Environmental Mineralogy Lecture (Overview with Case Studies, Methods Applied, Etc.)
Total Page:16
File Type:pdf, Size:1020Kb
Oxford Miami Chief Little Turtle 1795 Miami University, Oxford, Ohio Miami University, Oxford, Ohio 9-Mar Environmental Mineralogy Lecture (overview with case studies, methods applied, etc.) 23-Mar Sediment hosted U & V deposits of the Colorado Plateau 30-Mar Heavy metals in soils: Solid phase characterization: Overview and XRD 13-Apr Heavy metals in soils: synchrotron methods 20-Apr Heavy metals in soils: synchrotron methods 11-May Mineral water interface processes 25-May Mineral water interface processes 1-Jun Pb, Zn, F contamination from MVT deposits (Missouri, Olkush, Illinois) 15-Jun To be announced 20-Jun To be announced Go to www.cas.muohio.edu/~rakovajf/AGH.html For lecture slides and associated readings. Environmental Mineralogy: Studies of the dynamic interaction of minerals and the environment and their affect on environmental chemistry, water quality, human health, contaminant remediation, microbial processes, etc. Environmental Mineralogy is a multidisciplinary endeavor that encompasses mineralogy, geology, biology, medicine, materials science and engineering. The intersection of the biological, geological, and material sciences is exemplified no better than in the importance and interest in the structure, chemistry, and environmental significance of the phosphate mineral apatite. Apatite Ca5(PO4)3(F,OH,Cl) * Fluorapatite Ca5(PO4)3F Hydroxylapatite Ca5(PO4)3OH Chlorapatite Ca5(PO4)3Cl * The most common variety Apatite Ca5(PO4)3(F*,OH,Cl) + REE, Mn, Sr, Pb, U,… Geologic Apatite • Igneous Rocks • Metamorphic Rocks • Sedimentary Rocks • Hydrothermal Deposits Environmental Mineralogy of Apatite Group Minerals [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 The foundation of the natural global P cycle P Cycle Weathering of PO from rocks 4 apatite transport animal Soluble PO4 uptake Plant uptake precipitation sedimentation decomposition of particulate PO4 rock formation Environmental Mineralogy of Apatite Group Minerals [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 Major part of the anthropogenic influence on the global P cycle Major Ore of PO4 Eutrophism Environmental Mineralogy of Apatite Group Minerals [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 Biomineralogy and Medical Mineralogy Biologic Apatite • Bones and Teeth Enamel Dentin Bone Carbonatehydroxylapatite TEM photomicrographs of carbonatehydroxylapatite from rat enamel. Magnification = 150,000x From Nylen et al. (1963) Synthetic Apatite Materials Applications • Prosthetic Coatings Biologic Apatite: Calculi CaOX – hydroxylapatite kidney stone Biologic Apatite: Calculi Amorphous Ca-phosphate & apatite Components in arterial plaque. Environmental Mineralogy of Apatite Group Minerals [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 The apatite structure allows for a large number of elemental substitutions [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 Ca10(PO4)6(F,OH,Cl)2 Ca P O F, OH or Cl (001) Cation Sites X1 site Y site X2 site [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 Major and Trace Substituents Over half of the elements in the periodic table have been found in apatite at concentrations from 10’s of wt% to parts per million. Common substitutions in apatite Ca5(PO4)3(F,OH,Cl) Sr, Ba, Na, Y, As, V, Si, S, Mn, REE, U, Th, CO3, etc. etc. Apatite group minerals Minerals with the apatite structure but different major element chemistry. Most common Pyromorphite Pb5(PO4)3Cl Mimetite Pb5(AsO4)3Cl Vanadinite Pb5(VO4)3Cl Other apatite group minerals ALFORSITE Ba5(PO4)3Cl BELOVITE-(Ce) Sr3Na(Ce,La)(PO4)3(F,OH) BELOVITE-(La) Sr3Na(La,Ce)(PO4)3(F,OH) BRITHOLITE-(Ce) (Ce,Ca)5(SiO4,PO4)3(OH,F) BRITHOLITE-(Y) (Y,Ca)5(SiO4,PO4)3(OH,F) CARBONATEFLUORAPATITE Ca5(PO4,CO3)3F CARBONATEHYDROXYLAPATITE Ca5(PO4,CO3)3(OH) CESANITE Na3Ca2(SO4)3(OH) CHLORELLESTADITE Ca5(SiO4,PO4,SO4)3(Cl,F) CLINOMIMETITE Pb5(AsO4)3Cl FERMORITE (Ca,Sr)5(AsO4,PO4)3(OH) FLUORBRITHOLITE-(Ce) (Ce,La,Na)5(Si,P)3O12F FLUORCAPHITE Ca(Sr,NaCa)(Ca,Sr,Ce)3(PO4)3F FLUORELLESTADITE Ca5(SiO4,PO4,SO4)3(F,OH,Cl) HEDYPHANE Pb3Ca2(AsO4)3Cl HYDROXYLELLESTADITE Ca10(SiO4)3(SO4)3(OH,Cl,F)2 JOHNBAUMITE Ca5(AsO4)3(OH) MATTHEDDLEITE Pb5(SiO4)1.5(PO4)1.5(Cl,OH) MORELANDITE (Ba,Ca,Pb)5(AsO4,PO4)3Cl STRONTIUMAPATITE (Sr,Ca)5(PO4)3(OH,F) SVABITE Ca5(AsO4)3F TURNEAUREITE Ca5[(As,P)O4]3Cl Environmental Mineralogy of Apatite Group Minerals [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 Utilization of the a large number of elemental substitutions: Dating Apatite Ca5(PO4)3(F,OH,Cl) + many substituents (I.e. U*, Th*, REE*, Sr*, Y*) (*important radionuclides) Environmental Mineralogy of Apatite Group Minerals [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 Utilization of the a large number of elemental substitutions: Solid Nuclear Waste Forms Radioactive Waste SNF storage pools Dry cask storage www.ocrwm.doe.gov Synthetic Apatite: Materials Applications: • Solid nuclear waste form U-fluorapatite Desired properties of a solid nuclear waste form 1) Low Solubility -60 a) Apatite is very insoluble Ks of FAP ≅ 1 x 10 2) High affinity for the incorporation of radionuclides a) Apatite readily incorporates U, Th, 90Sr, 90Y, R EE 3) Thermal stability a) Apatite forms and is stable under conditions present from the earths surface to deep in the mantle. 4) Low propensity for Metamictization a) Thermal annealing temperatures for apatite as low as 70OC Environmental Mineralogy of Apatite Group Minerals [IX] [VII] [IV] [III-IV] X14 X26( YO4)6 Z2 Utilization of the a large number of elemental substitutions: Sequestration and stabilization of heavy metal contaminants Permeable Reactive Barriers AFM images of Pb interactions with apatite (From Lower et al. 1998) apatite Ca5(PO4)3(OH) pyromorphite Pb5(PO4)3(OH) on apatite 0.5 μm In situ precipitation PIMS Conclusions The intersection of the biological, geological, and material sciences is exemplified no better than in the importance and interest in the structure, chemistry, and environmental significance of the phosphate mineral apatite. Environmental Mineralogy of Apatite 1) Dominant source of P in the environment 2) Ore of PO4 3) Biomineralization (Bones and teeth) 4) Contaminant Barrier 5) Metal Sequestration Agent 6) Potential solid nuclear waste form Apatite, Paraiba, Minas Gerais, Brazil.