UC Riverside UC Riverside Electronic Theses and Dissertations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Phylogeny of the Polysphincta Group of Genera (Hymenoptera: Ichneumonidae; Pimplinae): a Taxonomic Revision of Spider Ectoparasitoids
Systematic Entomology (2006), 31, 529–564 DOI: 10.1111/j.1365-3113.2006.00334.x Phylogeny of the Polysphincta group of genera (Hymenoptera: Ichneumonidae; Pimplinae): a taxonomic revision of spider ectoparasitoids IAN D. GAULD1 and JACQUES DUBOIS2 1Department of Entomology, The Natural History Museum, London, U.K. and 2UMR 5202-CNRS, De´partement Syste´matique et Evolution, Museum National d’Histoire Naturelle, Paris, France Abstract. A cladistic analysis of the Polysphincta genus-group (¼ the ‘Polysphinctini’ of authors), a clade of koinobiont ectoparasitoids of spiders, was undertaken using ninety-six characters for seventy-seven taxa (sixty-five ingroup and twelve outgroup). The genus-group is monophyletic, nested within the Ephialtini as (Iseropus (Gregopimpla (Tromatobia ((Zaglyptus þ Clistopyga) þ (Polysphincta genus- group))))). Within the Polysphincta genus-group, the clade (Piogaster þ Inbioia)is sister-lineage to all other genera. The cosmopolitan genus Zabrachypus is nonmono- phyletic, and has been subdivided into a monophyletic Nearctic/Western Palaearctic Zabrachypus s.str. and an Eastern Palaearctic Brachyzapus gen.n., comprising B. nik- koensis (Uchida) comb.n., B. tenuiabdominalis (Uchida) comb.n. and B. unicarinatus (Uchida & Momoi) comb.n. An Afrotropical species placed in Zabrachypus, Z. curvi- cauda (Seyrig), belongs to Schizopyga comb.n. The monophyly of the cosmopolitan genus Dreisbachia is equivocal, and we consider that species assigned to it are best placed in an expanded Schizopyga (syn.n.). The monobasic Afrotropical genus Afrosphincta is also a synonym of Schizopyga (syn.n.). The newly delimited Schizopyga is the sister- lineage of Brachyzapus, and these two genera form the sister-lineage of Zabrachypus s.str. as the monophyletic clade (Zabrachypus þ (Schizopyga þ Brachyzapus)). -
ON Frankliniella Occidentalis (Pergande) and Frankliniella Bispinosa (Morgan) in SWEET PEPPER
DIFFERENTIAL PREDATION BY Orius insidiosus (Say) ON Frankliniella occidentalis (Pergande) AND Frankliniella bispinosa (Morgan) IN SWEET PEPPER By SCOT MICHAEL WARING A THESIS PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF SCIENCE UNIVERSITY OF FLORIDA 2005 ACKNOWLEDGMENTS I thank my Mom for getting me interested in what nature has to offer: birds, rats, snakes, bugs and fishing; she influenced me far more than anyone else to get me where I am today. I thank my Dad for his relentless support and concern. I thank my son, Sequoya, for his constant inspiration and patience uncommon for a boy his age. I thank my wife, Anna, for her endless supply of energy and love. I thank my grandmother, Mimi, for all of her love, support and encouragement. I thank Joe Funderburk and Stuart Reitz for continuing to support and encourage me in my most difficult times. I thank Debbie Hall for guiding me and watching over me during my effort to bring this thesis to life. I thank Heather McAuslane for her generous lab support, use of her greenhouse and superior editing abilities. I thank Shane Hill for sharing his love of entomology and for being such a good friend. I thank Tim Forrest for introducing me to entomology. I thank Jim Nation and Grover Smart for their help navigating graduate school and the academics therein. I thank Byron Adams for generous use of his greenhouse and camera. I also thank (in no particular order) Aaron Weed, Jim Dunford, Katie Barbara, Erin Britton, Erin Gentry, Aissa Doumboya, Alison Neeley, Matthew Brightman, Scotty Long, Wade Davidson, Kelly Sims (Latsha), Jodi Avila, Matt Aubuchon, Emily Heffernan, Heather Smith, David Serrano, Susana Carrasco, Alejandro Arevalo and all of the other graduate students that kept me going and inspired about the work we have been doing. -
Mangrove Guidebook for Southeast Asia
RAP PUBLICATION 2006/07 MANGROVE GUIDEBOOK FOR SOUTHEAST ASIA The designations and the presentation of material in this publication do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations concerning the legal status of any country, territory, city or area or of its frontiers or boundaries. The opinions expressed in this publication are those of the authors alone and do not imply any opinion whatsoever on the part of FAO. Authored by: Wim Giesen, Stephan Wulffraat, Max Zieren and Liesbeth Scholten ISBN: 974-7946-85-8 FAO and Wetlands International, 2006 Printed by: Dharmasarn Co., Ltd. First print: July 2007 For copies write to: Forest Resources Officer FAO Regional Office for Asia and the Pacific Maliwan Mansion Phra Atit Road, Bangkok 10200 Thailand E-mail: [email protected] ii FOREWORDS Large extents of the coastlines of Southeast Asian countries were once covered by thick mangrove forests. In the past few decades, however, these mangrove forests have been largely degraded and destroyed during the process of development. The negative environmental and socio-economic impacts on mangrove ecosystems have led many government and non- government agencies, together with civil societies, to launch mangrove conservation and rehabilitation programmes, especially during the 1990s. In the course of such activities, programme staff have faced continual difficulties in identifying plant species growing in the field. Despite a wide availability of mangrove guidebooks in Southeast Asia, none of these sufficiently cover species that, though often associated with mangroves, are not confined to this habitat. -
Evolution of the Insects David Grimaldi and Michael S
Cambridge University Press 0521821495 - Evolution of the Insects David Grimaldi and Michael S. Engel Index More information INDEX 12S rDNA, 32, 228, 269 Aenetus, 557 91; general, 57; inclusions, 57; menageries 16S rDNA, 32, 60, 237, 249, 269 Aenigmatiinae, 536 in, 56; Mexican, 55; parasitism in, 57; 18S rDNA, 32, 60, 61, 158, 228, 274, 275, 285, Aenne, 489 preservation in, 58; resinite, 55; sub-fossil 304, 307, 335, 360, 366, 369, 395, 399, 402, Aeolothripidae, 284, 285, 286 resin, 57; symbioses in, 303; taphonomy, 468, 475 Aeshnoidea, 187 57 28S rDNA, 32, 158, 278, 402, 468, 475, 522, 526 African rock crawlers (see Ambermantis wozniaki, 259 Mantophasmatodea) Amblycera, 274, 278 A Afroclinocera, 630 Amblyoponini, 446, 490 aardvark, 638 Agaonidae, 573, 616: fossil, 423 Amblypygida, 99, 104, 105: in amber, 104 abdomen: function, 131; structure, 131–136 Agaoninae, 423 Amborella trichopoda, 613, 620 Abies, 410 Agassiz, Alexander, 26 Ameghinoia, 450, 632 Abrocomophagidae, 274 Agathiphaga, 560 Ameletopsidae, 628 Acacia, 283 Agathiphagidae, 561, 562, 567, 630 American Museum of Natural History, 26, 87, acalyptrate Diptera: ecological diversity, 540; Agathis, 76 91 taxonomy, 540 Agelaia, 439 Amesiginae, 630 Acanthocnemidae, 391 ages, using fossils, 37–39; using DNA, 38–40 ametaboly, 331 Acari, 99, 105–107: diversity, 101, fossils, 53, Ageniellini, 435 amino acids: racemization, 61 105–107; in-Cretaceous amber, 105, 106 Aglaspidida, 99 ammonites, 63, 642 Aceraceae, 413 Aglia, 582 Amorphoscelidae, 254, 257 Acerentomoidea, 113 Agrias, 600 Amphientomidae, -
Conservation of Arthropod Natural Enemies in Broccoli with Relay Strip-Cropping
AN ABSTRACT OF THE DISSERTATION OF Daniel M. McGrath for the degree of Doctor of Philosophyin Entomology presented on February 15, 2000. Title: Conservation ofArthropod Natural Enemies in Broccoli with Relay Strip-Cropping Redacted for privacy Abstract approved: Relay strip-cropping combines two vegetation management tactics,under- sowing and strip-management. In this study conductedfrom 1994 though 1997, a cover crop seed-mixture containing oats (Avena sativa L.var. "Monida"), common vetch ( Vicia sativa L.), red clover (Tr4foliumpratense L.), annual ryegrass (Lolium multflorum Lam.), and buckwheat (Fagopyrum esculentumMoench) was broadcast over established broccoli (Brassica oleracea L.) 32days after planting. The broccoli was planted, under-sown, and harvestedin sections alternated with strips of cover crop. Thecover crop relay provided tillage and pesticide refuges for beneficial insects without taking landout of broccoli production. Relay strip- cropping increased the abundance and diversity of groundbeetles (Coleoptera: Carabidae), spiders (Araneae), harvestmen (Opiliones: Phalangiidae),lady beetles (Coleoptera: Coccinellidae), and damsel bugs (Heteroptera: Nabidae)in the cropping system; however, this did not always result inincreased natural enemies in the broccoli. Arthropod species varied significantly in theirpropensity to leave the non-crop vegetation andmove into the broccoli. Movement of the lady beetle Coccinella septempunctata L. from thecover crop strips into the broccoli may have depressed aphid populations in 1996. Thenon-crop vegetation may have served as a sink rather than a source for Nabis species and appeared to reduce their density in the broccoli growing nearby. Therewas no evidence that background vegetation surrounding the broccoli reduced colonization by winged aphids.The density of the cabbage flea beetle Phyllotreta crucferae Goezewas lower in the broccoli relay compared with the clean-tilled broccoli. -
LEGUMINOSAE Sindora Siamensis Var. Maritima (Pierre)
Mangrove Guidebook for Southeast Asia Part 2: DESCRIPTIONS – Trees & shrubs LEGUMINOSAE 201 Sindora siamensis var. maritima (Pierre) K. & SS. Larsen Synonyms : Sindora conchinchinensis Baillon, Sindora maritima Pierre, Sindora siamensis Teijsm. ex Miq., Sindora siamensis Teysm. ex Miq., Sindora wallichii var. siamensis (Teijsm.) Bak. Vernacular name(s) : Ma-kba-ling (Thai.), Sepetir mempelas (Mal.) Description : Tree, 10-15 m tall, deciduous, with brownish bark. Leaves alternate, with 3(-5) pairs of opposite leaflets (no terminal leaflet); leaflets oblong-ovate, rounded tip or with a slight notch at the tip, 6-15 cm by 3-8 cm; main axis of compound leaf (7-)8-15(-20) cm long; petiole 3-7 mm long. Upper surface of leaflet is dull, the veins very thinly velvety, faint net-like lines on both surfaces. Flowers densely clustered in a compound terminal panicle, 10-17(-35) cm long, stalks golden coloured, finely hairy. Flowers are bisexual and have a short, 2-3 mm long stalk; flowers small, 3-5 mm by 3-5 mm, with leaflets at the base. Sepals 4, separate, green, ovate, 3-3.5 by 7.5-9 mm long, outside hairy, often warty, with a few spines on the ends. Petals 1, boat-shaped, variable in colour from light yellow to red or brown, 2.5-3 by 7-9 mm, woolly outside, smooth inside. Stamens 10 (9+1), pink, fused unevenly, with curved filaments, pink, 3-5 mm long; style 10-12 mm; 5 stigmas. Fruit consists of a pod, which is flat, irregularly round or ovate, rather diffusely spiny (spines up to 4 mm), 5-7 by 6-10 cm; stalks are very short. -
Evolution of the Insects
CY501-C08[261-330].qxd 2/15/05 11:10 PM Page 261 quark11 27B:CY501:Chapters:Chapter-08: 8 TheThe Paraneopteran Orders Paraneopteran The evolutionary history of the Paraneoptera – the bark lice, fold their wings rooflike at rest over the abdomen, but thrips true lice, thrips,Orders and hemipterans – is a history beautifully and Heteroptera fold them flat over the abdomen, which reflected in structure and function of their mouthparts. There probably relates to the structure of axillary sclerites and other is a general trend from the most generalized “picking” minute structures at the base of the wing (i.e., Yoshizawa and mouthparts of Psocoptera with standard insect mandibles, Saigusa, 2001). to the probing and puncturing mouthparts of thrips and Relationships among paraneopteran orders have been anopluran lice, and the distinctive piercing-sucking rostrum discussed by Seeger (1975, 1979), Kristensen (1975, 1991), or beak of the Hemiptera. Their mouthparts also reflect Hennig (1981), Wheeler et al. (2001), and most recently by diverse feeding habits (Figures 8.1, 8.2, Table 8.1). Basal Yoshizawa and Saigusa (2001). These studies generally agree paraneopterans – psocopterans and some basal thrips – are on the monophyly of the order Hemiptera and most of its microbial surface feeders. Thysanoptera and Hemiptera suborders and a close relationship of the true lice (order independently evolved a diet of plant fluids, but ancestral Phthiraptera) with the most basal group, the “bark lice” (Pso- heteropterans were, like basal living families, predatory coptera), which comprise the Psocodea. One major issue is insects that suction hemolymph and liquified tissues out of the position of thrips (order Thysanoptera), which either their prey. -
MYOPORACEAE 1. PENTACOELIUM Siebold & Zuccarini, Abh. Math
MYOPORACEAE 苦槛蓝科 ku jian lan ke Hong Deyuan (洪德元)1; Robert J. Chinnock2 Prostrate or erect shrubs or small trees, glabrous, glandular papillate or covered with stellate, villous, or glandular simple or branched trichomes, often with embedded resin cavities protruding from vegetative and floral parts, viscid to resinous. Stipules ab- sent. Leaves simple, alternate to densely spiral, more rarely opposite or whorled, sessile to petiolate; leaf blade margin entire, serrate, crenate, or rarely lobed. Inflorescences a reduced dichasial cyme of 1–12 axillary flowers; bracts absent. Flowers bisexual, rarely functionally male or female. Sepals (4 or)5(or 6–9), distinct, basally connate, or rarely forming a deep calyx tube, valvate or imbri- cate, ± persistent. Corolla bilabiate, campanulate, rarely urceolate, actinomorphic, or zygomorphic, 5-lobed, lower lip 1–3-lobed, upper lip 2–4-lobed. Stamens 4(–8), inserted in corolla tube, alternate with corolla lobes, included or exserted; filaments filiform; anther cells confluent, reniform or sagittate. Gynoecium of 2 connate carpels; ovary superior, 2-carpelled, becoming 4(–12)-loculed by division of ovary; ovules 1–3(or 4) per locule, pendulous, anatropous; stigma capitate. Fruit usually indehiscent, rarely semi- dehiscent or subschizocarpic, dry or drupaceous with fleshy or watery mesocarp; endocarp woody. Seeds with a straight or slightly curved embryo; endosperm absent or sparse. Seven genera and ca. 250 species: tropical America, E and SE Asia, Australia, Indian Ocean islands (Mauritius and Rodrigues); one species in China. The family has recently been monographed (R. J. Chinnock, Eremophila and allied genera: A monograph of the plant family Myoporaceae, 1– 672. -
Download Preprint
Biological Reviews Macroecology of parent al care in arthropods: higher mortality risk leads to higher benefits of offspring protection in tropical climates Journal:For Biological Review Reviews Only Manuscript ID BRV-04-2016-0076.R2 Manuscript Type: Original Article Date Submitted by the Author: n/a Complete List of Authors: Santos, Eduardo; Universidade de Sao Paulo, Departamento de Zoologia Bueno, Pedro; Universidade de Sao Paulo, Departamento de Ecologia Gilbert, James; University of Hull, School of Biological, Biomedical & Environmental Sciences Machado, Glauco; Universidade de Sao Paulo, Departamento de Ecologia abiotic factors, biotic interactions, evapotranspiration, egg attendance, egg Keywords: coating, meta-regression, nest, parasitism, parental removal, predation Page 1 of 60 Biological Reviews 1 2 3 1 Macroecology of parental care in arthropods: higher mortality 4 5 6 2 risk leads to higher benefits of offspring protection in tropical 7 8 9 3 climates 10 11 12 4 13 14 5 Eduardo S. A. Santos 1, 2, *, Pedro P. Bueno 1, James D. J. Gilbert 3 and Glauco 15 16 1 17 6 Machado 18 For Review Only 19 7 20 21 8 1LAGE do Departamento de Ecologia, Instituto de Biociências, Universidade de São Paulo, 22 23 24 9 Rua do Matão, trav. 14, no 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 25 2 26 10 BECO do Departamento de Zoologia, Instituto de Biociências, Universidade de São Paulo, 27 28 11 Rua do Matão, trav. 14, no 321, Cidade Universitária, 05508-090, São Paulo, SP, Brazil 29 30 12 3School of Environmental Sciences, University of Hull, Cottingham Rd, Hull HU6 7RX, UK 31 32 33 13 34 35 14 36 37 15 Running title : Macroecology of parental care in arthropods 38 39 16 40 41 17 42 43 * 44 18 Author for correspondence (E-mail: [email protected]; Tel.: +55 (11) 3091-0989). -
1. Introduction
INTRODUCTION 1 1. Introduction The order Thysanoptera (common name: thrips) encompasses minute insects which are usually only a few millimeters long. The majority of the species has fringed, banded wings as well as asymmetrical sucking and piercing mouthparts (only the left-hand side mandible is developed) (HEMING 1978; MOUND et al. 1980; MORITZ 1989b, 1997). Thrips also have a protrusible sac-like arolium at the apex of each leg (HEMING 1971; MOUND et al. 1980; MORITZ 1989c). These insects were first described by DE GEER in 1744 (Physapus), later LINNEAUS placed the species which were known at this time in a genus called Thrips, and in 1836 HALIDAY ranked these insects to the Thysanoptera order. Thysanoptera are distributed worldwide predominating in tropical, subtropical, and temperate regions (LEWIS 1973, 1997). Currently about 5500 thrips species are described (10000 species estimated) (LEWIS 1997; MOUND 1997). Within Thysanoptera there are two suborders, Terebrantia and Tubulifera. Females of the Terebrantia possess an external ovipositor composed of four valves (HEMING 1970a; BODE 1975; MORITZ 1989d, 1997). In the tubuliferan species the ovipositor displays a flexible internal structure which is evertable (HEMING 1970a; MORITZ 1997). There are nine families within the Thysanoptera (MORITZ et al. 2001). Eight of these (Uzelothripidae, Merothripidae, Aeolothripidae, Melanthripidae, Adiheterothripidae, Fauriellidae, Heterothripidae, and Thripidae) belong to the Terebrantia. The suborder of Tubulifera includes only a single family, the Phlaeothripidae (MOUND 1997). 93 per cent of all known thrips species are placed in either the Thripidae or Phlaeothripidae (MOUND 1997) and of these two major families the Phlaeothripidae is the largest with about 3100 currently described species (MOUND et al. -
Naturally Occurring Isocoumarins Derivatives from Endophytic Fungi: Sources, Isolation, Structural Characterization, Biosynthesis, and Biological Activities
molecules Review Naturally Occurring Isocoumarins Derivatives from Endophytic Fungi: Sources, Isolation, Structural Characterization, Biosynthesis, and Biological Activities Ahmad Omar Noor 1, Diena Mohammedallam Almasri 1, Alaa Abdullah Bagalagel 1 , Hossam Mohamed Abdallah 2,3 , Shaimaa Gamal Abdallah Mohamed 4, Gamal Abdallah Mohamed 2,5 and Sabrin Ragab Mohamed Ibrahim 6,7,* 1 Pharmacy Practice Department, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; [email protected] (A.O.N.); [email protected] (D.M.A.); [email protected] (A.A.B.) 2 Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; hmafifi[email protected] (H.M.A.); [email protected] (G.A.M.) 3 Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt 4 Faculty of Dentistry, British University, El Sherouk City, Suez Desert Road, Cairo 11837, Egypt; [email protected] 5 Pharmacognosy Department, Faculty of Pharmacy, Al-Azhar University, Assiut Branch, Assiut 71524, Egypt 6 Department of Pharmacognosy and Pharmaceutical Chemistry, College of Pharmacy, Taibah University, Al Madinah Al-Munawwarah 30078, Saudi Arabia 7 Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt * Correspondence: [email protected]; Tel.: +966-581183034 Received: 9 December 2019; Accepted: 13 January 2020; Published: 17 January 2020 Abstract: Recently, the metabolites separated from endophytes have attracted significant attention, as many of them have a unique structure and appealing pharmacological and biological potentials. Isocoumarins represent one of the most interesting classes of metabolites, which are coumarins isomers with a reversed lactone moiety. They are produced by plants, microbes, marine organisms, bacteria, insects, liverworts, and fungi and possessed a wide array of bioactivities. -
Check List and Authors Chec List Open Access | Freely Available at Journal of Species Lists and Distribution Pecies S
ISSN 1809-127X (online edition) © 2011 Check List and Authors Chec List Open Access | Freely available at www.checklist.org.br Journal of species lists and distribution PECIES S OF MajidThrips Mirab-balou (Insecta: 1, Xiao-li TongThysanoptera) 2, Ji-nian Feng 3 and Xue-xin of China Chen 1* ISTS L 1 Institute of Insect Sciences, zhejiang University, 268 Kaixuan Road, Hangzhou 310029, China. 2 South China Agricultural University, Department of Entomology. Guangzhou 510642, China. 3 Northwest A. and F. University, Yangling, Shaanxi 712100, China. [email protected] * Corresponding author. E-mail: Abstract: A new checklist of Thysanoptera from China (including Taiwan) is provided. In total 566 species in 155 genera are listed, of which there are 313 species in the suborder Terebrantia, comprising 290 species in 74 genera in family Thripidae, 18 species in three genera in Aeolothripidae, two species in one genus in Melanthripidae and three species in one genus in Merothripidae. In the suborder Tubulifera 253 species in 76 genera are listed in the single family Phlaeothripidae. Two species, Aeolothrips collaris and Odontothrips meliloti, are newly recorded for the fauna of China. Introduction and Forestry University (Yangling, Shaanxi prov.), Jun About 6000 species of Thysanoptera are known Wang and associates (2006-2011, 7 publications) at Jilin University (Jilin prov.), Xue-xin Chen and associates (2010- Terebrantia and Tubulifera, comprising eight families 2011, 6 publications) at Zhejiang University, Hangzhou (Bhattifrom the 1979a world.1, dealing These arewith classified both living into and two fossil suborders forms; (Zhejiang prov.), and Chin-Lin Wang (1993–2010, 19 Mound et al.