Annex IX Development of the HAB Reference Database
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Low Carbon Development Roadmap for Jilin City Jilin for Roadmap Development Carbon Low Roadmap for Jilin City
Low Carbon Development Low Carbon Development Roadmap for Jilin City Roadmap for Jilin City Chatham House, Chinese Academy of Social Sciences, Energy Research Institute, Jilin University, E3G March 2010 Chatham House, 10 St James Square, London SW1Y 4LE T: +44 (0)20 7957 5700 E: [email protected] F: +44 (0)20 7957 5710 www.chathamhouse.org.uk Charity Registration Number: 208223 Low Carbon Development Roadmap for Jilin City Chatham House, Chinese Academy of Social Sciences, Energy Research Institute, Jilin University, E3G March 2010 © Royal Institute of International Affairs, 2010 Chatham House (the Royal Institute of International Affairs) is an independent body which promotes the rigorous study of international questions and does not express opinion of its own. The opinions expressed in this publication are the responsibility of the authors. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical including photocopying, recording or any information storage or retrieval system, without the prior written permission of the copyright holder. Please direct all enquiries to the publishers. Chatham House 10 St James’s Square London, SW1Y 4LE T: +44 (0) 20 7957 5700 F: +44 (0) 20 7957 5710 www.chathamhouse.org.uk Charity Registration No. 208223 ISBN 978 1 86203 230 9 A catalogue record for this title is available from the British Library. Cover image: factory on the Songhua River, Jilin. Reproduced with kind permission from original photo, © Christian Als, -
Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan
International Journal of Environmental Research and Public Health Article Polycyclic Aromatic Hydrocarbons in the Estuaries of Two Rivers of the Sea of Japan Tatiana Chizhova 1,*, Yuliya Koudryashova 1, Natalia Prokuda 2, Pavel Tishchenko 1 and Kazuichi Hayakawa 3 1 V.I.Il’ichev Pacific Oceanological Institute FEB RAS, 43 Baltiyskaya Str., Vladivostok 690041, Russia; [email protected] (Y.K.); [email protected] (P.T.) 2 Institute of Chemistry FEB RAS, 159 Prospect 100-let Vladivostoku, Vladivostok 690022, Russia; [email protected] 3 Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa 920-1192, Japan; [email protected] * Correspondence: [email protected]; Tel.: +7-914-332-40-50 Received: 11 June 2020; Accepted: 16 August 2020; Published: 19 August 2020 Abstract: The seasonal polycyclic aromatic hydrocarbon (PAH) variability was studied in the estuaries of the Partizanskaya River and the Tumen River, the largest transboundary river of the Sea of Japan. The PAH levels were generally low over the year; however, the PAH concentrations increased according to one of two seasonal trends, which were either an increase in PAHs during the cold period, influenced by heating, or a PAH enrichment during the wet period due to higher run-off inputs. The major PAH source was the combustion of fossil fuels and biomass, but a minor input of petrogenic PAHs in some seasons was observed. Higher PAH concentrations were observed in fresh and brackish water compared to the saline waters in the Tumen River estuary, while the PAH concentrations in both types of water were similar in the Partizanskaya River estuary, suggesting different pathways of PAH input into the estuaries. -
Spatial Distribution of Nematode Communities Along the Salinity Gradient in the Two Estuaries of the Sea of Japan
Russian Journal of Nematology, 2019, 27 (1), 1 – 12 Spatial distribution of nematode communities along the salinity gradient in the two estuaries of the Sea of Japan Alexandra A. Milovankina and Natalia P. Fadeeva Far Eastern Federal University, Sukhanov Street 8, 690950, Vladivostok, Russia e-mail: [email protected] Accepted for publication 15 May 2019 Summary. Spatial distribution and structure of nematode assemblages in two estuaries (long lowland Razdolnaya and mountain Sukhodol rivers, the Sea of Japan) were investigated. Sampling was conducted from freshwater to marine benthic habitats. The meiobenthic community was strongly dominated by nematodes. In both estuaries, the spatial distribution of nematode density, composition and feeding types related to the salinity gradient. From a total of 57 nematode species, 42 and 40 nematode species were identified in each estuary, respectively. The changes in the taxonomic structure of nematode fauna were found along the salinity gradient. Differences in nematodes community observed along each estuarine gradient were much lower than between the two estuaries. Only four species Anoplostoma cuticularia, Axonolaimus seticaudatus, Cyatholaimus sp. and Parodontophora timmica, were present in all sampling zones of both estuaries. Most of the recorded species were euryhaline, described previously in shallow coastal bays; only five freshwater species have been described previously from the freshwater habitat of Primorsky Krai. Key words: community structure, euryhaline nematodes, free-living nematodes, Razdolnaya River estuary, Sukhodol River estuary. Free-living nematodes are an important are available from several estuaries (Fadeeva, 2005; component of both marine and estuarine ecosystems Shornikov & Zenina, 2014; Milovankina et al., (Giere, 2009; Mokievsky, 2009). It has been shown 2018). -
U.S. Geological Survey Open-File Report 96-513-B
Significant Placer Districts of Russian Far East, Alaska, and the Canadian Cordillera District No. District Name Major Commodities Grade and Tonnage Latitude Deposit Type Minor Commodities Longitude Summary Description References L54-01 Il'inka River Au Size: Small. 47°58'N Placer Au 142°16'E Gold is fine, 0.2 to 0.3 mm. Heavy-mineral concentrate consists of chromite, epidote, and garnet. Small gold-cinnabar occurrences are presumably sources for the placer. Deposit occurs along the Il'inka River near where it discharges into Tatar Strait. Alluvium of the first (lowest) floodplain terrace is gold-bearing. V.D. Sidorenko , 1977. M10-01 Bridge River Camp Au Production of 171 kg fine Au. 50°50'N Placer Au Years of Production: 122°50'W 1902-1990. Fineness: 812-864 Gold occurs in gravels of ancient river channels, and reworked gravels in modern river bed and banks. The bedrock to the gravels is Shulaps serpentinite and Bridge River slate. The source of the gold may be quartz-pyrite-gold veins that are hosted in Permo-Triassic diorite, gabbro and greenstone within the Caldwallader Break, including Bralorne and Pioneer mines. Primary mineralization is associated with Late Cretaceous porphyry dikes. Bridge River area was worked for placer gold as early as 1860, but production figures were included with Fraser River figures until 1902. B.C. Minfile, 1991. M10-02 Fraser River Au Production of 5689 kg fine Au. 53°40'N Placer Au, Pt, Ir Years of Production: 122°43'W 1857-1990. Fineness: 855-892 Gold first found on a tributary of the Fraser River in 1857. -
Book of Abstracts
PICES Seventeenth Annual Meeting Beyond observations to achieving understanding and forecasting in a changing North Pacific: Forward to the FUTURE North Pacific Marine Science Organization October 24 – November 2, 2008 Dalian, People’s Republic of China Contents Notes for Guidance ...................................................................................................................................... v Floor Plan for the Kempinski Hotel......................................................................................................... vi Keynote Lecture.........................................................................................................................................vii Schedules and Abstracts S1 Science Board Symposium Beyond observations to achieving understanding and forecasting in a changing North Pacific: Forward to the FUTURE......................................................................................................................... 1 S2 MONITOR/TCODE/BIO Topic Session Linking biology, chemistry, and physics in our observational systems – Present status and FUTURE needs .............................................................................................................................. 15 S3 MEQ Topic Session Species succession and long-term data set analysis pertaining to harmful algal blooms...................... 33 S4 FIS Topic Session Institutions and ecosystem-based approaches for sustainable fisheries under fluctuating marine resources .............................................................................................................................................. -
EAAFP MOP8 Agenda Documents Version 4
East Asian – Australasian Flyway Partnership 8th Meeting of Partners, Kushiro, Japan 16-21 January 2015 AGENDA DOCUMENTS VERSION 4 Please note the following changes from the Agenda Documents Version 3. Doc 3.2.1 Partner Report: China, Cambodia, WWF Doc 3.3.1 Task Force Report: SBS TF Doc 6.1.2 Partner Workplan: China Doc 5.2.7 Shorebird Working Group Informal meeting (16:00 – 16:50 on Monday 19 Jan) NOTES ON STATUS OF DOCUMENTS This is the first version of the Agenda Documents, circulated to Partners and to registered participants for the 8th Meeting of Partners (MoP8) before the Meeting date. It is also available on the MoP8 web page at http://www.eaaflyway.net/mop-8/. Additional material may be provided at registration or during the Meeting. ANNEX There are additional supporting documents for some agenda items. These supporting documents are attached to the same email as separate documents. • Annex. Doc 3.3.1.2_Scientific Task Force on Avian Influenza and Wild Birds statement (19th December 2014) • Annex. Doc 3.3.2.1_Input of Asian Waterbird Census and Waterbird Population Estimates • Annex. Doc 4.3.3_Review International Policy Framework EAAF • Annex. Doc 4.5.2_CMS COP PROGRAMME OF WORK ON MIGRATORY BIRDS AND FLYWAYS (Annex 1 to Resolution 11.14) • Annex. Doc 4.5.4_CAFF Strategy Series Report No. 5, May 2014_Arctic Migratory Birds Initiative (AMBI) • Annex. Doc 5.1.5 _FAO EMPRES animal health 360 No.44(2)/2014 INSTRUCTIONS In order to save paper and reduce impacts on our environment, no paper copies of the final agenda document for the MoP8 will be printed or provided. -
Regional Overview Case Studies of River
NOWPAP POMRAC Northwest Pacific Action Plan Pollution Monitoring Regional Activity Centre 7 Radio St., Vladivostok 690041, Russian Federation Tel.: 7-4232-313071, Fax: 7-4232-312833 Website: http://www.pomrac.dvo.ru http://pomrac.nowpap.org REGIONAL OVErvIEW Case studies of river and direct inputs of contaminants with focus on the anthropogenic and natural changes in the selected areas of the NOWPAP region POMRAC Technical Report # 10 POMRAC, Vladivostok, Russian Federation 2009 POMRAC Technical Report No 6 Northwest Pacific Action Plan Pollution Monitoring Regional Activity Centre 7 Radio St., Vladivostok 690041, Russian Federation Tel.: 7-4232-313071, Fax: 7-4232-312833 Website: http://www.pomrac.dvo.ru http://pomrac.nowpap.org REGIONAL OVErvIEW Case studies of river and direct inputs of contaminants with focus on the anthropogenic and natural changes in the selected areas of the NOWPAP region POMRAC, Vladivostok, Russian Federation 2011 POMRAC Technical Report # 10 3 Pollution Monitoring Regional Activity Center on UNEP Action Plan for the Protection, Management and Development of the Marine and Coastal Environment of the Northwest Pacific Region (NOWPAP POMRAC) Региональный Центр по мониторингу загрязнения окружающей среды Плана действий ЮНЕП по охране, управлению и развитию морской и прибрежной среды в регионе Северо-Западной Пацифики (НОУПАП ПОМРАК) Pacific Geographical Institute, Far Eastern Branch of the RussianAcademy of Science Тихоокеанский институт географии Дальневосточного отделения Российской Академии наук Regional Overview: Case studies of river and direct inputs of contaminants with focus on the anthropogenic and natural changes in the selected areas of the NOWPAP region/ Author V.M.Shulkin. Ed. By A.N.Kachur. – Vladivostok: Dalnauka, 2011. -
1 Testimony Before the U.S.-China Economic and Security Review
Date of the hearing: January 26, 2012. Title of the hearing: China’s Global Quest for Resources and Implications for the United States Name of panelist: Brahma Chellaney Panelist’s title and organization: Professor of Strategic Studies, Center for Policy Research, New Delhi. Testimony before the U.S.-China Economic and Security Review Commission China has pursued an aggressive strategy to secure (and even lock up) supplies of strategic resources like water, energy and mineral ores. Gaining access to or control of resources has been a key driver of its foreign and domestic policies. China, with the world’s most resource-hungry economy, is pursuing the world’s most-assertive policies to gain control of important resources. Much of the international attention on China’s resource strategy has focused on its scramble to secure supplies of hydrocarbons and mineral ores. Such attention is justified by the fact that China is seeking to conserve its own mineral resources and rely on imports. For example, China, a major steel consumer, has substantial reserves of iron ore, yet it has banned exports of this commodity. It actually encourages its own steel producers to import iron ore. China, in fact, has emerged as the largest importer of iron ore, accounting for a third of all global imports. India, in contrast, remains a major exporter of iron ore to China, although the latter has iron-ore deposits more than two-and-half times that of India. But while buying up mineral resources in foreign lands, China now supplies, according to one estimate, about 95 per cent of the world’s consumption of rare earths — a precious group of minerals vital to high- technology industry, such as miniaturized electronics, computer disk drives, display screens, missile guidance, pollution-control catalysts, and advanced materials. -
Appendix 6.2: Responses to Transboundary Environmental Challenges Within the Europe and Central Asia Region (Chapter 6, Section 6.3.3)
IPBES Regional Assessment Report on Biodiversity and Ecosystem Services Appendix 6.2 for Europe and Central Asia Appendix 6.2: Responses to transboundary environmental challenges within the Europe and Central Asia region (Chapter 6, Section 6.3.3) Table 6.2.1 shows a number of bilateral agreements between Mongolia, Russia and China related to water management and nature conservation relevant to transboundary Amur River basin. Table 6.2.1: Bilateral water and nature conservation agreements between Mongolia, Russia and China Title Description Sino-Soviet Agreement on Agreement between the USSR and China on joint research operations on 1956 development of “Grand planning and survey operations to prepare a scheme for the multi- Amur Scheme” purpose exploitation of the Argun River and the Upper Amur River. Sino-Russian Agreement Bilateral overview of developments planned by the water and energy 1986 on development of “Joint authorities of China and Russia led by the Song-Liao Water Resource Comprehensive Scheme Commission of China and Sovintervod Hydro-engineering Institute of for Water Management on USSR Water Resources Ministry. Amur and Argun Rivers” Mongolia-China – 1994 Agreement on Use and Agreement on the protection and utilization of transboundary waters Protection of including aquatic biota Transboundary Waters Russia-China Agreement Protects 25 fishes, two crustaceans, one turtle, one mollusk, three 1994 on protection of aquatic aquatic plants. Regulates size limits for fish, net mesh sizes and lengths, bio-resources in seasonal fishing bans, closure of waters to fishing, and permitted fishing transboundary Amur- and gear. Does not cover Argun river and Khanka Lake. Ussuri Rivers Agreement on Dauria Trilateral agreement was signed by China, Mongolia, and Russia to 1994 International Protected establish Dauria International Protected Area (DIPA) to protect globally Area important grasslands in the headwaters of the Amur-Heilong basin. -
Download This Article in PDF Format
E3S Web of Conferences 244, 01010 (2021) https://doi.org/10.1051/e3sconf/202124401010 EMMFT-2020 Localization of the organic matter production and degradation in two different estuaries Anna Vazhova1,* and Yury Zuenko1 1Pacific Branch of Russian Federal Research Institute of Fisheries and Oceanography (TINRO), Vladivostok, Russia Abstract. Physical and chemical processes related to primary production of the estuaries of two rivers with different water regime are considered with special attention to their spatial and seasonal variability. Both production and degradation of the organic matter are quantitatively evaluated on the data of non-conservative variation of dissolved inorganic phosphorus concentration in the process of the river water dilution. Contribution of recycling to the phosphorus balance and the estuarine waters productivity is estimated. The organic matter degradation prevailed in the internal part of both estuaries, but its production dominated in their external parts, with a tendency of production lowering and degradation strengthening from spring to autumn. Utilization of the re-mineralized phosphorus in the external estuaries increased their potential productivity by 20-50%, provided by the terrigenous flux with the river water. 1 Introduction Estuarine systems are the most productive natural ecosystems in the world. They house the highest phytoplankton and zooplankton concentrations, are important end points for freshwater runoff and pollution, and generally serve dense human settlements. The high biological productivity of estuaries is obviously largely supported through a permanent nutrient influx of terrestrial origin. Besides, recent studies highlight an importance of regenerated productivity entering to the estuarine ecosystems through destructive processes of organics (Sapozhnikov et al., 2018; Pettit et al., 2016). -
Биота И Среда Заповедных Территорий Issn 2618-6764 Научный Рецензируемый Журнал 2019, № 3 Журнал Основан В 2013 Году, Издаётся С 2014 Года
БИОТА И СРЕДА ЗАПОВЕДНЫХ ТЕРРИТОРИЙ ISSN 2618-6764 НАУЧНЫЙ РЕЦЕНЗИРУЕМЫЙ ЖУРНАЛ 2019, № 3 Журнал основан в 2013 году, издаётся с 2014 года. В 2014–2017 годах именовался «Биота и среда заповедников Дальнего Востока» (Biodiversity and Environment of Far East Reserves), ISSN 2227-149X. Учредители: Дальневосточное отделение Российской академии наук и Дальневосточный морской заповедник — филиал Национального научного центра морской биологии им. А. В. Жирмунского Дальневосточного отделения Российской академии наук. Редколлегия: главный редактор — Богатов Виктор Всеволодович, член-корр. РАН, д-р биол. наук, проф., Дальневосточное отделение РАН (ДВО РАН), Владивосток; зам. главного редактора — Дроздов Анатолий Леонидович, д-р биол. наук, проф., Национальный научный центр морской биологии им. А. В. Жирмунского ДВО РАН (ННЦМБ ДВО РАН), Владивосток; отв. секретарь редколлегии, и. о. зав редакцией — Тюрин Алексей Николаевич, канд. биол. наук, Дальне- восточный морской заповедник — филиал ННЦМБ ДВО РАН; Богачева Анна Вениаминовна, д-р биол. наук, Федеральный научный центр биоразнообразия наземной биоты Восточной Азии ДВО РАН (ФНЦ Биоразнообразия ДВО РАН), Владивосток; Боркин Лев Яковлевич, канд. биол. наук, Зоологический институт РАН (ЗИН РАН), Санкт-Петербург; Глущенко Юрий Николаевич, канд. биол. наук, проф., Дальневосточный федеральный университет (ДВФУ), филиал, Уссурийск; Дьякова Ольга Васильевна, д-р ист. наук, проф., Институт истории, археологии и этнографии народов Дальнего Востока ДВО РАН (ИИАЭ ДВО РАН), Владивосток; Ильин Игорь Николаевич, д-р биол. наук, Институт проблем экологии и эволюции им. А. Н. Северцова РАН, Москва; Прозорова Лариса Аркадьевна, канд. биол. наук, Федеральный научный центр биоразнообразия наземной биоты Восточной Азии ДВО РАН (ФНЦ Биоразнообразия ДВО РАН), Владивосток; Пушкарь Владимир Степанович, д-р геогр. наук, проф., Дальневосточный геологический институт ДВО РАН (ДВГИ ДВО РАН), Владивосток; Пшеничников Борис Фёдорович, д-р биол. -
Coal, Water, and Grasslands in the Three Norths
Coal, Water, and Grasslands in the Three Norths August 2019 The Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH a non-profit, federally owned enterprise, implementing international cooperation projects and measures in the field of sustainable development on behalf of the German Government, as well as other national and international clients. The German Energy Transition Expertise for China Project, which is funded and commissioned by the German Federal Ministry for Economic Affairs and Energy (BMWi), supports the sustainable development of the Chinese energy sector by transferring knowledge and experiences of German energy transition (Energiewende) experts to its partner organisation in China: the China National Renewable Energy Centre (CNREC), a Chinese think tank for advising the National Energy Administration (NEA) on renewable energy policies and the general process of energy transition. CNREC is a part of Energy Research Institute (ERI) of National Development and Reform Commission (NDRC). Contact: Anders Hove Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH China Tayuan Diplomatic Office Building 1-15-1 No. 14, Liangmahe Nanlu, Chaoyang District Beijing 100600 PRC [email protected] www.giz.de/china Table of Contents Executive summary 1 1. The Three Norths region features high water-stress, high coal use, and abundant grasslands 3 1.1 The Three Norths is China’s main base for coal production, coal power and coal chemicals 3 1.2 The Three Norths faces high water stress 6 1.3 Water consumption of the coal industry and irrigation of grassland relatively low 7 1.4 Grassland area and productivity showed several trends during 1980-2015 9 2.