rock Properties and Internal Structure of the San Andreas Fault Near ~ 3 km Depth in the SAFOD Borehole Based on Meso- to Micro-scale Analyses of Phase III Whole Rock Core Kelly Keighley Bradbury Utah State University James P. Evans Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/geology_pres Part of the Geology Commons Recommended Citation Bradbury, Kelly Keighley and Evans, James P., "Rock Properties and Internal Structure of the San Andreas Fault Near ~ 3 km Depth in the SAFOD Borehole Based on Meso- to Micro-scale Analyses of Phase III Whole Rock Core" (2010). Geosciences Presentations. Paper 5. https://digitalcommons.usu.edu/geology_pres/5 This Poster is brought to you for free and open access by the Geosciences at DigitalCommons@USU. It has been accepted for inclusion in Geosciences Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. TA41A-2099 Rock properties and Internal Structure of the San Andreas Fault at ~ 3km depth in the SAFOD Borehole: Mesoscopic to Microscopic Analyses of Phase III Whole Rock Core By Kelly Keighley Bradbury ([email protected]) and James P. Evans ([email protected]), Department of Geology, Utah State University, 4505 Old Main Hill, Logan, UT I. Introduction III. Mesoscopic to Microscopic Core-Based Studies V. Whole-Rock Geochemistry We examine the relationships between rock properties and structure within ~ 41 m Lithology & Mineralogical Composition Deformation-Related Features of PHASE III whole-rock core collected from ~ 3 km depth along the SAF in the San Hole E Core Images b c Lithologies encountered include (reported in measured core depths): d 3150 m 3192.5 m 3195.8 m Major Elements a Andreas Fault Observatory at Depth (SAFOD) borehole, near Parkfield, CA. -
Thesis-Reproduction (Electronic)
A synopsis of the geologic and structural history of the Randsburg Mining District Item Type text; Thesis-Reproduction (electronic) Authors Morehouse, Jeffrey Allen, 1953-1985 Publisher The University of Arizona. Rights Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author. Download date 27/09/2021 08:53:56 Link to Item http://hdl.handle.net/10150/558085 Call No. BINDING INSTRUCTIONS INTERUBRARY INSTRUCTIONS Dept. E9791 Author: Morehouse, J. 1988 245 Title: RUSH___________________ PERMABIND____________ PAMPHLET._____________ GIFT____________________ COLOR: M,S* POCKET FOR MAP______ COVERS Front_______Both Special Instructions - Bindery or Repair REFERENCE____ i________ O th er--------------------------- 3 /2 /9 0 A SYNOPSIS OF THE GEOLOGIC AND STRUCTURAL HISTORY OF THE RANDSBURG MINING DISTRICT by Jeffrey Allen Morehouse A Thesis Submitted to the Faculty of the DEPARTMENT OF GEOSCIENCES In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA 19 8 8 THE UNIVERSITY OF ARIZONA TUCSON, ARIZONA 85721 DEPARTMENT OF GEOSCIENCES BUILDING *77 GOULD-SIMPSON BUILDING TEL (602) 621-6024 To the reader of Jeff Morehouse's thesis: Jeff Morehouse's life was lamentably cut short by a hiking-rock climbing accident in the Santa Catalina Mountains near Tucson, Arizona, on March 24, 1985. Those who knew Jeff will always regret that accident, not only because it abbreviated what would certainly have been an uncommonly productive geological career but also because it snuffed an effervescent, optimistic,, charming personality. -
Development of a Dilatant Damage Zone Along a Thrust Relay in a Low-Porosity Quartz Arenite
University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 12-2005 Development of a Dilatant Damage Zone along a Thrust Relay in a Low-Porosity Quartz Arenite Jennie E. Cook University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Geology Commons Recommended Citation Cook, Jennie E., "Development of a Dilatant Damage Zone along a Thrust Relay in a Low-Porosity Quartz Arenite. " Master's Thesis, University of Tennessee, 2005. https://trace.tennessee.edu/utk_gradthes/1853 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Jennie E. Cook entitled "Development of a Dilatant Damage Zone along a Thrust Relay in a Low-Porosity Quartz Arenite." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Geology. William M. Dunne, Major Professor We have read this thesis and recommend its acceptance: Linda C. Kah, Robert D. Hatcher Jr. Accepted for the Council: Carolyn R. Hodges Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) To the Graduate Council: I am submitting herewith a thesis written by Jennie E. -
A N–S-Trending Active Extensional Structure, the Fiuhut (Afyon) Graben
Turkish Journal of Earth Sciences (Turkish J. Earth Sci.), Vol. 16, 2007, pp. 391–416. Copyright ©TÜB‹TAK A N–S-trending Active Extensional Structure, the fiuhut (Afyon) Graben: Commencement Age of the Extensional Neotectonic Period in the Isparta Angle, SW Turkey AL‹ KOÇY‹⁄‹T & fiULE DEVEC‹ Middle East Technical University, Department of Geological Engineering, Active Tectonics and Earthquake Research Laboratory, TR–06531 Ankara, Turkey (E-mail: [email protected]) Abstract: The fiuhut graben is an 8–11-km-wide, 24-km-long, N–S-trending, active extensional structure located on the southern shoulder of the Akflehir-Afyon graben, near the apex of the outer Isparta Angle. The fiuhut graben developed on a pre-Upper Pliocene rock assemblage comprising pre-Jurassic metamorphic rocks, Jurassic–Lower Cretaceous platform carbonates, the Lower Miocene–Middle Pliocene Afyon stratovolcanic complex and a fluvio- lacustrine volcano-sedimentary sequence. The eastern margin of the fiuhut graben is dominated by the Afyon volcanics and their well-bedded fluvio- lacustrine sedimentary cover, which is folded into a series of NNE-trending anticlines and synclines. This volcano- sedimentary sequence was deformed during a phase of WNW–ESE contraction, and is overlain with angular unconformity by nearly horizontal Plio–Quaternary graben infill. Palaeostress analyses of slip-plane data recorded in the lowest unit of the modern graben infill and on the marginal active faults indicate that the fiuhut graben has been developing as a result of ENE–WSW extension since the latest Pliocene. The extensional neotectonic period in the Isparta Angle started in the latest Pliocene. All margins of the fiuhut graben are determined and controlled by a series of oblique-slip normal fault sets and isolated fault segments. -
Unique Layered Cataclasites Below the West Salton Detachment Fault, Southern California GEOSPHERE; V
Research Paper GEOSPHERE A rock record of paleoseismic cycling: Unique layered cataclasites below the West Salton detachment fault, southern California GEOSPHERE; v. 14, no. 1 Gary J. Axen1, Jane Selverstone2, and Amy Luther1,* 1Department of Earth & Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA doi:10.1130/GES01499.1 2Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, New Mexico 87131, USA 16 figures ABSTRACT as products of seismogenic slip. In contrast, clay-rich gouge and upper-plate CORRESPONDENCE: Gary .Axen@nmt .edu breccias formed at depth ≤2–3 km. The footwall fault core is clay poor and thus Only relatively rare fault rocks record paleoseismicity (e.g., pseudotachy- apparently passed through the uppermost crust with little overprint. CITATION: Axen, G.J., Selverstone, J., and Luther, lyte), though most fault slip probably accumulates during earthquakes. We The layered cataclasites and detachment fault core display only minor A., 2018, A rock record of paleoseismic cycling: Unique layered cataclasites below the West Salton describe two fault-rock assemblages, made of common fault-rock types, and chemical alteration, and the layers record limited shear strain relative to fault- detachment fault, southern California: Geosphere, argue that fault-rock assemblages can provide criteria for inferring seismogenic core rocks. Thus, the layered cataclasites may be good natural analogs for ex- v. 14, no. 1, p. 187–214, doi: 10 .1130 /GES01499.1. slip on exhumed faults that are more common than individual fault-rock types. perimentally formed fault rocks. Both assemblages formed from intermediate Such assemblages allow direct study of fault-slip products formed under vari- plutonic protoliths, similar to “average” mid-crustal rocks, and from the same Science Editor: Shanaka de Silva ous crustal conditions that are not accessible on active faults. -
5. Structural Terms Including Fault Rock Terms
Towards a unified nomenclature of metamorphic petrology: 5. Structural terms including fault rock terms Recommendations by the IUGS Subcommission on the Systematics of Metamorphic Rocks. Web version of 30.11.04 Kate Brodie1, Douglas Fettes2, Ben Harte3 and Rolf Schmid4 1School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom 2British Geological Survey, Murchison House, West Mains Road, Edinburgh, United Kingdom 3Grant Institute of Geology, University of Edinburgh, Kings Buildings, Edinburgh, United Kingdom 4Institut für Mineralogie und Petrographie, ETH-Centre, CH-8092, Zürich, Switzerland INTRODUCTION The Subcommission for the nomenclature of Metamorphic Rocks (SCMR), aims to publish international recommendations on how metamorphic rocks and processes are to be defined and named, as was previously done for igneous rocks by the Subcommission on the Systematics of Igneous Rocks (Le Maitre, 1989, 2002). The principles used by the SCMR for defining and classifying metamorphic rocks are outlined in Schmid et al. (2004). A Study Group (SG), under the leadership of Dr Kate Brodie, was set up to look at nomenclature relating to structural terms. At an early stage a questionnaire was sent to around 60 structural geologists throughout the world, with a series of initial definitions. The response did much to guide the work of the SG and the SCMR in finalizing its recommendations. BACKGROUND Many of the definitions given below were adopted by the SCMR without difficulty; others gave rise to considerable debate. Problems arose for a variety of reasons, namely: the variable usage of terms across the geological community (for example, gneiss and schist); terms such as slate and cleavage proved difficult because there are no similar terms in many non-English speaking countries; equally, the difference between cleavage and schistosity and the use of texture and microstructure proved major sticking points. -
Faults and Joints
97 FAULTS Fractures are planar discontinuities, i.e. interruption of the rock physical continuity, due to stresses. The geological fractures occur at every scale so that any large volume of rock has some or many. These discontinuities are attributed to sudden relaxation of elastic energy stored in the rock. The geological fractures have their economic importance. The loss of continuity in intact rocks provides the necessary permeability for migration and accumulation of fluids such as groundwater and petrol. Fractured reservoirs and aquifers are typically anisotropic since their transmissivity is regulated by the conductive properties of fractures, which the local stress field partially controls. Geological fractures may be partially or wholly healed by the introduction of secondary minerals, often giving rise to ore deposits, or by recrystallization of the original minerals. Planar discontinuities along which rocks lose cohesion during their brittle behavior are: - joints if there is no component of displacement parallel to the plane (there may be some very small orthogonal parting; joints are extension fractures). - faults if rocks on both sides of the plane have moved relative to each other, parallel to the plane (faults are shear fractures). - veins if the fractures are filled with secondary crystallization. Joints and faults divide the rocks into blocks whose size and shape must be taken into consideration for engineering, quarrying, mining, and geomorphology. Fault terminology Definitions Faults separate two adjacent blocks of rock that have moved past each other because of induced stresses. The notion of localized movement leads to two genetically different classes of faults reflecting the two basic behaviors of rocks under stress: brittle and ductile. -
Geology Maps
Student Name: Grade: Physical Geology 101 Laboratory Interpreting Geology Maps Introduction & Purpose: The purpose of this laboratory is to gain a working knowledge and skill to read geology maps. Students will learn to read a geology map for the purpose of understanding surface and subsurface structural relations and geologic history that may include a record of rock forming events, mountain building deformation, and the relationship between geology and topography Part I. Review Taking Strike and Dip Directions: Use the Compass and Inclinometer, provided by your instructor, to determine the strike and dip of two inclined boards that are setup in the classroom. Note: Use the boards labeled “X” and “Z”. 1. What is the strike and dip of the board labeled “X” strike: ___________ dip: ________ 2. What is the strike and dip of the board labeled “Z” strike: ___________ dip: ________ Part II – Reading and Interpreting a Simplified Geologic Map Introduction: A geologic map is a greatly scaled-down, two-dimensional abstract representation of the surface geology, structure, and relief of a geographic region of Earth, or even another terrestrial planet. A geologic map typically includes most information found on a topographic map, but most importantly, includes color-coding regions and symbols that denote rock units, contacts, and other structural information. Additionally, all the geologic color-coding and symbols are explained in the legend on a geologic map, including topographic and cardinal information. Directions: The simplified geology map below contains several geologic features that include the following: Sedimentary beds "A", "B", "C", and "D"; Basalt dike" E"; Granite pluton; Fault "Y"; and Unconformity "Z".