Phylogeny and Historical Biogeography of Silky Lacewings (Neuroptera: Psychopsidae)

Total Page:16

File Type:pdf, Size:1020Kb

Phylogeny and Historical Biogeography of Silky Lacewings (Neuroptera: Psychopsidae) Systematic Entomology (2018), 43, 43–55 DOI: 10.1111/syen.12247 Phylogeny and historical biogeography of silky lacewings (Neuroptera: Psychopsidae) DEON K. BAKKES* , MERVYN W. MANSELLand CATHERINE L. SOLE Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa Abstract. Psychopsidae (silky winged lacewings) are a small family of Neuroptera characterized by broad hirsute wings that impart a physical resemblance to moths. The fossil record includes many psychopsid-like taxa from the Late Triassic to Early Oligocene from all major continents. Extant species have a disjunct, tripartite distribution comprising Afrotropical, Southeast Asian and Australian regions that is significant to historical biogeography. Two subfamilies are currently recognized: Zygophlebiinae in the Afrotropics, and Psychopsinae in Australia and Southeast Asia. This study explores phylogeny and historical biogeography of Psychopsidae, using data from biogeography, comparative morphology and molecular sequences (16S, 18S, CAD, COI). Our results show that: (i) the morphological phylogeny is incongruent with molecular data; (ii) Afrotropical Silveira Navás represent a separate lineage that warrants placement in its own subfamily; (iii) the family originated in Pangea; and (iv) the present genus level distribution resulted from two vicariance events associated with Gondwanan fragmentation. Introduction species are known to live under the bark of myrtaceous trees, preying on Microlepidoptera (Tillyard, 1919b; Tjeder, 1960). Psychopsidae Handlirsch (Neuroptera) are a small family of Adult females have a specialized oviposition strategy that lacewings, comprising about 26 extant species in five genera involves grinding a substrate of sand or plant material with the worldwide (Oswald, 1993). Members are characterized by toothed side of the gonocoxite stylus. The substrate is then trans- broad moth-like wings with a parallel triplet-vein formation ferred to the abdominal chamber and used to coat eggs, probably comprising the subcostal, radial and radial sector veins col- for camouflage and minimizing desiccation. Eggs are laid singly lectively known as the vena triplica (Tillyard, 1922a). Extant during flight (Tjeder, 1960; New, 1988; Oswald, 1993). species manifest a disjunct, tripartite distribution between the Fossil Psychopsidae manifest considerable disparity across a Afrotropical, Australian and Southeast Asian regions. The rich fossil record (Ren & Engel, 2008). The Kalligrammatidae Afrotropical fauna (Fig. 1A–D, G, H) comprises three gen- Handlirsch, Aetheogrammatidae Ren & Engel and Osmylopsy- era – Cabralis Navás, Silveira Navás and Zygophlebius Navás chopidae Martynova (syn. Brongniartiellidae Martynova; see in Zygophlebiinae Navás – while Australian and Southeast Peng et al., 2016) are extinct families that share the closest rela- Asian fauna have only one genus each – Psychopsis New- tionship with extant Psychopsidae (Fig. 2 and Andersen, 2001). man in Australia (Fig. 1E, F) and Balmes Navás in Southeast Makarkin (2010) placed these within Psychopsoidea Handlirsch Asia – both in Psychopsinae Handlirsch. Larvae have been which, in turn, is sister to Myrmeleontiformia (Withycombe, found in leaf debris surrounding trees, and two Australian 1925; Mansell, 1992; Haring & Aspöck, 2004; Grimaldi & Correspondence: Deon K. Bakkes and Catherine L. Sole, Department Engel, 2005; Beutel & Pohl, 2006; Badano et al., 2016). Psy- of Zoology and Entomology, University of Pretoria, Private Bag X chopsidae (s.s.) comprise fossil Triassopsychopsinae Tillyard 20, 0028, Hatfield, South Africa. E-mail: [email protected]; along with extant taxa, and are considered a distinct lineage of [email protected] Psychopsoidea united by a broad costal space (Makarkin, 1997; *Present address: Gertrud Theiler Tick Museum, Epidemiology, Andersen, 2001; Lambkin, 2014). Within Psychopsidae (s.s.), Parasites & Vectors, Agricultural Research Council – Onderstepoort extant lineages have an abruptly closing vena triplica distally, Veterinary Research, Pretoria 0110, South Africa. while extinct Baisopsychops Makarkin and Triassopsychops © 2017 The Royal Entomological Society 43 44 D. K. Bakkes et al. Fig. 1. Diversity of Psychopsidae. (A) Silveira marshalli (McLachlan, 1902) (photo: Wynand Uys). (B) Cabralis cns (photo: Hennie de Klerk). (C) Silveira occultus Tjeder, 1960 (photo: Peter Duelli). (D) Zygophlebius leoninus Navás, 1910 (photo: Wynand Uys). (E) Psychopsis sp. Larva (photo: Shaun Winterton). (F) Psychopsis insolens (photo: Shaun Winterton). (G) Cabralis cns larva (photo: Peter Duelli). (H) Silveira rufus (photo: Penni Warncke). [Colour figure can be viewed at wileyonlinelibrary.com]. © 2017 The Royal Entomological Society, Systematic Entomology, 43, 43–55 Silky lacewing evolution 45 Tillyard (Triassopsychopsinae) have this termination gradually Material and methods tapering (Fig. 2). This supports division between all extant subfamilies, and extinct Triassopsychopsinae (Tillyard, 1922b; Sampling and taxon selection Makarkin, 1997; Andersen, 2001). Fossil Propsychopsis Krüger are an exception, with a tapering vena triplica similar to Taxa used in this study are listed alongside voucher and Gen- Triassopsychops, but with similar adult characters to extant Bank accession numbers in Table S1. Twenty-three Psychopsi- dae specimens were collected either by hand-netting or at mer- Balmes (MacLeod, 1970), and similar larval characters to cury vapour light traps, preserved in absolute ethanol and placed extant Psychopsis (Tillyard, 1919a; MacLeod, 1970). These into −20∘C storage. Sequences for Psychopsis margarita Till- similarities place Propsychopsis near Balmes in Psychopsinae yard were obtained from GenBank. The sample set represents all (Andersen, 2001). extant genera and all major biogeographic regions of Psychop- Psychopsidae have previously been considered closely related sidae. Afrotropical species were sampled extensively, although to, or the sister family of, Nemopteridae Burmeister based fresh material of Zygophlebius zebra (Brauer) was not collected. on assessments of adult and larval morphology (Withycombe, Australian and Southeast Asian faunas were represented by two 1925; Aspöck et al., 2001; Aspöck & Aspöck, 2008). Recent species from each genus. Nine outgroup taxa were selected studies, however, which focused holistically on Neuropterida based on the phylogeny of Winterton et al. (2010) according to using molecular and morphological characters, have shown that sister clade sampling (Hillis, 1998). The final dataset comprised Psychopsidae are closer to Nymphidae Rambur, placing Psy- 33 individuals representing 13 Psychopsidae species. Specimens chopsidae as sister to all other Myrmeleontiformia (Winterton collected by the authors are housed in the South African National et al., 2010; Wang et al., 2016). Extant species are divided into Collection of Insects, Pretoria (SANC), with accession num- Zygophlebiinae and Psychopsinae based on a cladistic analy- bers from the Palpares Relational Database (Mansell & Kenyon, sis of 60 morphological characters (Oswald, 1993). Psychopsi- 2002) as voucher numbers (Table S1). nae comprise Australian and Southeast Asian genera that appear closely related despite geographic distance (New, 1988; Oswald, 1993). Zygophlebiinae comprise all Afrotropical genera, with Morphological characters Cabralis and Zygophlebius closely related, and Silveira more pleisiomorphic and distinct (Oswald, 1993). Ninety-eight morphological characters describing adult mor- The historical biogeography of extant Psychopsidae was phology of males and females were scored for phylogenetic investigated by Oswald (1993) in an area cladogram test (Nel- analyses (Table S2). These characters include Oswald’s (1993) son & Platnick, 1981; Humphries & Parenti, 1986) that was dataset, although several were refined to improve states specific formulated to account for Balmes in Southeast Asia. This test to Afrotropical taxa. New characters specific to Afrotropical found most support for an Australian dispersal route based on species were added. All morphological characters were treated the close relationship between Balmes and Psychopsis,and as unordered, with gap or unknown characters coded as ‘−’or indicated that Balmes underwent northwestern dispersal from ‘?’ respectively. Australia along the Malay Archipelago to mainland Asia. The second-most supported hypothesis was Indian drift, postulating that Balmes arrived in Southeast Asia via tectonic move- DNA extraction, sequencing and alignment ment of India towards Asia after Gondwanaland fragmented Four genes were selected for sequencing to represent a (Ali & Aitchison, 2008). Oswald (1993) also considered range of mutational rate changes over time, maximizing phy- hypotheses for Balmes as a Laurasian relic and an African logenetically informative data, and testing whether gene trees disperser, but these were rejected due to the close relationship reflect the species tree by congruence (Doyle, 1992; Maddi- between Balmes and Psychopsis (Oswald, 1993). This delimited son, 1997; Nichols, 2001). These comprised two ribosomal Psychopsidae historical biogeography under two competing genes (16S rDNA and 18S rDNA) and two protein-encoding hypotheses. Uncertainty remains, however, due to the limita- genes [mitochondrial cytochrome oxidase I (COI) and nuclear tion of not including timing data in the area-cladogram test CPSase region of carbamoyl-phosphate synthetase-aspartate (Oswald, 1993).
Recommended publications
  • Biogeography, Community Structure and Biological Habitat Types of Subtidal Reefs on the South Island West Coast, New Zealand
    Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand SCIENCE FOR CONSERVATION 281 Biogeography, community structure and biological habitat types of subtidal reefs on the South Island West Coast, New Zealand Nick T. Shears SCIENCE FOR CONSERVATION 281 Published by Science & Technical Publishing Department of Conservation PO Box 10420, The Terrace Wellington 6143, New Zealand Cover: Shallow mixed turfing algal assemblage near Moeraki River, South Westland (2 m depth). Dominant species include Plocamium spp. (yellow-red), Echinothamnium sp. (dark brown), Lophurella hookeriana (green), and Glossophora kunthii (top right). Photo: N.T. Shears Science for Conservation is a scientific monograph series presenting research funded by New Zealand Department of Conservation (DOC). Manuscripts are internally and externally peer-reviewed; resulting publications are considered part of the formal international scientific literature. Individual copies are printed, and are also available from the departmental website in pdf form. Titles are listed in our catalogue on the website, refer www.doc.govt.nz under Publications, then Science & technical. © Copyright December 2007, New Zealand Department of Conservation ISSN 1173–2946 (hardcopy) ISSN 1177–9241 (web PDF) ISBN 978–0–478–14354–6 (hardcopy) ISBN 978–0–478–14355–3 (web PDF) This report was prepared for publication by Science & Technical Publishing; editing and layout by Lynette Clelland. Publication was approved by the Chief Scientist (Research, Development & Improvement Division), Department of Conservation, Wellington, New Zealand. In the interest of forest conservation, we support paperless electronic publishing. When printing, recycled paper is used wherever possible. CONTENTS Abstract 5 1. Introduction 6 2.
    [Show full text]
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • The Political Biogeography of Migratory Marine Predators
    1 The political biogeography of migratory marine predators 2 Authors: Autumn-Lynn Harrison1, 2*, Daniel P. Costa1, Arliss J. Winship3,4, Scott R. Benson5,6, 3 Steven J. Bograd7, Michelle Antolos1, Aaron B. Carlisle8,9, Heidi Dewar10, Peter H. Dutton11, Sal 4 J. Jorgensen12, Suzanne Kohin10, Bruce R. Mate13, Patrick W. Robinson1, Kurt M. Schaefer14, 5 Scott A. Shaffer15, George L. Shillinger16,17,8, Samantha E. Simmons18, Kevin C. Weng19, 6 Kristina M. Gjerde20, Barbara A. Block8 7 1University of California, Santa Cruz, Department of Ecology & Evolutionary Biology, Long 8 Marine Laboratory, Santa Cruz, California 95060, USA. 9 2 Migratory Bird Center, Smithsonian Conservation Biology Institute, National Zoological Park, 10 Washington, D.C. 20008, USA. 11 3NOAA/NOS/NCCOS/Marine Spatial Ecology Division/Biogeography Branch, 1305 East 12 West Highway, Silver Spring, Maryland, 20910, USA. 13 4CSS Inc., 10301 Democracy Lane, Suite 300, Fairfax, VA 22030, USA. 14 5Marine Mammal and Turtle Division, Southwest Fisheries Science Center, National Marine 15 Fisheries Service, National Oceanic and Atmospheric Administration, Moss Landing, 16 California 95039, USA. 17 6Moss Landing Marine Laboratories, Moss Landing, CA 95039 USA 18 7Environmental Research Division, Southwest Fisheries Science Center, National Marine 19 Fisheries Service, National Oceanic and Atmospheric Administration, 99 Pacific Street, 20 Monterey, California 93940, USA. 21 8Hopkins Marine Station, Department of Biology, Stanford University, 120 Oceanview 22 Boulevard, Pacific Grove, California 93950 USA. 23 9University of Delaware, School of Marine Science and Policy, 700 Pilottown Rd, Lewes, 24 Delaware, 19958 USA. 25 10Fisheries Resources Division, Southwest Fisheries Science Center, National Marine 26 Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037, 27 USA.
    [Show full text]
  • (Neuroptera) from the Upper Cenomanian Nizhnyaya Agapa Amber, Northern Siberia
    Cretaceous Research 93 (2019) 107e113 Contents lists available at ScienceDirect Cretaceous Research journal homepage: www.elsevier.com/locate/CretRes Short communication New Coniopterygidae (Neuroptera) from the upper Cenomanian Nizhnyaya Agapa amber, northern Siberia * Vladimir N. Makarkin a, Evgeny E. Perkovsky b, a Federal Scientific Center of the East Asia Terrestrial Biodiversity, Far Eastern Branch of the Russian Academy of Sciences, Vladivostok, 690022, Russia b Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, ul. Bogdana Khmel'nitskogo 15, Kiev, 01601, Ukraine article info abstract Article history: Libanoconis siberica sp. nov. and two specimens of uncertain affinities (Neuroptera: Coniopterygidae) are Received 28 April 2018 described from the Upper Cretaceous (upper Cenomanian) Nizhnyaya Agapa amber, northern Siberia. Received in revised form The new species is distinguished from L. fadiacra (Whalley, 1980) by the position of the crossvein 3r-m 9 August 2018 being at a right angle to both RP1 and the anterior trace of M in both wings. The validity of the genus Accepted in revised form 11 September Libanoconis is discussed. It easily differs from all other Aleuropteryginae by a set of plesiomorphic 2018 Available online 15 September 2018 character states. The climatic conditions at high latitudes in the late Cenomanian were favourable enough for this tropical genus, hitherto known from the Gondwanan Lebanese amber. Therefore, the Keywords: record of a species of Libanoconis in northern Siberia is highly likely. © Neuroptera 2018 Elsevier Ltd. All rights reserved. Coniopterygidae Aleuropteryginae Cenomanian Nizhnyaya Agapa amber 1. Introduction 2. Material and methods The small-sized neuropteran family Coniopterygidae comprises This study is based on three specimens originally embedded in ca.
    [Show full text]
  • Genetic Diversity, Population Structure, and Effective Population Size in Two Yellow Bat Species in South Texas
    Genetic diversity, population structure, and effective population size in two yellow bat species in south Texas Austin S. Chipps1, Amanda M. Hale1, Sara P. Weaver2,3 and Dean A. Williams1 1 Department of Biology, Texas Christian University, Fort Worth, TX, United States of America 2 Biology Department, Texas State University, San Marcos, TX, United States of America 3 Bowman Consulting Group, San Marcos, TX, United States of America ABSTRACT There are increasing concerns regarding bat mortality at wind energy facilities, especially as installed capacity continues to grow. In North America, wind energy development has recently expanded into the Lower Rio Grande Valley in south Texas where bat species had not previously been exposed to wind turbines. Our study sought to characterize genetic diversity, population structure, and effective population size in Dasypterus ega and D. intermedius, two tree-roosting yellow bats native to this region and for which little is known about their population biology and seasonal movements. There was no evidence of population substructure in either species. Genetic diversity at mitochondrial and microsatellite loci was lower in these yellow bat taxa than in previously studied migratory tree bat species in North America, which may be due to the non-migratory nature of these species at our study site, the fact that our study site is located at a geographic range end for both taxa, and possibly weak ascertainment bias at microsatellite loci. Historical effective population size (NEF) was large for both species, while current estimates of Ne had upper 95% confidence limits that encompassed infinity. We found evidence of strong mitochondrial differentiation between the two putative subspecies of D.
    [Show full text]
  • Multilocus Estimation of Divergence Times and Ancestral Effective Population Sizes of Oryza Species and Implications for the Rapid Diversification of the Genus
    Research Multilocus estimation of divergence times and ancestral effective population sizes of Oryza species and implications for the rapid diversification of the genus Xin-Hui Zou1, Ziheng Yang2,3, Jeff J. Doyle4 and Song Ge1 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China; 2Center for Computational and Evolutionary Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China; 3Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London, WC1E 6BT, UK; 4Department of Plant Biology, Cornell University, 412 Mann Library Building, Ithaca, NY 14853, USA Summary Author for correspondence: Despite substantial investigations into Oryza phylogeny and evolution, reliable estimates of Song Ge the divergence times and ancestral effective population sizes of major lineages in Oryza are Tel: +86 10 62836097 challenging. Email: [email protected] We sampled sequences of 106 single-copy nuclear genes from all six diploid genomes of Received: 2 January 2013 Oryza to investigate the divergence times through extensive relaxed molecular clock analyses Accepted: 8 February 2013 and estimated the ancestral effective population sizes using maximum likelihood and Bayesian methods. New Phytologist (2013) 198: 1155–1164 We estimated that Oryza originated in the middle Miocene (c.13–15 million years ago; doi: 10.1111/nph.12230 Ma) and obtained an explicit time frame for two rapid diversifications in this genus. The first diversification involving the extant F-/G-genomes and possibly the extinct H-/J-/K-genomes Key words: divergence time, Oryza, popula- occurred in the middle Miocene immediately after (within < 1 Myr) the origin of Oryza.
    [Show full text]
  • From the Middle Jurassic of Daohugou, Inner Mongolia, China
    Two new kalligrammatids (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China QING LIU*, DARAN ZHENG, QI ZHANG, BO WANG, YAN FANG and HAICHUN ZHANG LIU, Q., ZHENG, D.R., ZHANG, Q., WANG, B., FANG,Y.&ZHANG, H.C., iFirst article. Two new kalligrammatids (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Alcheringa 38, XX–XX. ISSN 0311-5518. A new genus and two new species of kalligrammatid lacewings (Insecta, Neuroptera), Kalligramma paradoxum sp. nov. and Huiyingogramma formosum gen. et sp. nov., are described and figured, based on two well-preserved forewings from the Middle Jurassic of Daohugou, Inner Mongolia, China. Kalligramma paradoxum sp. nov. can be distinguished from other known Kalligramma species based on forewing characters (e.g., wing shape, costal space, branches of Rs, eye-spot). Huiyingogramma gen. nov. is characterized by a distinct humeral recurrent vein, relatively broad costal space with well-forked costal veinlets, well-developed eye-spot and dense crossveins over the entire wing. Qing Liu (corresponding author) [[email protected]; [email protected]], Daran Zheng [[email protected]], Qi Zhang [[email protected]], Bo Wang [[email protected]], Yan Fang [[email protected]] and Haichun Zhang [[email protected]], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China; secondary address of Daran Zheng & Qi Zhang, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Received 15.4.2013, revised 9.6.2013, accepted 24.6.2103. Key words: Neuroptera, Kalligrammatidae, Kalligramma, Huiyingogramma, eye-spot, Middle Jurassic, China.
    [Show full text]
  • Can More K-Selected Species Be Better Invaders?
    Diversity and Distributions, (Diversity Distrib.) (2007) 13, 535–543 Blackwell Publishing Ltd BIODIVERSITY Can more K-selected species be better RESEARCH invaders? A case study of fruit flies in La Réunion Pierre-François Duyck1*, Patrice David2 and Serge Quilici1 1UMR 53 Ӷ Peuplements Végétaux et ABSTRACT Bio-agresseurs en Milieu Tropical ӷ CIRAD Invasive species are often said to be r-selected. However, invaders must sometimes Pôle de Protection des Plantes (3P), 7 chemin de l’IRAT, 97410 St Pierre, La Réunion, France, compete with related resident species. In this case invaders should present combina- 2UMR 5175, CNRS Centre d’Ecologie tions of life-history traits that give them higher competitive ability than residents, Fonctionnelle et Evolutive (CEFE), 1919 route de even at the expense of lower colonization ability. We test this prediction by compar- Mende, 34293 Montpellier Cedex, France ing life-history traits among four fruit fly species, one endemic and three successive invaders, in La Réunion Island. Recent invaders tend to produce fewer, but larger, juveniles, delay the onset but increase the duration of reproduction, survive longer, and senesce more slowly than earlier ones. These traits are associated with higher ranks in a competitive hierarchy established in a previous study. However, the endemic species, now nearly extinct in the island, is inferior to the other three with respect to both competition and colonization traits, violating the trade-off assumption. Our results overall suggest that the key traits for invasion in this system were those that *Correspondence: Pierre-François Duyck, favoured competition rather than colonization. CIRAD 3P, 7, chemin de l’IRAT, 97410, Keywords St Pierre, La Réunion Island, France.
    [Show full text]
  • Biogeography: an Ecosystems Approach (Geography 338)
    WELCOME TO GEOGRAPHY/BOTANY 338: ENVIRONMENTAL BIOGEOGRAPHY Fall 2018 Schedule: Monday & Wednesday 2:30-3:45 pm, Humanities 1641 Credits: 3 Instructor: Professor Ken Keefover-Ring Email: [email protected] Office: Science Hall 115C Office Hours: Tuesday 3:00-4:00 pm & Wednesday 12:00-1:00 pm or by appointment Note: This course fulfills the Biological Science breadth requirement. COURSE DESCRIPTION: This course takes an ecosystems approach to understand how physical -- climate, geologic history, soils -- and biological -- physiology, evolution, extinction, dispersal, competition, predation -- factors interact to affect the past, present and future distribution of terrestrial biomes and all levels of biodiversity: ecosystems, species and genes. A particular focus will be placed on the role of disturbance and to recent human-driven climatic and land-cover changes and biological invasions on differences in historical and current distributions of global biodiversity. COURSE GOALS: • To learn patterns and mechanisms of local to global gene, species, ecosystem and biome distributions • To learn how past, current and future environmental change affect biogeography • To learn how humans affect geographic patterns of biodiversity • To learn how to apply concepts from biogeography to current environmental problems • To learn how to read and interpret the primary literature, that is, scientific articles in peer- reviewed journals. COURSE POLICY: I expect you to attend all lectures and come prepared to participate in discussion. I will take attendance. Please let me know if you need to miss three or more lectures. Please respect your fellow students, professor, and guest speakers and turn off the ringers on your cell phones and refrain from texting during class time.
    [Show full text]
  • Universidade Federal Do Ceará Centro De Ciências Departamento De Geologia Programa De Pós-Graduação Em Geologia Luís Carlo
    1 UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE GEOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL FORTALEZA 2019 2 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Orientador: Prof. Dr. Geraldo Jorge Barbosa de Moura. Coorientador: Prof. Dr. César Ulisses Vieira Veríssimo. FORTALEZA 2019 3 4 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Aprovada em: 18/01/2019. BANCA EXAMINADORA ________________________________________ Prof. Dr. Geraldo Jorge Barbosa de Moura (Orientador) Universidade Federal Rural de Pernambuco (UFRPE) _________________________________________ Prof. Dr. Marcio Mendes (Interno) Universidade Federal do Ceará (UFC) _________________________________________ Prof. Dr. Marcos Antônio Leite do Nascimento (Externo) Universidade Federal do Rio Grande do Norte (UFRN) _________________________________________ Prof. Dr Kleberson de Oliveira Porpino (Externo) Universidade do Estado do Rio Grande do Norte (UERN) ________________________________________ Dra Pâmela Moura (Externo) Universidade Federal do Ceará (UFC) 5 A Deus.
    [Show full text]
  • Phylogeny of Endopterygote Insects, the Most Successful Lineage of Living Organisms*
    REVIEW Eur. J. Entomol. 96: 237-253, 1999 ISSN 1210-5759 Phylogeny of endopterygote insects, the most successful lineage of living organisms* N iels P. KRISTENSEN Zoological Museum, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen 0, Denmark; e-mail: [email protected] Key words. Insecta, Endopterygota, Holometabola, phylogeny, diversification modes, Megaloptera, Raphidioptera, Neuroptera, Coleóptera, Strepsiptera, Díptera, Mecoptera, Siphonaptera, Trichoptera, Lepidoptera, Hymenoptera Abstract. The monophyly of the Endopterygota is supported primarily by the specialized larva without external wing buds and with degradable eyes, as well as by the quiescence of the last immature (pupal) stage; a specialized morphology of the latter is not an en­ dopterygote groundplan trait. There is weak support for the basal endopterygote splitting event being between a Neuropterida + Co­ leóptera clade and a Mecopterida + Hymenoptera clade; a fully sclerotized sitophore plate in the adult is a newly recognized possible groundplan autapomorphy of the latter. The molecular evidence for a Strepsiptera + Díptera clade is differently interpreted by advo­ cates of parsimony and maximum likelihood analyses of sequence data, and the morphological evidence for the monophyly of this clade is ambiguous. The basal diversification patterns within the principal endopterygote clades (“orders”) are succinctly reviewed. The truly species-rich clades are almost consistently quite subordinate. The identification of “key innovations” promoting evolution­
    [Show full text]
  • Thesis (PDF, 13.51MB)
    Insects and their endosymbionts: phylogenetics and evolutionary rates Daej A Kh A M Arab The University of Sydney Faculty of Science 2021 A thesis submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Authorship contribution statement During my doctoral candidature I published as first-author or co-author three stand-alone papers in peer-reviewed, internationally recognised journals. These publications form the three research chapters of this thesis in accordance with The University of Sydney’s policy for doctoral theses. These chapters are linked by the use of the latest phylogenetic and molecular evolutionary techniques for analysing obligate mutualistic endosymbionts and their host mitochondrial genomes to shed light on the evolutionary history of the two partners. Therefore, there is inevitably some repetition between chapters, as they share common themes. In the general introduction and discussion, I use the singular “I” as I am the sole author of these chapters. All other chapters are co-authored and therefore the plural “we” is used, including appendices belonging to these chapters. Part of chapter 2 has been published as: Bourguignon, T., Tang, Q., Ho, S.Y., Juna, F., Wang, Z., Arab, D.A., Cameron, S.L., Walker, J., Rentz, D., Evans, T.A. and Lo, N., 2018. Transoceanic dispersal and plate tectonics shaped global cockroach distributions: evidence from mitochondrial phylogenomics. Molecular Biology and Evolution, 35(4), pp.970-983. The chapter was reformatted to include additional data and analyses that I undertook towards this paper. My role was in the paper was to sequence samples, assemble mitochondrial genomes, perform phylogenetic analyses, and contribute to the writing of the manuscript.
    [Show full text]