Pancreaticobiliary Ductal Union Gut: First Published As 10.1136/Gut.31.10.1144 on 1 October 1990

Total Page:16

File Type:pdf, Size:1020Kb

Pancreaticobiliary Ductal Union Gut: First Published As 10.1136/Gut.31.10.1144 on 1 October 1990 1144 Gut, 1990, 31, 1144-1149 Pancreaticobiliary ductal union Gut: first published as 10.1136/gut.31.10.1144 on 1 October 1990. Downloaded from S P Misra, M Dwivedi Abstract TABLE ii Length ofthe common channel in normalsubjects in The main pancreatic duct and the common bile various series duct open into the second part of the duo- Authors Mean (mm) Range (mm) denum alone or after joining as a common Misra et al4 4-7 1-018-4 channel. A common channel of >15 mm (an Kimura et al5 4.6 2-10 anomalous pancreaticobiliary duct) is associ- Dowdy et al6 4-4 1-12 ated with congenital cystic dilatation of the common bile duct and carcinoma of the gall bladder. Even a long common channel channel of <3 mm, and 18% had a common (38 mm) is associated with a higher frequency channel of >3 mm. The rhean length was not of carcinoma of the gall bladder. Gail stones mentioned.2 In a necropsy study of 35 infants, smaller than the common channel and a long Miyano et al' noted that the average length of the common channel predispose to gail stone common channel was 1 3 mm. induced acute pancreatitis. Separate openings Kimura et al,' using cineradiography during for the two ductal systems predisposes to ERCP, have shown contractile motility of the development of gall stones and alcohol ductal wall extending well beyond the common induced chronic pancreatitis. The role of channel, towards the liver. The mean (SD) ductal union has also been investigated in length of the contractile segment was 20 5 primary sclerosing cholangitis and biliary (4 6) mm (range 14-31 mm). atresia. Anomalous pancreaticobiliary ductal union The anatomy of the distal ends of the common (APBD) bile duct and the main pancreatic duct has In APBD the connection between the common received attention because of its importance in bile duct and the main pancreatic duct is located pancreaticobiliary diseases (Table I). The two outside the duodenal wall and is therefore not ducts open in the duodenum either separately or under the influence of the sphincter of Boyden http://gut.bmj.com/ via a common channel. In the pre-endoscope era, (Table III)." The frequency of APBD varies a common channel was noted in 20-90% of the from 1 5-3 2%.4 0ll5 The highest incidence general population at necropsy and in 7-50% by of 3-2% was reported by Kimura et all and cholangiography.' In a later study a common Unozawa et al." If it appears that the pancreatic channel was found in 74% of specimens, 7% of duct is joining the common bile duct it is denoted which had interposed septum and 19% separate as P-B type and if the common bile duct appears openings for the two ducts.2 Another necropsy to join the main pancreatic duct it is denoted as on September 24, 2021 by guest. Protected copyright. study noted separate ducts (separate openings B-P type (Fig 1). plus one opening without a common channel) in Kimura et all have shown that the contractile 16-9% subjects while 83 1% had a common segment of the common channel, in APBD, channel.3 Our own data, based on a retrospective ended well below the common channel. The analysis of 259 selected endoscopic retrograde mean (SD) length of the contractile segment was cholangiopancreaticograms (ERCPs), in which 14-8 (4 6) mm (range 11-22 mm) in subjects with the pancreaticobiliary ductal union could be APBD compared to 205 (4 6) mm (range clearly seen, showed a common channel in 63%.4 14-31 mm) in those without APBD. The differ- The length of the common channel in normal ence between the two groups was significant people ranges from 1-12 mm, with a mean of (p<O OO1). about 4-5 mm45 (Table II). Jona et at7 noted that the length ofthe common channel was < 5 mm in normal people. A common channel of 4 mm in MECHANISM OF APBD infants and 6 mm in adults was considered It may be that APBD is a result of uneven abnormal.8 In Di Magno's series 25% of patients proliferation of bile duct epithelium during fetal had a well defined ampulla, 31% had a common life. II The union ofthe common bile duct and the main pancreatic duct is located lateral to the duodenum up to the eighth week ofgestation and TABLE I Diseases associated with disorders ofthe then it shifts medially to lie finally within the Gastroenterology Unit, pancreaticobiliary ductal union Postgraduate Department of Medicine, Anomalous pancreaticobiliary ductal union: Congenital cystic dilatation TABLE in Definition ofanomalous pancreaticobiliary ductal MLN Medical College, Carcinoma of the gall bladder union used by various workers Allahabad-211001, India Long common channel: S P Misra Carcinoma of the gall bladder Common channel > 15 mm4 5'0'4 M Dwivedi Gall stone induced acute pancreatitis Common channel >20 mm or ducts joining perpendicular to each Correspondence to: Separate openings ofthe common bile duct and the main pancreatic other, or both" Dr S P Misra. duct: Common channel > 15 mm plus amylase activity in bile Gall stones > 10 000 IU"l Accepted for publication Alcohol induced chronic pancreatitis Common channel >6 mm outside duodenum'6 30 October 1989 Pancreaticobiliary ductal union 1145 Figure 1: Two types of amylase,22 but he failed to produce localised union. In the BP type the common bile duct appears to dilatation by regurgitating pancreatic juice join the main pancreatic experimentally into the common bile duct.24 Gut: first published as 10.1136/gut.31.10.1144 on 1 October 1990. Downloaded from duct, while in the PB type Cylindrical dilatation of varying degrees has the main pancreatic duct been pancreatic juice appears tojoin the common produced by injecting bile duct. through the bile duct in mongrel dogs.27 Oguchi et al27 found epithelial hyperplasia with round cell infiltration and thickening of the wall with fibrosis in all of their patients with cystic dilatation (n=40). They divided their patients into two groups. One group presented with abdominal pain; 86-4% showed pre- PB BP dominant epithelial hyperplasia and round cell infiltration (glandular type). The amylase activity in bile was increased. The other group duodenal wall. Failure of this movem ent could presented with obstructive jaundice; 73-7% of result in APBD.'8 these patients showed predominant thickening of the wall with fibrosis (fibrotic type). Amylase activity, in bile of these patients, was signifi- APBD and congenital cystic dilatatioia ofthe cantly less than in the other group. 14 of 31 common bile duct patients with cystic dilatation had glandular type In 1906 Arnolds noted an association between while the other 17 had fibrotic type but all nine APBD and congenital dilatation of the common patients with cylindrical cystic dilatation had bile duct. 19 Since then many workcers have glandular type. In their animal model, where a reported this association.57 10 14-17 20-27 T'he incid- pancreatico-cholecystostomy was done, they ence of this association in various studies is observed only cylindrical dilatation. They shown in Table IV. concluded that cylindrical congenital cystic Ono et al'6 found APBD in 15 (683%) of 22 dilatation may be accounted for by an APBD patients with congenital cystic dilatatiion, while union, with resultant reflux of pancreatic juice Sameshima et a126 found APBD in 47-5% of into the common bile duct. But for cystic patients with congenital cystic dilataticmn. In two dilatation both an APBD union and an obstruc- other studies APBD was noted in 333%24 and tive element in the lower part of the cyst play a 100%7 of patients with congenital cystic dilata- part. tion. http://gut.bmj.com/ APBD and carcinoma ofthe gall bladder TYPE OF UNION Several Japanese workers have reported an Kimura'° and Komi et a124 noted that B-P type of association between APBD and carcinoma of the union is usually associated with congenlital cystic gall bladder."'3-15 28-35 Kato et al'5 reported that dilatation, while another study frc)m Japan four of nine (44-4%) patients with APBD had noted the P-B union in nine of 15 (606/io) cases.'6 carcinoma of the gall bladder. Only four of 291 In a recent series 28 (56%) of 50 cases wvere ofthe (1-3%) patients without APBD had carcinoma of on September 24, 2021 by guest. Protected copyright. P-B type and 22 (44%) of the B-P typoe.5 Arima the gall bladder. and Akita noted the B-P type in 66°a and P-B Kimura et all noted APBD in 16-7% of type in 34% ofpatients.25 patients with carcinoma of the gall bladder compared to only 2-8% of patients with other hepatobiliary and pancreatic diseases. They also MECHANISM OF CONGENITAL CYSTIC DILiATATION found that ofthe 65 cases ofAPBD, carcinoma of The exact cause of congenital cystic di.latation is the gall bladder was present in 24-6% compared not known. Babbitt et a120 proposed thaat because to 1-9% in those without APBD. Of these 65 of the abnormally long common chainnel mal- patients with APBD, 50 had congenital cystic development of the sphincter of Odcii occurs, dilatation of the common bile duct. Of the which results in a reversed pressure gradient remaining 15 (who did not have congenital cystic between the common bile duct and the main dilatation), 11 (73 3%) had gall bladder cancer pancreatic duct. This leads to regurgPitation of compared to only five (10%) of the 50 patients.
Recommended publications
  • Papilla with Separate Bile and Pancreatic Duct Orifices
    JOP. J Pancreas (Online) 2013 May 10; 14(3):302-303. MULTIMEDIA ARTICLE – Clinical Imaging Papilla with Separate Bile and Pancreatic Duct Orifices Surinder Singh Rana, Deepak Kumar Bhasin Department of Gastroenterology, Post Graduate Institute of Medical Education and Research (PGIMER). Chandigarh, India A 32-year-old male, a known case of alcohol related Conflict of interest The authors have no potential chronic non calcific pancreatitis, was referred to us for conflicts of interest pancreatic endotherapy for relief of intractable abdominal pain. The cross sectional imaging studies References had revealed an irregularly dilated main pancreatic duct. The examination of the major duodenal papilla 1. Silvis SE, Vennes JA, Dreyer M. Variation in the normal duodenal papilla. Gastrointest Endosc 1983; 29:132-133 [PMID; revealed the presence of two separate orifices at 6852473] endoscopic retrograde cholangiopancreatography (ERCP) (Image). The cranial orifice was located at 11- 12 clock position whereas the caudal orifice was located at 4-5 clock position. The caudal orifice was selectively cannulated and the injection of the contrast revealed presence of an irregularly dilated main pancreatic duct. The cannula and the guide wire introduced through the caudal orifice selectively entered the pancreatic duct and did not come out through the cranial orifice. During ERCP, bile could be seen coming out of the cranial orifice, confirming it to be the orifice of common bile duct. Following selective cannulation of the main pancreatic duct, a 5-Fr stent was placed into the pancreatic duct. Following this, the patient had complete pain relief and is planned for further sessions of pancreatic endotherapy along with pancreatic sphincterotomy.
    [Show full text]
  • Fact Sheet - Symptoms of Pancreatic Cancer
    Fact Sheet - Symptoms of Pancreatic Cancer Diagnosis Pancreatic cancer is often difficult to diagnose, because the pancreas lies deep in the abdomen, behind the stomach, so tumors are not felt during a physical exam. Pancreatic cancer is often called the “silent” cancer because the tumor can grow for many years before it causes pressure, pain, or other signs of illness. When symptoms do appear, they can vary depending on the size of the tumor and where it is located on the pancreas. For these reasons, the symptoms of pancreatic cancer are seldom recognized until the cancer has progressed to an advanced stage and often spread to other areas of the body. General Symptoms Pain The first symptom of pancreatic cancer is often pain, because the tumors invade nerve clusters. Pain can be felt in the stomach area and/or in the back. The pain is generally worse after eating and when lying down, and is sometimes relieved by bending forward. Pain is more common in cancers of the body and tail of the pancreas. The abdomen may also be generally tender or painful if the liver, pancreas or gall bladder are inflamed or enlarged. It is important to keep in mind that there are many other causes of abdominal and back pain! Jaundice More than half of pancreatic cancer sufferers have jaundice, a yellowing of the skin and whites of the eyes. Jaundice is caused by a build-up bilirubin, a substance which is made in the liver and a component of bile. Bilirubin contains a lot of yellow pigment, and gives bile it’s color.
    [Show full text]
  • Common Bile Duct Exploration
    Education Common Bile Duct Exploration What is a common bile duct exploration? The common bile duct is a tube that connects the liver, gallbladder, and pancreas to the small intestine. It helps deliver fluids for digestion. A common bile duct exploration is a procedure used to see if a stone is blocking the flow of bile from your liver and gallbladder to your intestine. When is it used? When a stone gets stuck in the common bile duct it may cause bile to back up into the liver. This causes jaundice. Jaundice is a condition in which the skin and the whites of the eyes become yellowish. If the stone is not removed, the common bile duct may become infected and need emergency surgery. It can also cause pancreatitis, a reaction in the pancreas that can be life threatening. Common bile duct exploration is often done during surgery to remove the gallbladder. An alternative procedure is an endoscopic retrograde cholangiopancreatography (ERCP). When an ERCP is done, a tube is inserted through your mouth and stomach into the small intestine. The tube can be used to put contrast dye into the duct to look for stones with x-rays. If there are stones, a small opening is made in the common duct to allow the stone or stones to pass into the intestine. You should ask your health care provider about these choices. How do I prepare for a common bile duct exploration? Plan for your care and recovery after the operation. Allow for time to rest and try to find people to help you with your day-to- day duties.
    [Show full text]
  • Progress Report Cholestasis and Lesions of the Biliary Tract in Chronic Pancreatitis
    Gut: first published as 10.1136/gut.19.9.851 on 1 September 1978. Downloaded from Gut, 1978, 19, 851-857 Progress report Cholestasis and lesions of the biliary tract in chronic pancreatitis The occurrence of jaundice in the course of chronic pancreatitis has been recognised since the 19th century" 2. But in the early papers it is uncertain whether the cases were due to acute, acute relapsing, or to chronic pan- creatitis, or even to pancreatic cancer associated with pancreatitis or benign ampullary stenosis. With the introduction of endoscopic retrograde cholangiopancreato- graphy (ERCP), there has been a renewed interest in the biliary complica- tions of chronic pancreatitis (CP). However, papers published recently by endoscopists have generally neglected the cholangiographic aspect of the lesions and are less precise and less well documented than papers published just after the second world war, following the introduction of manometric cholangiography3-5. Furthermore, the description of obstructive jaundice due to chronic pancreatitis, classical 20 years ago, seems to have been forgotten until the recent papers. Radiological aspects of bile ducts in chronic pancreatitis http://gut.bmj.com/ If one limits the subject to primary diseases of the pancreas, particularly chronic calcifying pancreatitis (CCP)6, excluding chronic pancreatitis secondary to benign ampullary stenosis7, cancer obstructing the main pancreatic duct8 9 and acute relapsing pancreatitis secondary to gallstones'0 radiological aspect of the main bile duct" is type I the most.common on September 25, 2021 by guest. Protected copyright. choledocus (Figure). This description has been repeatedly confirmed'2"13. It is a long stenosis of the intra- or retropancreatic part of the main bile duct.
    [Show full text]
  • Bile Duct Cancer Causes, Risk Factors, and Prevention Risk Factors
    cancer.org | 1.800.227.2345 Bile Duct Cancer Causes, Risk Factors, and Prevention Risk Factors A risk factor is anything that affects your chance of getting a disease such as cancer. Learn more about the risk factors for bile duct cancer. ● Bile Duct Risk Factors ● What Causes Bile Duct Cancer? Prevention There's no way to completely prevent cancer. But there are things you can do that might help lower your risk. Learn more. ● Can Bile Duct Cancer Be Prevented? Bile Duct Risk Factors A risk factor is anything that affects your chance of getting a disease like cancer. Different cancers have different risk factors. Some risk factors, like smoking, can be changed. Others, like a person’s age or family history, can’t be changed. But having a risk factor, or even many risk factors, does not mean that a person will get 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 the disease. And many people who get the disease have few or no known risk factors. Researchers have found some risk factors that make a person more likely to develop bile duct cancer. Certain diseases of the liver or bile ducts People who have chronic (long-standing) inflammation of the bile ducts have an increased risk of developing bile duct cancer. Certain conditions of the liver or bile ducts can cause this, these include: ● Primary sclerosing cholangitis (PSC), a condition in which inflammation of the bile ducts (cholangitis) leads to the formation of scar tissue (sclerosis). People with PSC have an increased risk of bile duct cancer.
    [Show full text]
  • Nomina Histologica Veterinaria, First Edition
    NOMINA HISTOLOGICA VETERINARIA Submitted by the International Committee on Veterinary Histological Nomenclature (ICVHN) to the World Association of Veterinary Anatomists Published on the website of the World Association of Veterinary Anatomists www.wava-amav.org 2017 CONTENTS Introduction i Principles of term construction in N.H.V. iii Cytologia – Cytology 1 Textus epithelialis – Epithelial tissue 10 Textus connectivus – Connective tissue 13 Sanguis et Lympha – Blood and Lymph 17 Textus muscularis – Muscle tissue 19 Textus nervosus – Nerve tissue 20 Splanchnologia – Viscera 23 Systema digestorium – Digestive system 24 Systema respiratorium – Respiratory system 32 Systema urinarium – Urinary system 35 Organa genitalia masculina – Male genital system 38 Organa genitalia feminina – Female genital system 42 Systema endocrinum – Endocrine system 45 Systema cardiovasculare et lymphaticum [Angiologia] – Cardiovascular and lymphatic system 47 Systema nervosum – Nervous system 52 Receptores sensorii et Organa sensuum – Sensory receptors and Sense organs 58 Integumentum – Integument 64 INTRODUCTION The preparations leading to the publication of the present first edition of the Nomina Histologica Veterinaria has a long history spanning more than 50 years. Under the auspices of the World Association of Veterinary Anatomists (W.A.V.A.), the International Committee on Veterinary Anatomical Nomenclature (I.C.V.A.N.) appointed in Giessen, 1965, a Subcommittee on Histology and Embryology which started a working relation with the Subcommittee on Histology of the former International Anatomical Nomenclature Committee. In Mexico City, 1971, this Subcommittee presented a document entitled Nomina Histologica Veterinaria: A Working Draft as a basis for the continued work of the newly-appointed Subcommittee on Histological Nomenclature. This resulted in the editing of the Nomina Histologica Veterinaria: A Working Draft II (Toulouse, 1974), followed by preparations for publication of a Nomina Histologica Veterinaria.
    [Show full text]
  • Guideline for the Evaluation of Cholestatic Jaundice
    CLINICAL GUIDELINES Guideline for the Evaluation of Cholestatic Jaundice in Infants: Joint Recommendations of the North American Society for Pediatric Gastroenterology, Hepatology, and Nutrition and the European Society for Pediatric Gastroenterology, Hepatology, and Nutrition ÃRima Fawaz, yUlrich Baumann, zUdeme Ekong, §Bjo¨rn Fischler, jjNedim Hadzic, ôCara L. Mack, #Vale´rie A. McLin, ÃÃJean P. Molleston, yyEzequiel Neimark, zzVicky L. Ng, and §§Saul J. Karpen ABSTRACT Cholestatic jaundice in infancy affects approximately 1 in every 2500 term PREAMBLE infants and is infrequently recognized by primary providers in the setting of holestatic jaundice in infancy is an uncommon but poten- physiologic jaundice. Cholestatic jaundice is always pathologic and indicates tially serious problem that indicates hepatobiliary dysfunc- hepatobiliary dysfunction. Early detection by the primary care physician and tion.C Early detection of cholestatic jaundice by the primary care timely referrals to the pediatric gastroenterologist/hepatologist are important physician and timely, accurate diagnosis by the pediatric gastro- contributors to optimal treatment and prognosis. The most common causes of enterologist are important for successful treatment and an optimal cholestatic jaundice in the first months of life are biliary atresia (25%–40%) prognosis. The Cholestasis Guideline Committee consisted of 11 followed by an expanding list of monogenic disorders (25%), along with many members of 2 professional societies: the North American Society unknown or multifactorial (eg, parenteral nutrition-related) causes, each of for Gastroenterology, Hepatology and Nutrition, and the European which may have time-sensitive and distinct treatment plans. Thus, these Society for Gastroenterology, Hepatology and Nutrition. This guidelines can have an essential role for the evaluation of neonatal cholestasis committee has responded to a need in pediatrics and developed to optimize care.
    [Show full text]
  • A Rare Case of Esophageal Metastasis from Pancreatic Ductal Adenocarcinoma: a Case Report and Literature Review
    www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 59), pp: 100942-100950 Case Report A rare case of esophageal metastasis from pancreatic ductal adenocarcinoma: a case report and literature review Lauren M. Rosati1,*, Megan N. Kummerlowe1,*, Justin Poling2, Amy Hacker-Prietz1, Amol K. Narang1, Eun J. Shin3, Dung T. Le4, Elliot K. Fishman5, Ralph H. Hruban2, Stephen C. Yang6, Matthew J. Weiss6 and Joseph M. Herman1,7 1 Department of Radiation Oncology & Molecular Radiation Sciences, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 2 Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 3 Department of Gastroenterology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 4 Department of Oncology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 5 Department of Radiology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 6 Department of Surgery, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA 7 Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA * These authors have contributed equally to this manuscript Correspondence to: Joseph M. Herman, email: [email protected] Keywords: pancreatic cancer, pancreatic ductal adenocarcinoma, metastatic, esophagus, esophageal metastasis Received: April 28, 2017 Accepted: May 20, 2017 Published: June 12, 2017 Copyright: Rosati et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
    [Show full text]
  • Normal Pancreatic Function 1. What Are the Functions of the Pancreas?
    Normal Pancreatic Function Stephen J. Pandol Cedars-Sinai Medical Center and Department of Veterans Affairs Los Angeles, California USA [email protected] Version 1.0, June 13, 2015 [DOI: 10.3998/panc.2015.17] 1. What are the functions of the This chapter presents processes underlying the functions of the exocrine pancreas with pancreas? references to how specific abnormalities of the The pancreas has both exocrine and endocrine pancreas can lead to disease states. function. This chapter is devoted to the exocrine functions of the pancreas. The exocrine function 2. Where is the pancreas located? is devoted to secretion of digestive enzymes, ions and water into the intestine of the gastrointestinal The illustration in Figure 1 demonstrates the (GI) tract. The digestive enzymes are necessary anatomical relationships between the pancreas for converting a meal into molecules that can be and organs surrounding it in the abdomen. The absorbed across the surface lining of the GI tract regions of the pancreas are the head, body, tail into the body. Of note, there are digestive and uncinate process (Figure 2). The distal end enzymes secreted by our salivary glands, of the common bile duct passes through the head stomach and surface epithelium of the GI tract of the pancreas and joins the pancreatic duct as it that also contribute to digestion of a meal. enters the intestine (Figure 2). Because the bile However, the exocrine pancreas is necessary for duct passes through the pancreas before entering most of the digestion of a meal and without it the intestine, diseases of the pancreas such as a there is a substantial loss of digestion that results cancer at the head of the pancreas or swelling in malnutrition.
    [Show full text]
  • Biliary Tract Cancer*
    Biliary Tract Cancer* What is Biliary Tract Cancer*? Let us answer some of your questions. * Cholangiocarcinoma (bile duct cancer) * Gallbladder cancer * Ampullary cancer ESMO Patient Guide Series based on the ESMO Clinical Practice Guidelines esmo.org Biliary tract cancer Biliary tract cancer* An ESMO guide for patients Patient information based on ESMO Clinical Practice Guidelines This guide has been prepared to help you, as well as your friends, family and caregivers, better understand biliary tract cancer and its treatment. It contains information on the causes of the disease and how it is diagnosed, up-to- date guidance on the types of treatments that may be available and any possible side effects of treatment. The medical information described in this document is based on the ESMO Clinical Practice Guideline for biliary tract cancer, which is designed to help clinicians with the diagnosis and management of biliary tract cancer. All ESMO Clinical Practice Guidelines are prepared and reviewed by leading experts using evidence gained from the latest clinical trials, research and expert opinion. The information included in this guide is not intended as a replacement for your doctor’s advice. Your doctor knows your full medical history and will help guide you regarding the best treatment for you. *Cholangiocarcinoma (bile duct cancer), gallbladder cancer and ampullary cancer. Words highlighted in colour are defined in the glossary at the end of the document. This guide has been developed and reviewed by: Representatives of the European
    [Show full text]
  • Cystic Duct Cholangiography Leo Chaikof
    Henry Ford Hospital Medical Journal Volume 22 Number 3 Laurence S. Fallis, M.D. Commemorative Article 7 Issue 9-1974 Cystic Duct Cholangiography Leo Chaikof T. L. Friedlich R. A. Affifi H. Weizel Follow this and additional works at: https://scholarlycommons.henryford.com/hfhmedjournal Part of the Life Sciences Commons, Medical Specialties Commons, and the Public Health Commons Recommended Citation Chaikof, Leo; Friedlich, T. L.; Affifi, R. A.; and Weizel, H. (1974) "Cystic Duct Cholangiography," Henry Ford Hospital Medical Journal : Vol. 22 : No. 3 , 129-136. Available at: https://scholarlycommons.henryford.com/hfhmedjournal/vol22/iss3/7 This Article is brought to you for free and open access by Henry Ford Health System Scholarly Commons. It has been accepted for inclusion in Henry Ford Hospital Medical Journal by an authorized editor of Henry Ford Health System Scholarly Commons. Henry Ford Hosp. Med. Journal Vol. 22, No. 3, 1974 Cystic Duct Cholangiography Leo Chaikof, MD,* T.L. Friedlich, MD, R.A. Affifi, MD and H. Weizel, MD ALTHOUGH operative cholangiog­ raphy was first used in 1932 by Mirizzi,^'^ it is still not done routinely as part of the surgical procedure in biliary tract opera­ tions. According to Jolly, Baker et al,^ only 18% of members of the American Surgical Association use it routinely. De­ spite a great deal of discussion pro and con in the literature,^'" it appears that, if A series of 837 cystic duct cholangiograms the frequency of common duct explora­ has been reviewed. The technique is simple and safe to carry out. It is not time consuming tion can be reduced, certainly its as­ and does not require any unusual equipment.
    [Show full text]
  • Sphincter of Oddi Dysfunction: Introduction
    Sphincter of Oddi Dysfunction: Introduction Sphincter of Oddi dysfunction refers to structural or functional disorders involving the biliary sphincter that may result in impedance of bile and pancreatic juice flow. Up to 20% of patients with continued pain after cholecystectomy and 10–20% of patients with idiopathic recurrent pancreatitis may suffer from sphincter of Oddi dysfunction. This condition is more prevalent among middle-aged women for unclear reasons Figure 1. Location of the sphincter of Oddi in the body. What is Sphincter of Oddi Dysfunction? The sphincter of Oddi has three major functions: 1) regulation of bile and pancreatic flow into the duodenum, 2) diversion of hepatic bile into the gallbladder, and 3) the prevention of reflux of duodenal contents into the pancreaticobiliary tract. With the ingestion of a meal, the gallbladder contracts and there is a simultaneous decrease in the resistance in the sphincter of Oddi zone. The sphincter of Oddi consists of circular and longitudinal smooth muscle fibers surrounding a variable length of the distal bile and pancreatic duct. There are three discrete areas of muscle thickness, or mini sphincters: the sphincter papillae, the sphincter pancreaticus, and the sphincter choledochus (Figure 2). Figure 2. Mini sphincters, or discrete areas of muscle, comprise the sphincter of Oddi. The major physiologic role of the sphincter is the regulation of the flow of bile and pancreatic juice. Cholecystokinin (CCK) and nitrates decrease the resistance offered by the sphincter. Laboratory studies observing the effects of numerous peptides, hormones, and medications on the sphincter have suggested a multifactor control mechanism for the sphincter of Oddi.
    [Show full text]