The Alpine Fault at Gaunt Creek, Westland, New Zealand

Total Page:16

File Type:pdf, Size:1020Kb

The Alpine Fault at Gaunt Creek, Westland, New Zealand Anatomy, structural evolution, and slip rate of a plate-boundary thrust: The Alpine fault at Gaunt Creek, Westland, New Zealand ALAN F. COOPER RICHARD J. NORRIS j- Geology Department, University of Otago, P.O. Box 56, Dunedin, New Zealand ABSTRACT South Island, New Zealand, is one of Earth's ture over a 40-km section southwest of Gaunt major transpressional structures. It has a Creek, and we have found a similar pattern of Minimum slip rates calculated for plate-vec- documented dextral strike-slip displacement alternating thrust and strike-slip sections in tor-parallel slickenside trends in cataclasite on of480 km (Wellman, 1955), and as much as 70 the Alpine fault zone 85 km farther south, the sole of the Alpine fault at Gaunt Creek, km of convergence by reverse oblique slip north of Haast River. Westland, New Zealand, range from 18 to 24 (Walcott, 1979; Allis, 1986). Transpression The best exposure of the Alpine fault in mm/yr. Between half and two-thirds of the to- has resulted in the exhumation of amphibo- Westland is at Gaunt Creek, Waitangi-taona tal relative motion between the Pacific and Aus- lite-facies rocks from depths of 20-25 km River, which lies on the longest thrust seg- tralian plates is being accommodated by move- (Wellman, 1979; Cooper, 1980), most of ment mapped to date (Fig. 1). This paper de- ment on a single structure, the Alpine fault. which has occurred in the past 7 m.y. (Kamp scribes details of this outcrop and discusses During the past 14 ka, the leading edge of and others, 1989). Physiographically, the Al- the implications of the inferred tectonic his- the Alpine fault has changed from a moder- pine fault is best expressed in central West- tory on the mechanics of thrusting, the gen- ately southeast-dipping, oblique reverse fault land, where it separates the 3-km-high moun- eration of overthrusts, and the geomorphic to a shallowly dipping thrust. The hanging wall tains of the Southern Alps in the east from the evolution of the Alpine fault plate boundary. (Pacific plate) is composed of a gradational se- topographically subdued terrain of the quence from basal gouge, through pseudo- coastal apron to the west. On satellite REGIONAL GEOLOGY tachylite-bearing cataclasite, to progressively imagery, the fault trace is remarkably linear, more coherent schist-derived mylonite, which striking northeastward (055°). In central The regional geologic history and tectonic has been faulted against subhorizontally bed- Westland, however, the linearity of the fault development of the Alpine fault plate ded, fluvio-glacial gravel in the footwall (Aus- trace is illusory, and mylonitized schist from boundary were reviewed recently by Norris tralian plate). During uplift the hanging-wall the Southern Alps has been transported west- and others (1990). The rocks exposed to the sequence has been internally sheared and im- ward in a series of napplets over the West northwest of the Alpine fault in the Waitangi- bricated, producing duplex structures, and Coast sequence for distances of up to 2.5 km taona River area are composed of foliated retrogressively veined and altered by pervasive from the Alpine front (Bowen, 1954). These granitoid and quartzofeldspathic gneiss of hydrothermal fluid flow. overthrusts have been attributed to gravity probable Mesozoic age (Kimbrough and oth- Erosion of the exhumed fault zone produced collapse of the range front (Wellman, 1955; ers, 1994; Rattenbury, 1991) overlain by Qua- angular, cataclasite- and mylonite-derived, ta- Suggate, 1963) or tectonic shortening (Norris ternary moraine and fluvio-glacial gravel lus-fan breccias, building a west-dipping apron and others, 1990). (Fig. 1). Southeast of the Alpine fault, the beneath the fault scarp. Wood fragments from Recent detailed field mapping between the Southern Alps are made up of the Haast near the base of the talus breccias have been Fox and Whataroa rivers has shown that the Schist, which reaches a metamorphic grade 14C dated at 12,650 ± 90 yr B.P. Progressive fault zone is far from simple, comprising al- of amphibolite facies in the zone of maximum tectonic shortening resulted in 180 m of over- ternating segments that have average strikes uplift adjacent to the fault. thrusting of a schist-derived nappe across an ranging from 010° to 050° and 070° to 090°, irregular talus fan surface composed of its own respectively (Norris and others, 1990). East- GAUNT CREEK SECTION erosional debris. The structural history of the trending fault segments dip steeply but con- Alpine fault at Gaunt Creek illustrates the im- tain gently plunging slickensides and shear- On the south bank of Gaunt Creek, the Al- portance of the interaction between fault-in- sense indicators that suggest predominantly pine fault is exposed in an outcrop almost 700 duced topography and erosion, and the control dextral strike-slip displacement. In contrast, m long and >100 m high (Figs. 2, 3). The these processes exert on the continued tectonic, the more northward-striking segments are fault, marked by a zone of cataclasite in the geometric, and geomorphic evolution of the characterized by thick zones of cataclasite hanging wall, dips 40° southeast at creek fault zone. overlying a gently to moderately east-dipping level, but, 200-300 m northwest, isolated fault surface. Slickenside lineations indicate patches of cataclasite in the middle sections INTRODUCTION oblique thrusting. Fault segments range from of the face define a shallow, south-dipping hundreds of meters to several kilometers in thrust. In the southeastern part of the expo- The Alpine fault, forming the boundary be- length (Norris and others, 1990, Fig. 2). Seg- sure, cataclasite overlies fluvial gravel com- tween the Pacific and Australian plates in the mentation dominates the Alpine fault struc- posed of rounded schist clasts, but farther Geologica) Society of America Bulletta, v. 106, p. 627-633, 5 figs., 1 table, May 1994. 627 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/106/5/627/3381983/i0016-7606-106-5-627.pdf by guest on 01 October 2021 COOPER AND NORRIS Figure 1. Locality maps. A. Plate boundary structures in the South Island, New Zealand, with localities referred to in the text. Heavy arrow represents the direction of motion of the Pacific plate, determined from the pole of rotation given by DeMets and others (1990). B. Geology of the Waitangi-taona River catchment, Westland, illustrating the segmented nature of the Alpine fault trace. Outcrop of the Alpine fault described in Figures 2 and 3 is labeled as Gaunt Creek Slip. The shading shown on the Waitangi-taona River thrust segment of the Alpine fault indicates, somewhat diagrammatically, the distribution of cataclasite. northwest, the thrust has ridden over angular melt structures, suggests that deposition oc- cross-beds, developed between individual mylonite debris. Structurally above the fault, curred during a glacial period, probably the units of breccia. A large wood fragment, in- a varied sequence of cataclasite passes gra- last glaciation. In a zone as much as 2 m wide corporated in fine-grained sediments near the dationally into cataclastic mylonite and ulti- beneath the fault surface, platy schist tablets base of the sequence (Fig. 2), has yielded a mately into intact or coherent mylonite. in the gravel have been rotated into a subver- 14C age of 12,650 ± 90 yr B.P. (Table 1). In- tical orientation by fault drag. cluded in the debris are blocks of the pale Fluvio-glacial Gravel green, basal cataclasite, which—based on Mylonite-Derived Gravel observed present-day erosional behavior— In the southeast part of the Alpine fault survives fluvial transport for distances of only outcrop, the footwall is a sequence of crudely Subhorizontal bedding in the fluvial gravel a few or, at most, tens of meters. The largest bedded gravel composed of rounded, schist- is truncated to the northwest by a west-dip- blocks of mylonite rest on top of the dipping derived clasts. Coarse schist plates are com- ping erosional surface marking the base of a sequence and have an internal foliation that monly imbricated with an inferred flow direc- younger sequence of lenticular breccias and dips eastward. Gravel units likewise have tion similar to that of the present-day creek. gravels. In contrast to the fluvial sequence, crude layering that also is back-tilted due to Sag structures in bedding may have origi- these younger sediments predominantly rotational slumping. nated by collapse of the creek bed following composed of angular and unsorted clasts of The predominantly mylonite-derived melting of underlying "dead" ice. The age of mylonite. Grain size is highly varied, ranging gravel passes abruptly up section into a thick the gravels is unknown, but the absence of from blocks many meters in diameter, to fine unit of subhorizontal to shallow west-dip- wood material, together with possible ice- sandy or silty seams, exhibiting fine-scale ping, poorly imbricated and cross-bedded 628 Geological Society of America Bulletin, May 1994 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/106/5/627/3381983/i0016-7606-106-5-627.pdf by guest on 01 October 2021 PLATE-BOUNDARY THRUST, NEW ZEALAND SE NW 140° 320° QUARTZOFELDSPATHIC AND AMPHIBOLITIC MYLONITE CUT BY GOUGE-FILLED SHEARS FLUVIAL OUTWASH/FAN GRAVEL WITH AND VEINS OF PSEUDOTACHYLITE. DUPLEX MIXED SCHIST-MYLONITE PROVENANCE. STRUCTURES COMMON. BLACK ULTRACATACLASITE AND WOOD: 10,300 yrs B. P. WHISPY PSEUDOTACHYLITE. LENSES OF MYLONITE-DERIVED, TALUS FAN PALE GREEN CATACLASITE COMPOSED OF BRECCIA. LOCALLY LARGE. COMMONLY BACK-TILTED, FRAGMENTS OF CHLORITIZED MYLONITE SLUMP BLOCKS. AND VEIN QUARTZ. SCHIST-DERIVED, FLUVIO-GLACIAL GRAVEL WITH SUBHORIZONTAL BEDDING AND STRONG PEBBLE IMBRICATION. 100m Figure 2. Map of the Gaunt Creek slip face, compiled from horizontal photographs corrected for scale variations by radial-line methods (Ailum, 1966).
Recommended publications
  • Significance of Brittle Deformation in the Footwall
    Journal of Structural Geology 64 (2014) 79e98 Contents lists available at SciVerse ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone J.-E. Lund Snee a,*,1, V.G. Toy a, K. Gessner b a Geology Department, University of Otago, PO Box 56, Dunedin 9016, New Zealand b Western Australian Geothermal Centre of Excellence, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia article info abstract Article history: The Smithy Creek Fault represents a rare exposure of a brittle fault zone within Australian Plate rocks that Received 28 January 2013 constitute the footwall of the Alpine Fault zone in Westland, New Zealand. Outcrop mapping and Received in revised form paleostress analysis of the Smithy Creek Fault were conducted to characterize deformation and miner- 22 May 2013 alization in the footwall of the nearby Alpine Fault, and the timing of these processes relative to the Accepted 4 June 2013 modern tectonic regime. While unfavorably oriented, the dextral oblique Smithy Creek thrust has Available online 18 June 2013 kinematics compatible with slip in the current stress regime and offsets a basement unconformity beneath Holocene glaciofluvial sediments. A greater than 100 m wide damage zone and more than 8 m Keywords: Fault zone wide, extensively fractured fault core are consistent with total displacement on the kilometer scale. e Fluid flow Based on our observations we propose that an asymmetric damage zone containing quartz carbonate Hydrofracture echloriteeepidote veins is focused in the footwall.
    [Show full text]
  • Lithology and Internal Structure of the San Andreas Fault at Depth Based
    1 1 Lithology and Internal Structure of the San Andreas Fault at depth based on 2 characterization of Phase 3 whole-rock core in the San Andreas Fault Observatory at 3 Depth (SAFOD) Borehole 4 By Kelly K. Bradbury1, James P. Evans1, Judith S. Chester2, Frederick M. Chester2, and David L. Kirschner3 5 1Geology Department, Utah State University, Logan, UT 84321-4505 6 2Center for Tectonophysics and Department of Geology and Geophysics, Texas A&M University, College Station, 7 Texas 77843 8 3Department of Earth and Atmospheric Sciences, St. Louis University, St. Louis, Missouri 63108 9 10 Abstract 11 We characterize the lithology and structure of the spot core obtained in 2007 during 12 Phase 3 drilling of the San Andreas Fault Observatory at Depth (SAFOD) in order to determine 13 the composition, structure, and deformation processes of the fault zone at 3 km depth where 14 creep and microseismicity occur. A total of approximately 41 m of spot core was taken from 15 three separate sections of the borehole; the core samples consist of fractured arkosic sandstones 16 and shale west of the SAF zone (Pacific Plate) and sheared fine-grained sedimentary rocks, 17 ultrafine black fault-related rocks, and phyllosilicate-rich fault gouge within the fault zone 18 (North American Plate). The fault zone at SAFOD consists of a broad zone of variably damaged 19 rock containing localized zones of highly concentrated shear that often juxtapose distinct 20 protoliths. Two zones of serpentinite-bearing clay gouge, each meters-thick, occur at the two 21 locations of aseismic creep identified in the borehole on the basis of casing deformation.
    [Show full text]
  • Geology of the Kranzberg Syncline and Emplacement Controls of the Usakos Pegmatite Field, Damara Belt, Central Namibia
    GEOLOGY OF THE KRANZBERG SYNCLINE AND EMPLACEMENT CONTROLS OF THE USAKOS PEGMATITE FIELD, DAMARA BELT, CENTRAL NAMIBIA by Geoffrey J. Owen Thesis presented in fulfilment of the requirements for the degree Master of Science at the University of Stellenbosch Supervisor: Prof. Alex Kisters Faculty of Science Department of Earth Sciences March 2011 i DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitely otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: Date: 15. February 2011 ii ABSTRACT The Central Zone (CZ) of the Damara belt in central Namibia is underlain by voluminous Pan-African granites and is host to numerous pegmatite occurrences, some of which have economic importance and have been mined extensively. This study discusses the occurrence, geometry, relative timing and emplacement mechanisms for the Usakos pegmatite field, located between the towns of Karibib and Usakos and within the core of the regional-scale Kranzberg syncline. Lithological mapping of the Kuiseb Formation in the core of the Kranzberg syncline identified four litho-units that form an up to 800 m thick succession of metaturbidites describing an overall coarsening upward trend. This coarsening upwards trend suggests sedimentation of the formation’s upper parts may have occurred during crustal convergence and basin closure between the Kalahari and Congo Cratons, rather than during continued spreading as previously thought.
    [Show full text]
  • Silica Gel Formation During Fault Slip: Evidence from The
    *Manuscript Publisher: GSA Journal: GEOL: Geology Article ID: G34483 1 Silica gel formation during fault slip: Evidence from the 2 rock record 3 J.D. Kirkpatrick1*, C.D. Rowe2, J.C. White3, and E.E. Brodsky1 4 1Earth & Planetary Sciences Department, University of California–Santa Cruz, 1156 5 High Street, Santa Cruz, California 95064, USA 6 2Department of Earth & Planetary Sciences, McGill University, 3450 University Street, 7 Montréal, QC H3A 0E8, Canada 8 3Department of Earth Sciences, University of New Brunswick, 2 Bailey Drive, 9 Fredericton, New Brunswick E3B 5A3, Canada 10 *Current address: Department of Geosciences, Colorado State University, 1482 Campus 11 Delivery, Fort Collins, Colorado 80523, USA. 12 ABSTRACT 13 Dynamic reduction of fault strength is a key process during earthquake rupture. 14 Many mechanisms causing coseismic weakening have been proposed based on theory 15 and laboratory experiments, including silica gel lubrication. However, few have been 16 observed in nature. Here we report on the first documented occurrence of a natural silica 17 gel coating a fault surface. The Corona Heights fault slickenside in San Francisco, 18 California, is covered by a shiny layer of translucent silica. Microstructures in this layer 19 show flow banding, armored clasts and extreme comminution compared to adjacent 20 cataclasites. The layer is composed of ~100 nm to 1 µm grains of quartz, hydrous 21 crystalline silica, and amorphous silica, with 10–100 nm inclusions of Fe oxides and 22 ellipsoidal silica colloids. Kinematic indicators and mixing with adjacent cataclasites Page 1 of 15 Publisher: GSA Journal: GEOL: Geology Article ID: G34483 23 suggest the shiny layer was fluid during fault slip.
    [Show full text]
  • Seismic Moment and Recurrence: Microstructural and Mineralogical
    Seismic Moment and Recurrence: Microstructural and mineralogical characterization of rocks in carbonate fault zones and their potential for luminescence and ESR dating Evangelos Tsakalosa,b,*, Maria Kazantzakia, Aiming Linb, Yannis Bassiakosa, Eleni Filippakia , Nishiwaki Takafumib a Laboratory of Luminescence dating, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, N.C.S.R. “Demokritos”, Athens, 153 10, Greece b Department of Geophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan *Corresponding Author: Evangelos Tsakalos, Laboratory of Luminescence dating, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, N.C.S.R. “Demokritos”, Aghia Paraskevi, 153 10, Athens, Greece. E-mail: [email protected]; Tel.: +306974561999. Keyword: fault rocks; fault mirrors; carbonate fault zones; absolute dating; mineralogy; microstructural analysis Abstract: The important question of absolute dating of seismic phenomena has been the study of several researchers over the past few decades. The relevant research has concentrated on “energy traps” of minerals, such as quartz or feldspar, which may accumulate chronological information associated with tectonic deformations. However, the produced knowledge so far, is not sufficient to allow the absolute dating of faults. Today, Luminescence and Electron Spin Resonance (ESR) dating methods could be seen as offering high potential for dating past seismic deformed features on timescales ranging from some years
    [Show full text]
  • Stress and Fluid Control on De Collement Within Competent Limestone
    Journal of Structural Geology 22 (2000) 349±371 www.elsevier.nl/locate/jstrugeo Stress and ¯uid control on de collement within competent limestone Antonio Teixell a,*, David W. Durney b, Maria-Luisa Arboleya a aDepartament de Geologia, Universitat AutoÁnoma de Barcelona, 08193 Bellaterra, Spain bDepartment of Earth and Planetary Sciences, Macquarie University, Sydney, NSW 2109, Australia Received 5 October 1998; accepted 23 September 1999 Abstract The Larra thrust of the Pyrenees is a bedding-parallel de collement located within a competent limestone unit. It forms the ¯oor of a thrust system of hectometric-scale imbrications developed beneath a synorogenic basin. The fault rock at the de collement is a dense stack of mainly bedding-parallel calcite veins with variable internal deformation by twinning and recrystallization. Veins developed as extension fractures parallel to a horizontal maximum compressive stress, cemented by cavity-type crystals. Conditions during vein formation are interpreted in terms of a compressional model where crack-arrays develop at applied stresses approaching the shear strength of the rock and at ¯uid pressures equal to or less than the overburden pressure. The cracks developed in response to high dierential stress, which was channelled in the strong limestone, and high ¯uid pressure in or below the thrust plane. Ductile deformation, although conspicuous, cannot account for the kilometric displacement of the thrust, which was mostly accommodated by slip on water sills constituted by open cracks. A model of cyclic dierential brittle contraction, stress reorientation, slip and ductile relaxation at a rheological step in the limestone is proposed as a mechanism for episodic de collement movement.
    [Show full text]
  • Anja SCHORN & Franz NEUBAUER
    Austrian Journal of Earth Sciences Volume 104/2 22 - 46 Vienna 2011 Emplacement of an evaporitic mélange nappe in central Northern Calcareous Alps: evidence from the Moosegg klippe (Austria)_______________________________________________ Anja SCHORN*) & Franz NEUBAUER KEYWORDS thin-skinned tectonics deformation analysis Dept. Geography and Geology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria; sulphate mélange fold-thrust belt *) Corresponding author, [email protected] mylonite Abstract For the reconstruction of Alpine tectonics, the Permian to Lower Triassic Haselgebirge Formation of the Northern Calcareous Alps (NCA) (Austria) plays a key role in: (1) understanding the origin of Haselgebirge bearing nappes, (2) revealing tectonic processes not preserved in other units, and (3) in deciphering the mode of emplacement, namely gravity-driven or tectonic. With these aims in mind, we studied the sulphatic Haselgebirge exposed to the east of Golling, particularly the gypsum quarry Moosegg and its surroun- dings located in the central NCA. There, overlying the Lower Cretaceous Rossfeld Formation, the Haselgebirge Formation forms a tectonic klippe (Grubach klippe) preserved in a synform, which is cut along its northern edge by the ENE-trending high-angle normal Grubach fault juxtaposing Haselgebirge to the Upper Jurassic Oberalm Formation. According to our new data, the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Formation, which includes many clasts derived from the Hasel- gebirge Fm. and its exotic blocks deposited in front of the incoming nappe. The main Haselgebirge body contains foliated, massive and brecciated anhydrite and gypsum. A high variety of sulphatic fabrics is preserved within the Moosegg quarry and dominant gyp- sum/anhydrite bodies are tectonically mixed with subordinate decimetre- to meter-sized tectonic lenses of dark dolomite, dark-grey, green and red shales, pelagic limestones and marls, and abundant plutonic and volcanic rocks as well as rare metamorphic rocks.
    [Show full text]
  • Physical Properties of Surface Outcrop Cataclastic Fault Rocks, Alpine Fault, New Zealand
    Article Volume 13, Number 1 28 January 2012 Q01018, doi:10.1029/2011GC003872 ISSN: 1525-2027 Physical properties of surface outcrop cataclastic fault rocks, Alpine Fault, New Zealand C. Boulton Department of Geological Sciences, University of Canterbury, PB 4800, Christchurch 8042, New Zealand ([email protected]) B. M. Carpenter Department of Geosciences, Pennsylvania State University, 522 Deike Building, University Park, Pennsylvania 16802, USA V. Toy Department of Geology, University of Otago, P.O. Box 56, Dunedin 9054, New Zealand C. Marone Department of Geosciences, Pennsylvania State University, 522 Deike Building, University Park, Pennsylvania 16802, USA [1] We present a unified analysis of physical properties of cataclastic fault rocks collected from surface exposures of the central Alpine Fault at Gaunt Creek and Waikukupa River, New Zealand. Friction experi- ments on fault gouge and intact samples of cataclasite were conducted at 30–33 MPa effective normal stress (sn′) using a double-direct shear configuration and controlled pore fluid pressure in a true triaxial pressure vessel. Samples from a scarp outcrop on the southwest bank of Gaunt Creek display (1) an increase in fault normal permeability (k=7.45 Â 10À20 m2 to k = 1.15 Â 10À16 m2), (2) a transition from frictionally weak (m = 0.44) fault gouge to frictionally strong (m = 0.50–0.55) cataclasite, (3) a change in friction rate depen- dence (a-b) from solely velocity strengthening, to velocity strengthening and weakening, and (4) an increase in the rate of frictional healing with increasing distance from the footwall fluvioglacial gravels contact. At Gaunt Creek, alteration of the primary clay minerals chlorite and illite/muscovite to smectite, kaolinite, and goethite accompanies an increase in friction coefficient (m = 0.31 to m = 0.44) and fault- perpendicular permeability (k=3.10 Â 10À20 m2 to k = 7.45 Â 10À20 m2).
    [Show full text]
  • Clay Veins: Their Occurrence, Characteristics, and Support
    Bureau of Mines Report of Investigations/ 1987 Clay Veins: Their Occurrence, Characteristics, and Support By Frank E. Chase and James P. Ulery UNITED STATES DEPARTMENT OF THE INTERIOR Report of Investigations 9060 Clay Veins: Their Occurrence, Characteristics, and Support By Frank E. Chase and James P. Ulery UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES Robert C. Horton, Director Library of Congress Cataloging in Publication Data : Chase, Frank E. Clay veins : their occurrence, characteristics, and support. (Report of investigations/United States Department of the Interior, Bureau of Mines ; 9060) Bibliography: p. 18-19. Supt. of Docs. no.: I 28.23: 9060. 1. Ground control (Mining) 2. Clay veins. 3. Coal mines and mining-Safety measures. I. Ulery, J. P. (James P.) 11. Title. 111. Series: Report of investigations (United States. Bureau of Mines) ; 9060. TN23.U43 86-600245 CONTENTS Page Abstract ....................................................................... Introduction................................................................... Clay vein origins .............................................................. Clay vein occurrences.......................................................... Depositional setting and interpretations ....................................... Clay vein composition.......................................................... Coalbed and roof rock characteristics .......................................... Roof support..................................................................
    [Show full text]
  • Structural Study of the Ogama-Rockland Gold Deposit, Southeastern Margin of the Ross River Pluton, Rice Lake Greenstone Belt, Southeastern Manitoba (NTS 52L14) by X
    ERRATUM Report of Activities 2012 Manitoba Innovation, Energy and Mines Manitoba Geological Survey GS-5 Structural study of the Ogama-Rockland gold deposit, southeastern margin of the Ross River pluton, Rice Lake greenstone belt, southeastern Manitoba (NTS 52L14) by X. Zhou, S. Lin and S.D. Anderson Reprinted with revisions, 2012. The following figure has been revised (page 66): Figure GS-5-5: Outcrop photographs of fault-fill veins in the area of Ogama-Rockland gold deposit: a) thin, laminated quartz vein in a discrete ductile shear zone; b) example of a possible conjugate shear zone and fault-fill vein system. GS-5 Structural study of the Ogama-Rockland gold deposit, southeast- ern margin of the Ross River pluton, Rice Lake greenstone belt, southeastern Manitoba (NTS 52L14) by X. Zhou1, S. Lin1 and S.D. Anderson Zhou, X., Lin, S. and Anderson, S.D. 2012: Structural study of the Ogama-Rockland gold deposit, southeastern margin of the Ross River pluton, Rice Lake greenstone belt, southeastern Manitoba (NTS 52L14); in Report of Activities 2012, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey, p. 59–67. Summary Research and Development grant The Archean Rice Lake greenstone belt is the most from the Natural Sciences and important lode gold district in Manitoba and lies in the Engineering Research Council of Canada in partnership western part of the Uchi Subprovince of the Superior with Bison Gold Resources Inc. and with in-kind support Province. Unlike most gold deposits in the Rice Lake belt, from the Manitoba Geological Survey. which are hosted by layered gabbro sills, basalt flows or In the first field season of what is designed as a three- volcaniclastic rocks, the Ogama-Rockland gold deposit is year mapping project, the first author carried out 1:1000 hosted by granitoid intrusive rocks.
    [Show full text]
  • Rock Properties and Internal Structure of the San Andreas Fault Near
    Utah State University DigitalCommons@USU Geosciences Presentations Geosciences 12-2010 Rock Properties and Internal Structure of the San Andreas Fault Near ~ 3 km Depth in the SAFOD Borehole Based on Meso- to Micro-scale Analyses of Phase III Whole Rock Core Kelly Keighley Bradbury Utah State University James P. Evans Utah State University Follow this and additional works at: https://digitalcommons.usu.edu/geology_pres Part of the Geology Commons Recommended Citation Bradbury, Kelly Keighley and Evans, James P., "Rock Properties and Internal Structure of the San Andreas Fault Near ~ 3 km Depth in the SAFOD Borehole Based on Meso- to Micro-scale Analyses of Phase III Whole Rock Core" (2010). Geosciences Presentations. Paper 5. https://digitalcommons.usu.edu/geology_pres/5 This Poster is brought to you for free and open access by the Geosciences at DigitalCommons@USU. It has been accepted for inclusion in Geosciences Presentations by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. TA41A-2099 Rock properties and Internal Structure of the San Andreas Fault at ~ 3km depth in the SAFOD Borehole: Mesoscopic to Microscopic Analyses of Phase III Whole Rock Core By Kelly Keighley Bradbury ([email protected]) and James P. Evans ([email protected]), Department of Geology, Utah State University, 4505 Old Main Hill, Logan, UT I. Introduction III. Mesoscopic to Microscopic Core-Based Studies V. Whole-Rock Geochemistry We examine the relationships between rock properties and structure within ~ 41 m Lithology & Mineralogical Composition Deformation-Related Features of PHASE III whole-rock core collected from ~ 3 km depth along the SAF in the San Hole E Core Images b c Lithologies encountered include (reported in measured core depths): d 3150 m 3192.5 m 3195.8 m Major Elements a Andreas Fault Observatory at Depth (SAFOD) borehole, near Parkfield, CA.
    [Show full text]
  • Development of a Dilatant Damage Zone Along a Thrust Relay in a Low-Porosity Quartz Arenite
    Journal of Structural Geology 28 (2006) 776–792 www.elsevier.com/locate/jsg Development of a dilatant damage zone along a thrust relay in a low-porosity quartz arenite Jennie E. Cook a, William M. Dunne a,*, Charles M. Onasch b a Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996-1410, USA b Department of Geology, Bowling Green State University, Bowling Green, OH 43403, USA Received 12 August 2005; received in revised form 26 January 2006; accepted 15 February 2006 Available online 18 April 2006 Abstract A damage zone along a backthrust fault system in well-cemented quartz arenite in the Alleghanian foreland thrust system consists of a network of NW-dipping thrusts that are linked by multiple higher-order faults and bound a zone of intense extensional fractures and breccias. The damage zone developed at an extensional step-over between two independent, laterally propagating backthrusts. The zone is unusual because it preserves porous brittle fabrics despite formation at O5 km depth. The presence of pervasive, late-stage fault-normal joints in a fault-bounded horse in the northwestern damage zone indicates formation between two near-frictionless faults. This decrease in frictional resistance was likely a result of increased fluid pressure. In addition to physical effects, chemical effects of fluid also influenced damage zone development. Quartz cements, fluid inclusion data, and Fourier Transform Infrared analysis indicate that both aqueous and methane-rich fluids were present within the damage zone at different times. The backthrust network likely acted as a fluid conduit system, bringing methane-rich fluids up from the underlying unit and displacing resident aqueous fluids.
    [Show full text]