Silica Gel Formation During Fault Slip: Evidence from The
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Linking Megathrust Earthquakes to Brittle Deformation in a Fossil Accretionary Complex
ARTICLE Received 9 Dec 2014 | Accepted 13 May 2015 | Published 24 Jun 2015 DOI: 10.1038/ncomms8504 OPEN Linking megathrust earthquakes to brittle deformation in a fossil accretionary complex Armin Dielforder1, Hauke Vollstaedt1,2, Torsten Vennemann3, Alfons Berger1 & Marco Herwegh1 Seismological data from recent subduction earthquakes suggest that megathrust earthquakes induce transient stress changes in the upper plate that shift accretionary wedges into an unstable state. These stress changes have, however, never been linked to geological structures preserved in fossil accretionary complexes. The importance of coseismically induced wedge failure has therefore remained largely elusive. Here we show that brittle faulting and vein formation in the palaeo-accretionary complex of the European Alps record stress changes generated by subduction-related earthquakes. Early veins formed at shallow levels by bedding-parallel shear during coseismic compression of the outer wedge. In contrast, subsequent vein formation occurred by normal faulting and extensional fracturing at deeper levels in response to coseismic extension of the inner wedge. Our study demonstrates how mineral veins can be used to reveal the dynamics of outer and inner wedges, which respond in opposite ways to megathrust earthquakes by compressional and extensional faulting, respectively. 1 Institute of Geological Sciences, University of Bern, Baltzerstrasse 1 þ 3, Bern CH-3012, Switzerland. 2 Center for Space and Habitability, University of Bern, Sidlerstrasse 5, Bern CH-3012, Switzerland. 3 Institute of Earth Surface Dynamics, University of Lausanne, Geˆopolis 4634, Lausanne CH-1015, Switzerland. Correspondence and requests for materials should be addressed to A.D. (email: [email protected]). NATURE COMMUNICATIONS | 6:7504 | DOI: 10.1038/ncomms8504 | www.nature.com/naturecommunications 1 & 2015 Macmillan Publishers Limited. -
Tectonic Imbrication and Foredeep Development in the Penokean
Tectonic Imbrication and Foredeep Development in the Penokean Orogen, East-Central Minnesota An Interpretation Based on Regional Geophysics and the Results of Test-Drilling The Penokean Orogeny in Minnesota and Upper Michigan A Comparison of Structural Geology U.S. GEOLOGICAL SURVEY BULLETIN 1904-C, D AVAILABILITY OF BOOKS AND MAPS OF THE U.S. GEOLOGICAL SURVEY Instructions on ordering publications of the U.S. Geological Survey, along with prices of the last offerings, are given in the cur rent-year issues of the monthly catalog "New Publications of the U.S. Geological Survey." Prices of available U.S. Geological Sur vey publications released prior to the current year are listed in the most recent annual "Price and Availability List." Publications that are listed in various U.S. Geological Survey catalogs (see back inside cover) but not listed in the most recent annual "Price and Availability List" are no longer available. Prices of reports released to the open files are given in the listing "U.S. Geological Survey Open-File Reports," updated month ly, which is for sale in microfiche from the U.S. Geological Survey, Books and Open-File Reports Section, Federal Center, Box 25425, Denver, CO 80225. Reports released through the NTIS may be obtained by writing to the National Technical Information Service, U.S. Department of Commerce, Springfield, VA 22161; please include NTIS report number with inquiry. Order U.S. Geological Survey publications by mail or over the counter from the offices given below. BY MAIL OVER THE COUNTER Books Books Professional Papers, Bulletins, Water-Supply Papers, Techniques of Water-Resources Investigations, Circulars, publications of general in Books of the U.S. -
Significance of Brittle Deformation in the Footwall
Journal of Structural Geology 64 (2014) 79e98 Contents lists available at SciVerse ScienceDirect Journal of Structural Geology journal homepage: www.elsevier.com/locate/jsg Significance of brittle deformation in the footwall of the Alpine Fault, New Zealand: Smithy Creek Fault zone J.-E. Lund Snee a,*,1, V.G. Toy a, K. Gessner b a Geology Department, University of Otago, PO Box 56, Dunedin 9016, New Zealand b Western Australian Geothermal Centre of Excellence, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009, Australia article info abstract Article history: The Smithy Creek Fault represents a rare exposure of a brittle fault zone within Australian Plate rocks that Received 28 January 2013 constitute the footwall of the Alpine Fault zone in Westland, New Zealand. Outcrop mapping and Received in revised form paleostress analysis of the Smithy Creek Fault were conducted to characterize deformation and miner- 22 May 2013 alization in the footwall of the nearby Alpine Fault, and the timing of these processes relative to the Accepted 4 June 2013 modern tectonic regime. While unfavorably oriented, the dextral oblique Smithy Creek thrust has Available online 18 June 2013 kinematics compatible with slip in the current stress regime and offsets a basement unconformity beneath Holocene glaciofluvial sediments. A greater than 100 m wide damage zone and more than 8 m Keywords: Fault zone wide, extensively fractured fault core are consistent with total displacement on the kilometer scale. e Fluid flow Based on our observations we propose that an asymmetric damage zone containing quartz carbonate Hydrofracture echloriteeepidote veins is focused in the footwall. -
Wakabayashi Intgeolr
International Geology Review ISSN: 0020-6814 (Print) 1938-2839 (Online) Journal homepage: http://www.tandfonline.com/loi/tigr20 Whither the megathrust? Localization of large- scale subduction slip along the contact of a mélange John Wakabayashi & Christie D. Rowe To cite this article: John Wakabayashi & Christie D. Rowe (2015) Whither the megathrust? Localization of large-scale subduction slip along the contact of a mélange, International Geology Review, 57:5-8, 854-870, DOI: 10.1080/00206814.2015.1020453 To link to this article: http://dx.doi.org/10.1080/00206814.2015.1020453 Published online: 09 Mar 2015. Submit your article to this journal Article views: 189 View related articles View Crossmark data Citing articles: 1 View citing articles Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=tigr20 Download by: [University of California, Berkeley] Date: 04 April 2016, At: 09:19 International Geology Review, 2015 Vol. 57, Nos. 5–8, 854–870, http://dx.doi.org/10.1080/00206814.2015.1020453 Whither the megathrust? Localization of large-scale subduction slip along the contact of a mélange John Wakabayashia* and Christie D. Roweb aDepartment of Earth and Environmental Sciences, California State University, Fresno, CA, USA; bDepartment of Earth and Planetary Sciences, McGill University, Montreal, Canada (Received 13 February 2015; accepted 14 February 2015) Long-lived subduction complexes, such as the Franciscan Complex of California, include tectonic contacts that represent exhumed megathrust horizons that collectively accommodated thousands of kilometres of slip. The chaotic nature of mélanges in subduction complexes has spawned proposals that these mélanges form as a result of megathrust displacement. -
Introduction to Structural Geology
8/19/2016 What is Structural Geology? Geol 341 Structural Geology Introduction Goals Topics and Logistics • 1. Understand Earth’s structures and • http://www.geo.wvu.edu/~jtoro the processes that create them. • 2. Learn skills used to analyze and interpret geological structures How do Tool to Measure Strike and Dip we explain the major You need to buy one now features of SUUNTO MC2 Navigator the Earth? or Brunton TRUARC15 Mirror Compass with clinometer, Azimuth (360o) $40 to $50 Or a smartphone app (Lambert) Earth Field Notebook $8 each Moon 1 8/19/2016 Why are there mountains? How do faults relate to earthquakes? Active mountain front, Basin and Matterhorn, Swiss Alps Range Province, Nevada Interaction between Structural and It all starts with field observations Sedimentary Processes Brooks Range Foothills, AK Erosion Tectonic Burial Sedimentary burial Basal heat flux A basic tool: the geologic map A structural cross section: Interpret deep structure from surface data 2 8/19/2016 How can solid rock flow like taffy? Strain Field in a Shear Zone Morcles Nappe, Swiss Alps From Ramsay and Hubert, 1983 Microscopic view: How is deformation accomplished? Study structures at all scales 5 mm Looking inside the Earth Seismic Reflection Data from Santos Basin (Brazil) Seismic Acquisition Fossen, 2010 3 8/19/2016 Practical applications of Structure Methods of Structural Geology Where is the oil field? Experiments with Analogue Materials Salt H.M. Cadell, 1887 Mechanics: What happens to the stress field Stress Components when you drill a well? Or when a fault forms? zz z zx xz xz xx xx zx zz x Fracture systems and their role in fluid flow Preparation for Field Camp 4 8/19/2016 Orientation of a Plane Apparent Horizontality Elements of Geology, Lyell 1871 True Dip vs Apparent Dip True Dip vs Apparent Dip Map View N d= true dip True 20 a= apparent dip Dip Apparent True b= angle between strike (d) Line of section and line of section b tan a= tan d . -
Geology of the Kranzberg Syncline and Emplacement Controls of the Usakos Pegmatite Field, Damara Belt, Central Namibia
GEOLOGY OF THE KRANZBERG SYNCLINE AND EMPLACEMENT CONTROLS OF THE USAKOS PEGMATITE FIELD, DAMARA BELT, CENTRAL NAMIBIA by Geoffrey J. Owen Thesis presented in fulfilment of the requirements for the degree Master of Science at the University of Stellenbosch Supervisor: Prof. Alex Kisters Faculty of Science Department of Earth Sciences March 2011 i DECLARATION By submitting this thesis electronically, I declare that the entirety of the work contained therein is my own, original work, that I am the sole author thereof (save to the extent explicitely otherwise stated), that reproduction and publication thereof by Stellenbosch University will not infringe any third party rights and that I have not previously in its entirety or in part submitted it for obtaining any qualification. Signature: Date: 15. February 2011 ii ABSTRACT The Central Zone (CZ) of the Damara belt in central Namibia is underlain by voluminous Pan-African granites and is host to numerous pegmatite occurrences, some of which have economic importance and have been mined extensively. This study discusses the occurrence, geometry, relative timing and emplacement mechanisms for the Usakos pegmatite field, located between the towns of Karibib and Usakos and within the core of the regional-scale Kranzberg syncline. Lithological mapping of the Kuiseb Formation in the core of the Kranzberg syncline identified four litho-units that form an up to 800 m thick succession of metaturbidites describing an overall coarsening upward trend. This coarsening upwards trend suggests sedimentation of the formation’s upper parts may have occurred during crustal convergence and basin closure between the Kalahari and Congo Cratons, rather than during continued spreading as previously thought. -
Seismic Moment and Recurrence: Microstructural and Mineralogical
Seismic Moment and Recurrence: Microstructural and mineralogical characterization of rocks in carbonate fault zones and their potential for luminescence and ESR dating Evangelos Tsakalosa,b,*, Maria Kazantzakia, Aiming Linb, Yannis Bassiakosa, Eleni Filippakia , Nishiwaki Takafumib a Laboratory of Luminescence dating, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, N.C.S.R. “Demokritos”, Athens, 153 10, Greece b Department of Geophysics, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan *Corresponding Author: Evangelos Tsakalos, Laboratory of Luminescence dating, Institute of Nanoscience and Nanotechnology, National Centre for Scientific Research, N.C.S.R. “Demokritos”, Aghia Paraskevi, 153 10, Athens, Greece. E-mail: [email protected]; Tel.: +306974561999. Keyword: fault rocks; fault mirrors; carbonate fault zones; absolute dating; mineralogy; microstructural analysis Abstract: The important question of absolute dating of seismic phenomena has been the study of several researchers over the past few decades. The relevant research has concentrated on “energy traps” of minerals, such as quartz or feldspar, which may accumulate chronological information associated with tectonic deformations. However, the produced knowledge so far, is not sufficient to allow the absolute dating of faults. Today, Luminescence and Electron Spin Resonance (ESR) dating methods could be seen as offering high potential for dating past seismic deformed features on timescales ranging from some years -
Stylolites and Crack-Seal Veins in Finnmark, North Norway Textures Shear Zones Stylolites
Stylolites and crack-seal veins in Finnmark, north Norway NICHOLASJ. MILTON Milton, N. J.: Stylolites and crack-sea! veins in Finnmark, north Norway, Norsk Geologisk Tidsskrift, Vol. 60, pp. 219-221. Oslo 1980. ISSN 0029-196X. Sediments of the Cambro-Ordovician Digermul Group on Digermulhalvøya, north Norway, are locally deform ed below the tectonically emplaced Caledonian Laksefjord Nappe. The rocks contain stylolite seams, crackseal veins, and conjugate shear surfaces, suggesting that deformation took place largely by pressure solution, Iocal transport, and redeposition of quartz. An X : Z strain ratio of approximately 1.25 was achieved by this mechanism. N. J. Milton, B.N.O.C, 150 St. Vincent Street, Glasgow, G 25 U, Great Britain. In tht. valley Kistedalen on Digermulhalvøya, of quartz veins, and, perpendicular to these, a Finnmark, north Norway, the metamorphic series of stylolite seams (Fig. lA). Caledonian Laksefjord Nappe rests tectonically above folded but unmetamorphosed Cambro Shear zones Ordovician sediments of the Digermul Group (Reading 1965). The sediments of the Digermul The sample (Fig lB) is crossed by two conjugate Group are strongly altered within a zone up to 20 sets of shear zones which intersect at 112 de m below the basal Laksefjord thrust. The other grees. These shears give rise to the cleavage wise pale to dark sandstones and shales develop observed in the field. In thin section they appear a dark charred appearance and a metallic surface as dark concentrations of opaque minerals, and sheen. At the same time a poor cleavage, sub sites for nucleation of brown mica. The concen parallel to the Laksefjord thrust, is developed, tration of opaque minerals is responsible for the and minor folds (with sub-horizontal axial metallic sheen seen on the shear surfaces. -
Anja SCHORN & Franz NEUBAUER
Austrian Journal of Earth Sciences Volume 104/2 22 - 46 Vienna 2011 Emplacement of an evaporitic mélange nappe in central Northern Calcareous Alps: evidence from the Moosegg klippe (Austria)_______________________________________________ Anja SCHORN*) & Franz NEUBAUER KEYWORDS thin-skinned tectonics deformation analysis Dept. Geography and Geology, University of Salzburg, Hellbrunnerstr. 34, A-5020 Salzburg, Austria; sulphate mélange fold-thrust belt *) Corresponding author, [email protected] mylonite Abstract For the reconstruction of Alpine tectonics, the Permian to Lower Triassic Haselgebirge Formation of the Northern Calcareous Alps (NCA) (Austria) plays a key role in: (1) understanding the origin of Haselgebirge bearing nappes, (2) revealing tectonic processes not preserved in other units, and (3) in deciphering the mode of emplacement, namely gravity-driven or tectonic. With these aims in mind, we studied the sulphatic Haselgebirge exposed to the east of Golling, particularly the gypsum quarry Moosegg and its surroun- dings located in the central NCA. There, overlying the Lower Cretaceous Rossfeld Formation, the Haselgebirge Formation forms a tectonic klippe (Grubach klippe) preserved in a synform, which is cut along its northern edge by the ENE-trending high-angle normal Grubach fault juxtaposing Haselgebirge to the Upper Jurassic Oberalm Formation. According to our new data, the Haselgebirge bearing nappe was transported over the Lower Cretaceous Rossfeld Formation, which includes many clasts derived from the Hasel- gebirge Fm. and its exotic blocks deposited in front of the incoming nappe. The main Haselgebirge body contains foliated, massive and brecciated anhydrite and gypsum. A high variety of sulphatic fabrics is preserved within the Moosegg quarry and dominant gyp- sum/anhydrite bodies are tectonically mixed with subordinate decimetre- to meter-sized tectonic lenses of dark dolomite, dark-grey, green and red shales, pelagic limestones and marls, and abundant plutonic and volcanic rocks as well as rare metamorphic rocks. -
Clay Veins: Their Occurrence, Characteristics, and Support
Bureau of Mines Report of Investigations/ 1987 Clay Veins: Their Occurrence, Characteristics, and Support By Frank E. Chase and James P. Ulery UNITED STATES DEPARTMENT OF THE INTERIOR Report of Investigations 9060 Clay Veins: Their Occurrence, Characteristics, and Support By Frank E. Chase and James P. Ulery UNITED STATES DEPARTMENT OF THE INTERIOR Donald Paul Hodel, Secretary BUREAU OF MINES Robert C. Horton, Director Library of Congress Cataloging in Publication Data : Chase, Frank E. Clay veins : their occurrence, characteristics, and support. (Report of investigations/United States Department of the Interior, Bureau of Mines ; 9060) Bibliography: p. 18-19. Supt. of Docs. no.: I 28.23: 9060. 1. Ground control (Mining) 2. Clay veins. 3. Coal mines and mining-Safety measures. I. Ulery, J. P. (James P.) 11. Title. 111. Series: Report of investigations (United States. Bureau of Mines) ; 9060. TN23.U43 86-600245 CONTENTS Page Abstract ....................................................................... Introduction................................................................... Clay vein origins .............................................................. Clay vein occurrences.......................................................... Depositional setting and interpretations ....................................... Clay vein composition.......................................................... Coalbed and roof rock characteristics .......................................... Roof support.................................................................. -
Structural Study of the Ogama-Rockland Gold Deposit, Southeastern Margin of the Ross River Pluton, Rice Lake Greenstone Belt, Southeastern Manitoba (NTS 52L14) by X
ERRATUM Report of Activities 2012 Manitoba Innovation, Energy and Mines Manitoba Geological Survey GS-5 Structural study of the Ogama-Rockland gold deposit, southeastern margin of the Ross River pluton, Rice Lake greenstone belt, southeastern Manitoba (NTS 52L14) by X. Zhou, S. Lin and S.D. Anderson Reprinted with revisions, 2012. The following figure has been revised (page 66): Figure GS-5-5: Outcrop photographs of fault-fill veins in the area of Ogama-Rockland gold deposit: a) thin, laminated quartz vein in a discrete ductile shear zone; b) example of a possible conjugate shear zone and fault-fill vein system. GS-5 Structural study of the Ogama-Rockland gold deposit, southeast- ern margin of the Ross River pluton, Rice Lake greenstone belt, southeastern Manitoba (NTS 52L14) by X. Zhou1, S. Lin1 and S.D. Anderson Zhou, X., Lin, S. and Anderson, S.D. 2012: Structural study of the Ogama-Rockland gold deposit, southeastern margin of the Ross River pluton, Rice Lake greenstone belt, southeastern Manitoba (NTS 52L14); in Report of Activities 2012, Manitoba Innovation, Energy and Mines, Manitoba Geological Survey, p. 59–67. Summary Research and Development grant The Archean Rice Lake greenstone belt is the most from the Natural Sciences and important lode gold district in Manitoba and lies in the Engineering Research Council of Canada in partnership western part of the Uchi Subprovince of the Superior with Bison Gold Resources Inc. and with in-kind support Province. Unlike most gold deposits in the Rice Lake belt, from the Manitoba Geological Survey. which are hosted by layered gabbro sills, basalt flows or In the first field season of what is designed as a three- volcaniclastic rocks, the Ogama-Rockland gold deposit is year mapping project, the first author carried out 1:1000 hosted by granitoid intrusive rocks. -
Slickensides and Slickenlines
CORRESPONDENCE 319 References Cann, J. R. 1969. Spilites from the Carlsberg Ridge, Indian Ocean. /. Petrology 10,1-19. Chinner, G. A. & Fox, J. S. 1974. The origin of cordierite-anthophyllite rocks in the Land's End aureole. Geol. Mag. Ill, 397-408. Floyd, P. A. 1965. Metasomatic hornfelses of the Land's End aureole at Tater-du, Cornwall. /. Petrology 6, 223-45. Floyd, P. A. 1968. Distribution of Cu in the basic hornfelses of the Land's End aureole, Cornwall and other chemically similar rocks. Geochim. cosmochin. Ada 32, 879-96. Floyd, P. A. & Lees, G. J. 1972. Preliminary petrological and geochemical data on the Cudden Point greenstone. Proc.Ussher Soc. 2, 421-3. Melson, W. G. & van Andel, J. H. 1966. Metamorphism in the Mid-Atlantic Ridge, 22° N. latitude. Marine Geol. 4, 165-86. Melson, W. G., Thompson, G. & van Andel, T. H. 1968. Volcanism and metamorphism the Mid-Atlantic Ridge, 22° N. latitude. /. Geophys Res. 73, 5925-41. Morton, R. D. & Smith, D. G. W. 1971. Differentiation and metasomatism within a Carboniferous spilite-keratophyre suite in S.W. England. Spec. Paper Mineral. Soc. Japan, 1, 127-33. Tilley, C. E. 1935. Metasomatism associated with the greenstone-hornfelses of Kenidjack and Botallack, Cornwall. Mineralog. Mag. 24, 181-202. Vallance, T. G. 1965. On the chemistry of pillow lavas and the origin of spilites. Mineralog. Mag. 34, 471-81. Vallance, T. G. 1967. Mafic rock alteration and isochemical development of some cordierite-anthophyllite rocks. /. Petrology 8, 84-96. Vallance, T. G. 1969. Spilites again: some consequences of the degradation of basalts.