From the Middle Jurassic of Daohugou, Inner Mongolia, China

Total Page:16

File Type:pdf, Size:1020Kb

From the Middle Jurassic of Daohugou, Inner Mongolia, China Two new kalligrammatids (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China QING LIU*, DARAN ZHENG, QI ZHANG, BO WANG, YAN FANG and HAICHUN ZHANG LIU, Q., ZHENG, D.R., ZHANG, Q., WANG, B., FANG,Y.&ZHANG, H.C., iFirst article. Two new kalligrammatids (Insecta, Neuroptera) from the Middle Jurassic of Daohugou, Inner Mongolia, China. Alcheringa 38, XX–XX. ISSN 0311-5518. A new genus and two new species of kalligrammatid lacewings (Insecta, Neuroptera), Kalligramma paradoxum sp. nov. and Huiyingogramma formosum gen. et sp. nov., are described and figured, based on two well-preserved forewings from the Middle Jurassic of Daohugou, Inner Mongolia, China. Kalligramma paradoxum sp. nov. can be distinguished from other known Kalligramma species based on forewing characters (e.g., wing shape, costal space, branches of Rs, eye-spot). Huiyingogramma gen. nov. is characterized by a distinct humeral recurrent vein, relatively broad costal space with well-forked costal veinlets, well-developed eye-spot and dense crossveins over the entire wing. Qing Liu (corresponding author) [[email protected]; [email protected]], Daran Zheng [[email protected]], Qi Zhang [[email protected]], Bo Wang [[email protected]], Yan Fang [[email protected]] and Haichun Zhang [[email protected]], State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, Nanjing, 210008, PR China; secondary address of Daran Zheng & Qi Zhang, University of Chinese Academy of Sciences, Beijing, 100049, PR China. Received 15.4.2013, revised 9.6.2013, accepted 24.6.2103. Key words: Neuroptera, Kalligrammatidae, Kalligramma, Huiyingogramma, eye-spot, Middle Jurassic, China. KALLIGRAMMATIDAE, an extinct family of tinct eye-spot in many species. They are commonly Neuroptera (Insecta) known from the Jurassic to the referred to as the ‘butterflies of the Jurassic’ (Engel Early Cretaceous, have been widely reported from 2005). However, kalligrammatids may have had a pred- Europe and Asia (Walther 1904, Handlirsch 1906, atory feeding habit like most extant neuropterans (Fang 1919, Martynova 1947, Panfilov 1968, 1980, et al. 2010). Here, a new genus and two new species of Ponomarenko 1984, 1992, Whalley 1988, Carpenter Kalligrammatidae are described from the Middle Juras- 1992, Lambkin 1994, Ren & Guo 1996, Jarzembowski sic of Daohugou, Inner Mongolia, China. 2001, Ren & Oswald 2002, Zhang 2003, Zhang & Zhang 2003, Engel 2005, Yang et al. 2009, 2011). Until the present study, 14 genera have been attributed to the Materials and methods Kalligrammatidae: Kalligramma Walther, 1904; The two neuropteran forewings described in this paper Meioneurites Handlirsch, 1906; Palparites Handlirsch, were collected from the Middle Jurassic Haifanggou 1906; Kalligrammula Handlirsch, 1919; Lithogramma Formation at Daohugou Village, Wuhua Township, Downloaded by [Capital Normal University] at 17:50 22 September 2013 Panfilov, 1968; Kalligrammina Panfilov, 1980; Ningcheng County, Chifeng City, Inner Mongolia, Angarogramma Ponomarenko, 1984; Sophogramma China. The Daohugou deposits, consisting of grey tuff, Ren & Guo, 1996; Kallihemerobius Ren & Oswald, tuffaceous siltstone and mudstone, are now considered 2002; Limnogramma Ren, 2003; Oregramma Ren, to be one of the most important insect Lagerstätten 2003; Sinokalligramma Zhang, 2003; Protokalligramma (Rasnitsyn & Zhang 2004). The fossil insects at this Yang, et al. 2011 and Apochrysogramma Yang, et al. locality are commonly preserved as compressions in 2011. Most of these genera were documented from grey tuffaceous siltstones and are found together with Asia, and eight have been reported from China. On this small freshwater branchiopods (Wang et al. 2009). basis, several authors have proposed that Kalligrammat- All photographs were taken using a Canon EOS 5D idae might have originated in Asia (e.g., Zhang 2003, digital camera. Line drawings were prepared on photo- Yang et al. 2009). The enigmatic Kalligrammatidae are graphs using CorelDRAW 12 image-editing software. characterized by large wings, presumably bright colora- The traditional venation terminology of Comstock tion, dense crossveins over the entire wing and a dis- (1918; sensu Wootton 2003) with the recent interpreta- tion of Oswald (1993) and Archibald & Makarkin (2006) is used in this study. Wing vein abbreviations are as follows: C, costa; Sc, subcosta; Vr, humeral Ó 2013 Association of Australasian Palaeontologists recurrent vein; R, radius; R1, first branch of R; Rs, http://dx.doi.org/10.1080/03115518.2013.828251 2 QING LIU et al. ALCHERINGA radial sector; Rs1, most basal branch of Rs; M, media; & Zhang, 2003, from the Middle Jurassic Haifanggou MA, media anterior; MP, media posterior; Cu, cubitus; Formation of Liaoning, China. CuA, cubitus anterior; CuP, cubitus posterior; 1A–3A, first to third anal veins. All specimens are housed at the Kalligramma paradoxum sp. nov. (Fig. 1A–C) Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences (prefix NIGP). Holotype. A nearly complete and well-preserved left forewing (NIGP 156188), part and counterpart. Type locality, formation and age. Daohugou Village, Systematic palaeontology Wuhua Township, Ningcheng County, Chifeng City, Inner Mongolia, China; Haifanggou Formation, Middle Class INSECTA Linnaeus, 1758 Jurassic. Order NEUROPTERA Linnaeus, 1758 Family KALLIGRAMMATIDAE Handlirsch, 1906 Etymology. From the Latin ‘paradoxus’ for marvellous or strange. Kalligramma Walther, 1904 Diagnosis. Forewing elongate oval. Eye-spot well Type species. Kalligramma haeckeli Walther, 1904, from developed. Crossveins dense on entire wing. Costal the Upper Jurassic Solnhofen Plattenkalk of Germany. space moderately broad and slightly narrowed towards Other species. Kalligramma multinerve Panfilov, 1968, apex; costal veinlets sinuous and mostly forked; Rs K. flexuosum Panfilov, 1968, K. sharovi Panfilov, 1968 with 16 primary branches, each forked distally; MA and K. turutanovae Panfilov, 1968, from the Upper Juras- simple and forked distally; MP with at least seven pec- sic Karabastau Formation of Kazakhstan; K. liaoningense tinate branches; CuP branched distally; 1A forked Ren & Guo, 1996, from the Lower Cretaceous Yixian beyond its mid-length; 2A well developed; 1A and 2A Formation of Liaoning, China; K. jurarchegonium Zhang stems both parallel to CuP; 3A short with few branches. Downloaded by [Capital Normal University] at 17:50 22 September 2013 Fig. 1. Kalligramma paradoxum sp. nov. Holotype, a nearly complete and well-preserved left forewing (NIGP 156188). A, Part. B, Counterpart. C, Line drawing of part. Scale bar = 20 mm. ALCHERINGA JURASSIC KALLIGRAMMATID INSECTS FROM CHINA 3 Description. Left forewing elongate oval and broad, ing apices). MA running just posterior to and forked 84 mm long, 39 mm wide. Anterior margin partially dichotomously just apical to eye-spot. MP with seven damaged, most of posterior margin and apex missing. branches preserved that are dichotomously forked (some Eye-spot fuscous and rounded, located slightly beyond several times over); MP1 forked slightly beyond first wing mid-length and slightly closer to costal margin forking of MA; MP2 forked basad of eye-spot and than to posterior margin, with one unpigmented dot more basad of any remaining branches. Preserved CuA subcentrally located and four chains of small unpig- section simple, running close to MP stem and forked mented dots attached apically. Wing decorated with two apically. CuP damaged apically with four primary roughly circular markings surrounding eye-spot and branches preserved. 1A forked basad of first branches some irregular band-like markings near apex along of CuA and CuP. 2A densely and pectinately branched posterior margin. Costal space most dilated near basal along length. 3A very short, with no more than five one-third of its length and slightly narrowed towards branches. Maximum width between CuA and CuP both wing base and apex. Costal veinlets sinuous with about twice as broad as that between MP and CuA, several basal branches simple and all others forked; about 1.5 times as broad as between CuP and 1A, and costal space with dense crossveins. Subcostal space slightly broader than between 1A and 2A (Fig. 1A–C). distinctly wider than R1 space, and both regions have widely spaced crossveins. Sc and R1 fused within Huiyingogramma gen. nov. apical one-eighth of wing length. Rs damaged distally, Type species. Huiyingogramma formosum gen. et sp. nov. but with 16 primary branches preserved; each branch running rectilinearly and forked distally several times Etymology. ‘Huiyingo-’ is dedicated to a great lady, (13th, 14th and 16th branches unknown owing to miss- Mrs Huiying Liu, who is the mother of the lead Downloaded by [Capital Normal University] at 17:50 22 September 2013 Fig. 2. Huiyingogramma formosum gen. et sp. nov. Holotype, a nearly complete and well-preserved right forewing (NIGP 156189). A, Part. B, Counterpart. C, Line drawing of part. Scale bar = 20 mm. 4 QING LIU et al. ALCHERINGA author, ‘-gramma’ is a traditional ending of generic Discussion names in Kalligrammatidae. Among known kalligrammatids, well-preserved and Diagnosis. Forewing broad. Eye-spot well developed. complete specimens consisting of both forewings and Crossveins dense over entire wing. Humeral recurrent hindwings are extremely rare (e.g., Yang et al. 2009, fi vein (Vr) present. Costal space broad; crossveins pres- g. 1). Most kalligrammatid genera and species
Recommended publications
  • UFRJ a Paleoentomofauna Brasileira
    Anuário do Instituto de Geociências - UFRJ www.anuario.igeo.ufrj.br A Paleoentomofauna Brasileira: Cenário Atual The Brazilian Fossil Insects: Current Scenario Dionizio Angelo de Moura-Júnior; Sandro Marcelo Scheler & Antonio Carlos Sequeira Fernandes Universidade Federal do Rio de Janeiro, Programa de Pós-Graduação em Geociências: Patrimônio Geopaleontológico, Museu Nacional, Quinta da Boa Vista s/nº, São Cristóvão, 20940-040. Rio de Janeiro, RJ, Brasil. E-mails: [email protected]; [email protected]; [email protected] Recebido em: 24/01/2018 Aprovado em: 08/03/2018 DOI: http://dx.doi.org/10.11137/2018_1_142_166 Resumo O presente trabalho fornece um panorama geral sobre o conhecimento da paleoentomologia brasileira até o presente, abordando insetos do Paleozoico, Mesozoico e Cenozoico, incluindo a atualização das espécies publicadas até o momento após a última grande revisão bibliográica, mencionando ainda as unidades geológicas em que ocorrem e os trabalhos relacionados. Palavras-chave: Paleoentomologia; insetos fósseis; Brasil Abstract This paper provides an overview of the Brazilian palaeoentomology, about insects Paleozoic, Mesozoic and Cenozoic, including the review of the published species at the present. It was analiyzed the geological units of occurrence and the related literature. Keywords: Palaeoentomology; fossil insects; Brazil Anuário do Instituto de Geociências - UFRJ 142 ISSN 0101-9759 e-ISSN 1982-3908 - Vol. 41 - 1 / 2018 p. 142-166 A Paleoentomofauna Brasileira: Cenário Atual Dionizio Angelo de Moura-Júnior; Sandro Marcelo Schefler & Antonio Carlos Sequeira Fernandes 1 Introdução Devoniano Superior (Engel & Grimaldi, 2004). Os insetos são um dos primeiros organismos Algumas ordens como Blattodea, Hemiptera, Odonata, Ephemeroptera e Psocopera surgiram a colonizar os ambientes terrestres e aquáticos no Carbonífero com ocorrências até o recente, continentais (Engel & Grimaldi, 2004).
    [Show full text]
  • Universidade Federal Do Ceará Centro De Ciências Departamento De Geologia Programa De Pós-Graduação Em Geologia Luís Carlo
    1 UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE GEOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL FORTALEZA 2019 2 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Orientador: Prof. Dr. Geraldo Jorge Barbosa de Moura. Coorientador: Prof. Dr. César Ulisses Vieira Veríssimo. FORTALEZA 2019 3 4 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Aprovada em: 18/01/2019. BANCA EXAMINADORA ________________________________________ Prof. Dr. Geraldo Jorge Barbosa de Moura (Orientador) Universidade Federal Rural de Pernambuco (UFRPE) _________________________________________ Prof. Dr. Marcio Mendes (Interno) Universidade Federal do Ceará (UFC) _________________________________________ Prof. Dr. Marcos Antônio Leite do Nascimento (Externo) Universidade Federal do Rio Grande do Norte (UFRN) _________________________________________ Prof. Dr Kleberson de Oliveira Porpino (Externo) Universidade do Estado do Rio Grande do Norte (UERN) ________________________________________ Dra Pâmela Moura (Externo) Universidade Federal do Ceará (UFC) 5 A Deus.
    [Show full text]
  • Phylogeny and Historical Biogeography of Silky Lacewings (Neuroptera: Psychopsidae)
    Systematic Entomology (2018), 43, 43–55 DOI: 10.1111/syen.12247 Phylogeny and historical biogeography of silky lacewings (Neuroptera: Psychopsidae) DEON K. BAKKES* , MERVYN W. MANSELLand CATHERINE L. SOLE Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa Abstract. Psychopsidae (silky winged lacewings) are a small family of Neuroptera characterized by broad hirsute wings that impart a physical resemblance to moths. The fossil record includes many psychopsid-like taxa from the Late Triassic to Early Oligocene from all major continents. Extant species have a disjunct, tripartite distribution comprising Afrotropical, Southeast Asian and Australian regions that is significant to historical biogeography. Two subfamilies are currently recognized: Zygophlebiinae in the Afrotropics, and Psychopsinae in Australia and Southeast Asia. This study explores phylogeny and historical biogeography of Psychopsidae, using data from biogeography, comparative morphology and molecular sequences (16S, 18S, CAD, COI). Our results show that: (i) the morphological phylogeny is incongruent with molecular data; (ii) Afrotropical Silveira Navás represent a separate lineage that warrants placement in its own subfamily; (iii) the family originated in Pangea; and (iv) the present genus level distribution resulted from two vicariance events associated with Gondwanan fragmentation. Introduction species are known to live under the bark of myrtaceous trees, preying on Microlepidoptera (Tillyard, 1919b; Tjeder, 1960). Psychopsidae Handlirsch
    [Show full text]
  • 1 Universidade Federal Do Ceará Centro De Ciências
    1 UNIVERSIDADE FEDERAL DO CEARÁ CENTRO DE CIÊNCIAS DEPARTAMENTO DE GEOLOGIA PROGRAMA DE PÓS-GRADUAÇÃO EM GEOLOGIA LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL FORTALEZA 2019 2 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Orientador: Prof. Dr. Geraldo Jorge Barbosa de Moura. Coorientador: Prof. Dr. César Ulisses Vieira Veríssimo. FORTALEZA 2019 3 4 LUÍS CARLOS BASTOS FREITAS DESCRIÇÃO DE NOVOS TAXONS DE INSETOS FÓSSEIS DOS MEMBROS CRATO E ROMUALDO DA FORMAÇÃO SANTANA E COMENTÁRIOS SOBRE A GEODIVERSIDADE DO GEOPARK ARARIPE, BACIA SEDIMENTAR DO ARARIPE, NORDESTE DO BRASIL Tese apresentada ao Programa de Pós- Graduação em Geologia da Universidade Federal do Ceará, como requisito parcial à obtenção do título de doutor em Geologia. Área de concentração: Geologia Sedimentar e Paleontologia. Aprovada em: 18/01/2019. BANCA EXAMINADORA ________________________________________ Prof. Dr. Geraldo Jorge Barbosa de Moura (Orientador) Universidade Federal Rural de Pernambuco (UFRPE) _________________________________________ Prof. Dr. Marcio Mendes Universidade Federal do Ceará (UFC) _________________________________________ Prof. Dr. Marcos Antônio Leite do Nascimento Universidade Federal do Rio Grande do Norte (UFRN) _________________________________________ Prof. Dr Kleberson de Oliveira Porpino Universidade do Estado do Rio Grande do Norte (UERN) ________________________________________ Dra Pâmela Moura Universidade Federal do Ceará (UFC) 5 A Deus.
    [Show full text]
  • Evolution of the Insects
    CY501-C14[607-645].qxd 2/16/05 1:16 AM Page 607 quark11 27B:CY501:Chapters:Chapter-14: 14InsectsInsects Become Become Modern: The MCretaceousodern: and The Tertiary Periods is ambiguous and controversial, as we will soon discuss. THE CRETACEOUS CretaceousWithout question, and though, the angiosperm radiations opened The Cretaceous Period, 145–65 MYA, is one of the most signif- vast niches that insects exploited supremely well. icant geological periods for insect evolution of the seven The earth was geologically more restless during the Creta- major periods in which insects are preserved. Hexapods ceous than most times in its history. There was dramatic cli- appeared inTe the Devonian;r wingedtiary insects, in the Carbonif- Periodsmate change and tectonic activity, the latter of which resulted erous; and the earliest members of most modern orders, in in widespread volcanism and the splitting and drifting of the Permian to Triassic. In the Cretaceous, however, there continents. The fragmentation of Gondwana into the present evolved a nascent modern biota, amidst unprecedented southern continents 120–100 MYA is often invoked to explain geological and evolutionary episodes. Because the Creta- contemporary distributions of various plants and animals ceous is so much younger than the Paleozoic and earlier (including insects) that have closely related species occupy- Mesozoic periods, the fossil record of this period has been ing Australia, New Zealand, southern South America, and erased less by faulting, erosion, and other earth processes. southern Africa. Ancestors of these austral relicts purportedly Thus, Cretaceous fossils have left a particularly vivid record drifted with the continents, though some Cretaceous and of radiations and extinctions.
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2017.1 Andrew J. Ross 28/02/2017 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of 2016. It does not contain unpublished records or records from papers in press (including on-line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. The list comprises 31 classes (or similar rank), 85 orders (or similar rank), 375 families, 530 genera and 643 species. This includes 6 classes, 54 orders, 342 families, 482 genera and 591 species of arthropods. Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in
    [Show full text]
  • Keynote Presentations Abstracts
    6th International Congress on Fossil Insects, Arthropods and Amber Byblos, April 2013 ----------------------------------------------------------------------------------------------------------------------------------- Keynote presentations abstracts - 1 - 6th International Congress on Fossil Insects, Arthropods and Amber Byblos, April 2013 ----------------------------------------------------------------------------------------------------------------------------------- Sic transit gloria mundi: When bad things happen to good bugs Michael S. Engel University of Kansas Natural History Museum & American Museum of Natural History Origination and extinction, the ‘Alpha and Omega’ of Evolution, are the principal factors shaping biological diversity through time and yet the latter is often ignored in phylogenetic studies of insects. Extinct lineages play a dramatic role in revising our concepts of genealogical relationships and the evolution of major biological phenomena. These forgotten extinct clades or grades often rewrite our understanding of biogeographic patterns, timing of episodes of diversification, correlated biological/geological events, and other macroevolutionary trends. Examples are provided throughout the long history of insects of the importance of studying insect fossils, particularly those preserved with such high fidelity in amber, for resolving long- standing questions in entomology. In each example, the need for further integration of paleontological evidence into modern phylogenetic research on insects is emphasized. - 2
    [Show full text]
  • Burmese Amber Taxa
    Burmese (Myanmar) amber taxa, on-line checklist v.2018.1 Andrew J. Ross 15/05/2018 Principal Curator of Palaeobiology Department of Natural Sciences National Museums Scotland Chambers St. Edinburgh EH1 1JF E-mail: [email protected] http://www.nms.ac.uk/collections-research/collections-departments/natural-sciences/palaeobiology/dr- andrew-ross/ This taxonomic list is based on Ross et al (2010) plus non-arthropod taxa and published papers up to the end of April 2018. It does not contain unpublished records or records from papers in press (including on- line proofs) or unsubstantiated on-line records. Often the final versions of papers were published on-line the year before they appeared in print, so the on-line published year is accepted and referred to accordingly. Note, the authorship of species does not necessarily correspond to the full authorship of papers where they were described. The latest high level classification is used where possible though in some cases conflicts were encountered, usually due to cladistic studies, so in these cases an older classification was adopted for convenience. The classification for Hexapoda follows Nicholson et al. (2015), plus subsequent papers. † denotes extinct orders and families. New additions or taxonomic changes to the previous list (v.2017.4) are marked in blue, corrections are marked in red. The list comprises 37 classes (or similar rank), 99 orders (or similar rank), 510 families, 713 genera and 916 species. This includes 8 classes, 64 orders, 467 families, 656 genera and 849 species of arthropods. 1 Some previously recorded families have since been synonymised or relegated to subfamily level- these are included in parentheses in the main list below.
    [Show full text]
  • The Fossil Record of Plant-Insect Dynamics
    EA41CH12-Labandeira ARI 19 April 2013 15:52 The Fossil Record of Plant-Insect Dynamics Conrad C. Labandeira1,2,3,4 and Ellen D. Currano5 1Department of Paleobiology, National Museum of Natural History, Washington, District of Columbia 20013; email: [email protected] 2Department of Geology, Rhodes University, Grahamstown 6140, South Africa 3College of Life Sciences, Capital Normal University, Beijing 100048, China 4Department of Entomology and BEES Program, University of Maryland, College Park, Maryland 20742 5Department of Geology and Environmental Earth Science, Miami University, Oxford, Ohio 45056; email: [email protected] Annu. Rev. Earth Planet. Sci. 2013. 41:287–311 Keywords First published online as a Review in Advance on damage type, end-Cretaceous event, functional feeding group, herbivory, March 7, 2013 Paleocene-Eocene Thermal Maximum, pollination The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract This article’s doi: Progress toward understanding the dynamics of ancient plant-insect associa- 10.1146/annurev-earth-050212-124139 tions has addressed major patterns in the ecology and evolution of herbivory Copyright c 2013 by Annual Reviews. and pollination. This advancement involves development of more analyti- All rights reserved Annu. Rev. Earth Planet. Sci. 2013.41:287-311. Downloaded from www.annualreviews.org cal ways of describing plant-insect associational patterns in time and space and an assessment of the role that the environment and internal biologi- cal processes have in their control. Current issues include the deep origins of terrestrial herbivory, the spread of herbivory across late Paleozoic land- by Smithsonian Institution Libraries - National Museum of Natural History Library on 06/05/13.
    [Show full text]
  • A Triassic-Jurassic Window Into the Evolution of Lepidoptera
    A Triassic-Jurassic window into the evolution of Lepidoptera Authors: Timo van Eldijk, Torsten Wappler, Paul Klee Strother, Carolien van der Weijst, Hossein Rajaei, Henk Visscher, Bas van de Schootbrugge Persistent link: http://hdl.handle.net/2345/bc-ir:107692 This work is posted on eScholarship@BC, Boston College University Libraries. Published in Science Advances, vol. 4, no. 1, January 2018 Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC) SCIENCE ADVANCES | RESEARCH ARTICLE EVOLUTIONARY BIOLOGY Copyright © 2018 The Authors, some A Triassic-Jurassic window into the evolution rights reserved; exclusive licensee of Lepidoptera American Association for the Advancement 1 2 3 1 of Science. No claim to Timo J. B. van Eldijk, Torsten Wappler, Paul K. Strother, Carolien M. H. van der Weijst, original U.S. Government 4 1 1 Hossein Rajaei, Henk Visscher, Bas van de Schootbrugge * Works. Distributed under a Creative On the basis of an assemblage of fossilized wing scales recovered from latest Triassic and earliest Jurassic sediments Commons Attribution from northern Germany, we provide the earliest evidence for Lepidoptera (moths and butterflies). The diverse scales NonCommercial confirm a (Late) Triassic radiation of lepidopteran lineages, including the divergence of the Glossata, the clade that License 4.0 (CC BY-NC). comprises the vast multitude of extant moths and butterflies that have a sucking proboscis. The microfossils extend the minimum calibrated age of glossatan moths by ca. 70 million years, refuting ancestral association of the group with flowering plants. Development of the proboscis may be regarded as an adaptive innovation to sucking free liquids for maintaining the insect’s water balance under arid conditions.
    [Show full text]
  • Fossil Perspectives on the Evolution of Insect Diversity
    FOSSIL PERSPECTIVES ON THE EVOLUTION OF INSECT DIVERSITY Thesis submitted by David B Nicholson For examination for the degree of PhD University of York Department of Biology November 2012 1 Abstract A key contribution of palaeontology has been the elucidation of macroevolutionary patterns and processes through deep time, with fossils providing the only direct temporal evidence of how life has responded to a variety of forces. Thus, palaeontology may provide important information on the extinction crisis facing the biosphere today, and its likely consequences. Hexapods (insects and close relatives) comprise over 50% of described species. Explaining why this group dominates terrestrial biodiversity is a major challenge. In this thesis, I present a new dataset of hexapod fossil family ranges compiled from published literature up to the end of 2009. Between four and five hundred families have been added to the hexapod fossil record since previous compilations were published in the early 1990s. Despite this, the broad pattern of described richness through time depicted remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter term patterns. Corrections for rock record and sampling effort change some of the patterns seen. The time series produced identify several features of the fossil record of insects as likely artefacts, such as high Carboniferous richness, a Cretaceous plateau, and a late Eocene jump in richness. Other features seem more robust, such as a Permian rise and peak, high turnover at the end of the Permian, and a late-Jurassic rise.
    [Show full text]
  • New Cretaceous Antlion-Like Lacewings Promote a Phylogenetic Reappraisal of the Extinct Myrmeleontoid Family Babinskaiidae
    www.nature.com/scientificreports OPEN New Cretaceous antlion‑like lacewings promote a phylogenetic reappraisal of the extinct myrmeleontoid family Babinskaiidae Xiumei Lu1*, Bo Wang2 & Xingyue Liu3* Babinskaiidae is an extinct family of the lacewing superfamily Myrmeleontoidea, currently only recorded from the Cretaceous. The phylogenetic position of this family is elusive, with inconsistent inferences in previous studies. Here we report on three new genera and species of Babinskaiidae from the mid‑Cretaceous Kachin amber of Myanmar, namely Calobabinskaia xiai gen. et sp. nov., Stenobabinskaia punctata gen. et sp. nov., and Xiaobabinskaia lepidotricha gen. et sp. nov. These new babinskaiids are featured by having specialized characters, such as the rich number of presectoral crossveins and the presence of scaly setae on forewing costal vein, which have not yet been found in this family. The exquisite preservation of the Kachin amber babinskaiids facilitate a reappraisal of the phylogenetic placement of this family based on adult morphological characters. Our result from the phylogenetic inference combining the data from fossil and extant myrmeleontoids recovered a monophyletic clade composed of Babinskaiidae and another extinct family Cratosmylidae, and further assigned this clade to be sister group to a clade including Nemopteridae, Palaeoleontidae, and Myrmeleontidae. Babinskaiidae appears to be a transitional lineage between Nymphidae and advanced myrmeleontoids, with ancient morphological diversifcation. Babinskaiidae is an extinct lacewing family belonging to the superfamily Myrmeleontoidea, presently known with 13 species in nine genera 1. Te adults of Babinskaiidae are diagnosed by a combination of characters, including the fliform antennae, the presence of trichosors, the origin of RP + MA far distal to wing base, the presence of presectoral crossveins in both fore- and hind wings, and the reduction of hind wing A2 and A3 veins.
    [Show full text]