RANGIFER Ruearcht Man Jument -Md Husbandry of Reindeer and Other Northern Unguutei

Total Page:16

File Type:pdf, Size:1020Kb

RANGIFER Ruearcht Man Jument -Md Husbandry of Reindeer and Other Northern Unguutei Ki ". mrir HTirciiu unn 1 1 AiJ^Uhi l'""rH nui. NjfWÉI RANGIFER Ruearcht Man jument -md Husbandry of Reindeer and other Northern UnguUtei Nd. 1-3 n lfHW - VOL XX Rangif er Published by. Nordisk Organ for Reinforskning (NOR) Nordic Council for Reindeer Research Pohjoismainen Porontutkimuselin Editor. Rolf Egil Haugerud Address: c/o NVH, Department of Arctic Veterinary Medicine Stakkevollvn. 23 B N-9292 Tromsø Norway e-mail: [email protected] Web address: www.rangifer.no Telephone: +47 77 69 48 10 Telefax: +47 77 69 49 11 Mobile telephone: +47 414 16 833 Bank account: 4760 56 92776 Postal account: 0801 2116358 Swift address: SNOWN022 Subscription prices: Ordinary subscription (2—4 issues/year), prices/year: 2000 Subscription runs until cancelled! Nordic countries NOK 160- Europe, surface mail NOK 175- Europe, air mail NOK 220- Overseas, surface mail NOK 200- Overseas, air mail NOK265- Student Nordic, surface NOK 100- Students elsewhere, surface NOK 100- Discount: Subscription agencies NOK 30- Back issues! (prices include postage and packing): Ordinary issues (> 3 years) NOK 30-each Ordinary issues (< 3 years) NOK 60 - each Proceedings of the Fifth International Reindeer/Caribou Symposium, Arvidsjaur 1988: NOK 350,-. (Subscribers to RANGIFER: NOK 250,-). Proceedings of the 6th North American Caribou Workshop, Prince George, B.C., 1994: NOK 200,-. Proceedings of the 7th North American Caribou Conference, Thunder Bay, Ontario, 1996: NOK 200,-. Other special issues NOK 165 - each Payment: Use credit card (VISA/Eurocard/Mastercard/Access) if possible. Add NOK 60 - to listed subscription and back issue prices to cover bank charges in Norway if using cheque payment or swift-address. ISSN 0333-256-X A/S Harstad Tidendes trykkeri RANGIFER Key note presentations 10th Arctic Ungulate Conference Conference Conference Organising Committee: Arnoldus Schytte Blix (Chairman), University of Tromsø Hans Kolbein Dahle (Sponsors and Finance), County Governor of Troms Monica Alterskjær Olsen (Technical committee), University of Tromsø Pål Vegar Storeheier (Post-conference tours), University of Tromsø Nicholas J. C. Tyler (Scientific programme) University of Tromsø Published by Nordic Council for Reindeer Research Tromsø, Norway 2000 RANGIFER Vol. 20 2000 No. 2-3 Contents Page Preface 56 Photograph of participants 57 (i) Individual level Haggarty, P. Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes 59 Hofmann, R. R. Functional and comparative digestive system anatomy of Arctic ungulates 71 Frölich, K. Viral diseases of northern ungulates 83 (ii) Population level van Oort, B. E. H., Tyler, N. J. C, Reierth, E. & Stokkan, K.-A. Biological rhythms in Arctic vertebrates 99 Syroechkovski, E. E. Wild and semi-domesticated reindeer in Russia: status, population dynamics and trends under the present social and economic conditions 113 Crittenden, P. Aspects of the ecology of mat-forming lichens 127 Behnke, R. Equilibrium and non-equilibrium models of livestock population dynamics in pastoral Africa: their relevance to Arctic grazing systems 141 (iii) Animals and man Anderson, D. Rangiferanà human interests 153 Oskal, N. On nature and reindeer luck 175 Statutes for Arctic Ungulate Society (AUS) 181 Information Dissertations 182 Rangifer, 20 (2-3), 2000 55 10th Arctic Ungulate Conference The 10th Arctic Ungulate Conference was organised by the Department of Arctic Biology and held at the University of Tromsø, Norway, 9-13 August 1999- The conference continued a series of nine conferences devoted to Arctic ungulates, including five International Reindeer/Caribou Symposia, two International Muskox Symposia and two Arctic Ungulate Conferences. Two hundred delegates from 14 countries attended and presented more than 150 scientific papers, making it one of the biggest Arctic Ungulate Conferences ever. The scientific and social programme as well as the abstracts have been published in Rangifer Report No. 4, 1999- In an important break with normal practice, keynote speakers included scientists of international reputation who do not normally work with Arctic ungulates. They were asked to review recent work in northern species/ecosystems thus providing the conference with novel criticism and new perpectives. Their papers are published in this volume. Delegates' papers will be published in later issues of Rangifer. The Conference also included a Circumpolar PhD-Network in Arctic Environmental Studies (CAES) work• shop: "Reindeer 2000", attended by 47 participants presenting 25 student contributions, 5 keynote lectures and 3 introductory speeches. A Rangifer Special Issue with workshop papers is planned for publication later in 2000. The Conference was sponsored by the Norwegian Reindeer Husbandry Development Fund, the Norwegian Reindeer Husbandry Research Council, the Nordic Council for Reindeer Research, the Norwegian State Bank of Agriculture, the University of Tromsø and the Roald Amundsen Centre for Arctic Research at the University of Tromsø. A meeting of representatives appointed by the different national delegations was held on 11 August 1999- A new Arctic Ungulate Society was inaugurated. The statutes of the Society are appended. In its first meeting, the Executive committee of the Arctic Ungulate Society agreed that the next Conference will be held in Finland and the Finnish representative later informed that the venue for the next meeting is likely to be Saariselkâ in northern Finland. Arnoldus Schytte Blix, Chairman of the Organising Committee 56 Rangifer, 20 (2-3), 2000 10th Arctic Ungulate Conference Ungulate / University of Tromsø, 9-13 August 1999 Conference Rangifer, 20 (2-3), 2000 58 RangiSer, 20 (2-3), 2000 The Tenth Arctic Ungulate Conference, 9-13 August 1999, Tromsø, Norway. Quantifying the free living energy exchanges of Arctic ungulates with stable isotopes Paul Haggarty The Rowett Research Institute, Greenburn Road, Bucksburn, Aberdeen AB21 9SB, Scotland, UK ([email protected]). Abstract: When natural diets meet an animal's requirement for energy, other essential nutrients will usually be supplied in amounts at least sufficient for survival. Knowledge of the energy requirements of free ranging species under typical conditions are important in assessing both their nutritional needs and their ecological impact. The doubly labelled water (DLW) method is currently the most promising objective field methodology for estimating free living energy expenditure but expenditure is only equal to the energy requirement when an animal is in energy balance. Reproduction and seasonal cycles of fat deposition and utilization represent significant components of the energy bud• get of arctic ungulates but the information gained in the course of a typical DLW study may be used to estimate processes such as milk output and fat storage and mobilization in order to predict requirements from expenditure. The DLW method has been exhaustively validated under highly controlled conditions and the introduction of inno• vations such as faecal sampling for the estimation of body water isotopic enrichment, the availability of appropriate cor• rection factors and stoichiometrics for known sources of error, and iterative calculation of unknown parameters, have produced a methodology suitable for use in truly free ranging species. The few studies carried out so far in arctic ungu• lates indicate that previous predictions have generally underestimated the true level of expenditure, that there is con• siderable between animal variation in the level of expenditure and that this is largely determined by physical activity. The disadvantages of the DLW methodology are that it remains expensive and the isotope analysis is technically demanding. Furthermore, although DLW can provide an accurate value for free living energy expenditure, it is often important to have information on the individual components of expenditure, for example the relative contribution of physical activity and thermoregulatory thermogenesis, in order to interpret the values for overall expenditure. For these reasons the most valuable use of the DLW method in the field may be to validate factorial models and other approaches so that they may be used with confidence. Additional important information on the energy exchanges of free ranging animals may be obtained from other stable isotope methodologies. In addition to the use of the isotopes 2H and lsO in the DLW method, natural variations in the abundance of "C and 15N in the arctic environment may be exploited to study diet selection in truly free living arctic ungulates. Rangifer, 20 (2-3): 59-69 Introduction calorimetry are of limited use as they impose a sig• When natural diets meet an animal's requirement nificant degree of restriction on 'normal' activity for energy, other essential nutrients such as protein, which makes up a significant portion of the energy fats minerals and vitamins will usually be supplied budget of free ranging species. Furthermore, the in amounts at least sufficient for survival (Kay et al., harshness of the arctic environment also influences 1984). Consequently, energy is often the most expenditure in ways which are difficult to model; important single factor in the nutrition of an animal these include the effects of temperature and wind and knowledge of energy expenditure under typical chill, and the additional energy expenditure which free-living conditions are important in assessing occurs as a consequence of foraging when the vege• both energy requirements and the ecological impact tation
Recommended publications
  • Incorporating Human Impacts Into Habitat Suitability Models
    INCORPORATING HUMAN IMPACTS INTO HABITAT SUITABILITY MODELS: A LITERATURE REVIEW Report Prepared for The Taku River Tlingit First Nation By Jean L. Polfus Research Assistant Round River Conservation Studies April 21, 2008 INCORPORATING HUMAN IMPACTS INTO HABITAT SUITABILITY MODELS Polfus Acknowledgments A diversity of people have assisted with the development and refinement of this report, the need for which was identified in collaborative discussions on habitat modeling between Taku River Tlingit Land and Resources Department and the British Columbia Integrated Land Management Bureau. I wish to acknowledge Kim Heinemeyer, Norm McLean and Kerrith McKay for initiating the project. The format and design of this report benefited from the influence of a literature review of the effects of energy development on ungulates by Mark Hebblewhite, who also provided guidance and advice. I thank the Heb Lab for general discussion and ideas about habitat suitability models. Kim Heinemeyer has provided helpful feedback and suggestions on earlier versions of the report. Please cite as: Polfus, J. L. 2008. Incorporating Human Impacts into Habitat Suitability Models: A Literature Review. Report prepared for the Taku River Tlingit First Nation. Cover photos: woodland caribou © Matt Grant, grizzly © Kevin Bernier, mountain goats © Sandra Leidholdt Page 2 INCORPORATING HUMAN IMPACTS INTO HABITAT SUITABILITY MODELS Polfus Table of Contents Acknowledgments..............................................................................................................
    [Show full text]
  • Assessment of Alaska Reindeer Populations and Range Conditions
    Paper presented at The First Arctic Ungulate Conference, Nuuk, Greenland, 3-8. September, 1991. Assessment of Alaska reindeer populations and range conditions J. D. Swanson1 and M. H. W. Barker2 1 USDA Soil Conservation Service, 201 E. 9th Avenue, Suite 300, Anchorage, Alaska 99501, U.S.A. 2 Department of Biological Sciences, University of Alaska Anchorage, Alaska 99508, U.S.A. Abstract: Populations of reindeer (Rangifer tarandus) have fluctated greatly since their introduction to Alaska in 1891. In the 1930s, reported numbers exceeded 600,000. Presently, 38,000 reindeer graze 6.2 million ha of rangeland and woodland in Western Alaska (from 66°54'N to 52°07'N latitude). Condition of winter range producing fruticose lichens (Cladina rangiferina, Cladina arbuscula, Cladina stellaris, Cetraria cucullata, Cetra- ria islandica) is of major concern. Monitoring programs have been established for vegetation, fire, reindeer and wildlife. Reindeer have overgrazed lichen resources on some Bering Sea Islands. Wildfires have had the greatest impact on lichen range depletion on the mainland. Overgrazing has been a problem in localized areas. Moose (AIces alces) and muskox (Ovibos moschatus) rarely contribute to major lichen depletion. 60-80% of the mainland and 5-30% of most island winter lichen ranges are presently estimated to be in good to excel• lent ecological condition. Procedures for assessing condition of the lichen ranges are being further refined. Keywords: Alaska, winter, pastures, lichens, population dynamics, sampling techniques Rangifer, 12 (1): 33-43 Introduction Siberian reindeer herders were originally Sheldon Jackson, General Agent of Education brought to instruct local natives in reindeer in Alaska, toured the northern coasts of Siberia husbandry and herding techniques (Brickey, and Alaska in 1890.
    [Show full text]
  • Transitions in Herd Management of Semi-Domesticated Reindeer in Northern Finland
    Ann. Zool. Fennici 45: 81–101 ISSN 0003-455X (print), ISSN 1797-2450 (online) Helsinki 29 April 2008 © Finnish Zoological and Botanical Publishing Board 2008 Transitions in herd management of semi-domesticated reindeer in northern Finland Timo P. Helle1 & Lotta M. Jaakkola2 1) Finnish Forest Research Institute, Rovaniemi Research Unit, P.O. Box 16, FI-96301 Rovaniemi, Finland (e-mail: [email protected]) 2) Environmental sciences, P.O. Box 35, FI-40014 University of Jyväskylä, Finland Received 9 Jan. 2007, revised version received 5 Nov. 2007, accepted 2 Mar 2007 Helle, T. P. & Jaakkola, L. M. 2008: Transitions in herd management of semi-domesticated rein- deer in northern Finland. — Ann. Zool. Fennici 45: 81–101. In northern Finland, reindeer-herd management has experienced two major transitions: extensification of intensive herding, and development of supplementary/corral feeding in winter. The transitions were studied in six herding associations in different parts of the Finnish reindeer management area. It was suggested that intensive herding turns into more extensive forms as the reasons for intensive herding (predation, reindeer dis- appearing to foreign areas, protection of agricultural fields) gradually ceased to exist. The results of the study, based on interviews of elderly reindeer herders, were variable. In the three southern areas intensive herding changed to the free ranging system at the latest during WWII, whilst in the northern areas intensive herding was replaced by extensive herding with the aid of snowmobiles in the 1960s. In the southern herding associations, especially, supplementary/corral feeding in winter was considered neces- sary, from the 1970s onwards, to compensate for the loss of arboreal lichens associated with forest regeneration.
    [Show full text]
  • Colonizing the High Arctic: Mitochondrial DNA Reveals Common Origin of Eurasian Archipelagic Reindeer (Rangifer Tarandus)
    RESEARCH ARTICLE Colonizing the High Arctic: Mitochondrial DNA Reveals Common Origin of Eurasian Archipelagic Reindeer (Rangifer tarandus) Kjersti S. Kvie1,2*, Jan Heggenes1, David G. Anderson3, Marina V. Kholodova4, Taras Sipko4, Ivan Mizin5, Knut H. Røed2 1 Department of Environmental Studies, University College of Southeast Norway, Bø in Telemark, Norway, 2 Department of Basic Sciences and Aquatic Medicine, Norwegian University of Life Sciences, Oslo, Norway, 3 Department of Anthropology, University of Aberdeen, Aberdeen, Scotland, 4 A.N. Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia, 5 Russian Arctic National Park, Arkhangelsk, Russia a11111 * [email protected] Abstract In light of current debates on global climate change it has become important to know more on how large, roaming species have responded to environmental change in the past. Using OPEN ACCESS the highly variable mitochondrial control region, we revisit theories of Rangifer colonization Citation: Kvie KS, Heggenes J, Anderson DG, and propose that the High Arctic archipelagos of Svalbard, Franz Josef Land, and Novaia Kholodova MV, Sipko T, Mizin I, et al. (2016) Zemlia were colonized by reindeer from the Eurasian mainland after the last glacial maxi- Colonizing the High Arctic: Mitochondrial DNA Reveals Common Origin of Eurasian Archipelagic mum. Comparing mtDNA control region sequences from the three Arctic archipelagos Reindeer (Rangifer tarandus). PLoS ONE 11(11): showed a strong genetic connection between the populations, supporting a common origin e0165237. doi:10.1371/journal.pone.0165237 in the past. A genetic connection between the three archipelagos and two Russian mainland Editor: William Barendse, CSIRO, AUSTRALIA populations was also found, suggesting colonization of the Eurasian high Arctic archipela- Received: June 21, 2016 gos from the Eurasian mainland.
    [Show full text]
  • Baby Reindeer Pdf, Epub, Ebook
    BABY REINDEER PDF, EPUB, EBOOK Yu-hsuan Huang | 12 pages | 02 Aug 2016 | CHRONICLE BOOKS | 9781452146614 | English | California, United States Baby Reindeer PDF Book Bureau of Education. Alice in Wonderland. Baby Mickey Halloween Costume M. Mongalla gazelle E. Download as PDF Printable version. According to the Igloolik Oral History Project IOHP , "Caribou antlers provided the Inuit with a myriad of implements, from snow knives and shovels to drying racks and seal-hunting tools. It was first domesticated in Siberia and Scandinavia. Finally, the North American caribou has not been domesticated and is generally a wild animal. Because of the continuing decline and expected changes in long-term weather patterns, this subspecies is at imminent risk of extinction. A complex set of terms describes each part of the antler and relates it to its various uses". Restrictions apply. Retrieved 11 October These cows are healthier than those without antlers. However, Geist and others considered it valid. Allen, [Notes 2] [34] [35]. These can, with some certainty, be dated to the Migration Period , although it is not unlikely that they have been in use since the Stone Age. In the winter, the pads shrink and tighten, exposing the rim of the hoof, which cuts into the ice and crusted snow to keep it from slipping. Scotland on Sunday. Choose options. Retrieved 17 December Morris Costumes. Carl Linnaeus chose the name Rangifer for the reindeer genus, which Albertus Magnus used in his De animalibus , fol. Mickey Mouse. The reindeer is the only deer that has been domesticated. Liber 22, Cap. There are dozens of herds of wild caribou in the state of Alaska and their population there is estimated to be more than one million strong.
    [Show full text]
  • Crossing Caribou Country
    CROSSING CARIBOU COUNTRY A special report assessing the impacts of new transmission line routes on threatened caribou in NW Ontario CPAWS Wildlands League December 2013 CPAWS WILDLANDS LEAGUE 1 ABOUT CPAWS WILDLANDS LEAGUE ABOUT THE AUTHORS CPAWS Wildlands League is a not-for-profit charity Trevor Hesselink has been immersed in the that has been working in the public interest to protect environmental policy field since 1992 both as public lands and resources in Ontario since 1968, an independent consultant to a wide range of beginning with a campaign to protect Algonquin Park organizations, and as a senior policy advisor to the from development. We have extensive knowledge Ontario Ministry of the Environment. Through his of land use in Ontario and history of working with undergraduate studies in Urban and Regional Planning government, communities, scientists, the public at the University of Waterloo and his Masters’ studies and resource industries on progressive conservation in Urban Design at the University of Toronto, he initiatives. We have specific experience with impacts of has cultivated an enduring passion for sustainability industrial development on boreal forests and wildlife dynamics and applied semiotics. His creative facilitation that depend on them. and communication skills have contributed to many policy and planning initiatives in Ontario from community based watershed management to safe drinking water. Since leaving government to come to the Wildlands League, Trevor has enjoyed tackling a brand new set of exciting challenges in joining the CONTACT Boreal forest campaign. Anna Baggio completed an undergraduate degree in Suite 380 401 Richmond St. West Biology from McMaster University and a graduate Toronto, ON M5V 3A8 degree from York University.
    [Show full text]
  • Impacts of Human Developments and Land Use on Caribou: a Literature Review Volume I: a Worldwide Perspective
    IMPACTS OF HUMAN DEVELOPMENTS AND LAND USE ON CARIBOU: A LITERATURE REVIEW VOLUME I: A WORLDWIDE PERSPECTIVE R.T. Shideler, M.H. Robus, J.F. Winters, and M. Kuwada Technical Report 86-2 Alaska Department of Fish & Game Habitat and Restoration Division The Alaslia Department of Fish and Game administers all programs and activities free from discrimination on the basis of sex, color, race, religion, national origin, age, marital status, pregnancy, parenthood, or disability. For information on alternative formats available for this and other department publications contact the department ADA Coordinator (voice) 9071465-4120: (TTD) 9071478-3648. Any person who believes slhe has been discriminated against should write to: ADF&G, PO Box 25526, Juneau, AK 99802-5526 or O.E.O. U.S. Department of the Interior, Washington D.C. 20240. IMPACTS OF HUMAN DEVELOPMENTS AJYD LAND USE ON CARIBOU: A LITERATURE REVIEW Volume I: A Worldwide Perspective by R.T. Shideler, 1vI.H. Robus, J.F. Winters, and M. Kuwada Technical Report 86-2 Norman A. Cohen Director Division of Habitat Alaska Department of Fish and Game P.O. Box 3-2000 Juneau, Alaska 99802 June 1986 TABLE OF CONTENTS PAGE LIST OF FIGURES ...................................................... v LIST OF TABLES ....................................................... vi ACKNmmS..................................................... vii EXECUTIVE SUMMARY .................................................... ix 1.0 GENERAL INTRODUCTION ............................................ 1 1.1 Scope & Organization
    [Show full text]
  • 'O Neighbour, Where Art Thou?'
    Acta Universitatis Agriculturae Sueciae • 2017:24 No. Thesis Doctoral Doctoral Thesis No. 2017:24 This thesis focuses on explaining abundance and distribution of solitary carnivores, Doctoral Thesis No. 2017:24 from individual space use to distribution of animals at the population level. The Faculty of Forest Sciences thesis investigates factors influencing home range size, spatial variation in risk of mortality, and home range overlap in Eurasian lynx. The thesis also assesses ‘O Neighbour, Where Art Thou?’ Where ‘O Neighbour, wolverine home range fidelity the link between territorial dynamics and natal ‘O Neighbour, Where Art Thou?’ dispersal, reproductive timing and denning behaviour, and finally, the southwards colonisation of wolverines in Sweden. Spatial and social dynamics in wolverine and lynx, from individual space use to population distribution Malin Aronsson received her PhD education at Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences (SLU), Uppsala. She obtained her Master of Sciences in Forestry from SLU, Umeå. Malin Aronsson • Malin Aronsson Acta Universitatis Agriculturae Sueciae presents doctoral theses from the Swedish University of Agricultural Sciences (SLU). SLU generates knowledge for the sustainable use of biological natural resources. Research, education, extension, as well as environmental monitoring and assessment are used to achieve this goal. Online publication of thesis summary: http://pub.epsilon.slu.se/ ISSN 1652-6880 ISBN (print version) 978-91-576-8821-7
    [Show full text]
  • Alaska Reindeer Herdsmen
    ALASKA REINDEER HERDSMEN ALASKA REINDEER HERDSMEN A Study of Native Management in Transition by Dean Francis Olson Institute of Social, Economic and Government Research University of Alaska College, Alaska 99701 SEG Report No. 22 December 1969 Price: $5.00 Dean F. Olson, an associate of the Institute of Social, Economic and Government Research, is a member of the Faculty of Business, Uni­ versity of Calgary, Calgary, Alberta, Canada. He received his OBA from the University of Washington in 1968. iv PREFACE Reindeer husbandry is a peculiarly circumpolar endeavor. Of the three million domesticated reindeer estimated to exist in the northernmost nations of the world, just over 1 per cent are found in North America. The Soviet Union possesses about 80 per cent, and the Fennoscandian countries contain more than 18 per cent. There are about 30,000 in western Alaska, and the Canadian government estimates that some 2,700 range the Mackenzie River basin. Domesticated reindeer are not indigenous to North America. They were first introduced to this continent in 1892, when they were brought to western Alaska from various Siberian locations. The Canadian government purchased their parent stock from an Alaska producer in 1935. In each case, the objectives for importation were to broaden the resource base of the Native populations and to provide a means for social and economic de­ velopment in remote areas. The present study examines the role of Alaska reindeer as a Native resource. More specifically, it concerns the historical role of the Alaska Eskimo reindeer herdsmen, and examines their functions as managers of a re­ source and as instruments for social and economic change among their people.
    [Show full text]
  • Ultraviolet Vision May Enhance the Ability of Reindeer to Discriminate Plants in Snow N.J.C
    ARCTIC VOL. 67, NO. 2 (JUNE 2014) P. 159 – 166 http://dx.doi.org/10.14430/arctic4381 Ultraviolet Vision May Enhance the Ability of Reindeer to Discriminate Plants in Snow N.J.C. TYLER,1 G. JEFFERY,2 C.R. HOGG3 and K.-A. STOKKAN4 (Received 19 March 2013; accepted in revised form 22 August 2013) ABSTRACT. In reindeer/caribou (Rangifer tarandus), the lens and cornea of the eye transmit ultraviolet (UV) light, and the retinae respond to it electrophysiologically. Here we tie this finding to the unusual visual environment experienced by these animals and propose that their sensitivity to UV light enhances vision at the low luminance characteristic of the polar winter. For such visual enhancement to occur, it is essential that functional components of the environment, such as forage plants, be visually salient under natural UV luminance. It is not self-evident, however, that this is the case. Although organic material generally absorbs UV radiation, powerful scattering of UV light by snow crystals potentially reduces contrast with the background. We therefore recorded UV images of vegetation in situ on snow-covered pasture under natural winter (March) luminance in northern Norway. For each vegetation scene, we made three monochrome digital images at 350 – 390 nm (UV-Only), 400 – 750 nm (No-UV), and 350 – 750 nm (control), respectively. Plants at the snow surface appeared in high achromatic contrast against snow in UV-Only images. The contrast was substantially greater in the UV-Only images than in corresponding images in which UV was blocked. We conclude that plants are visually salient under natural UV luminance at wavelengths to which Rangifer are sensitive.
    [Show full text]
  • Brief Communication Mapping Long-Term Spatial Trends of The
    Special Communication John B. Zoe – A giant step forward: Notes from the Aboriginal Talking Circle Brief communication Mapping long-term spatial trends of the Taimyr wild reindeer population Andrey N. Petrov1, Anna V. Pestereva1, Leonid A. Kolpashchikov2, & Vladimir V. Mikhailov3 1 Arctic Social and Environmental Systems Research Lab, University of Northern Iowa, USA. 2 Extreme North Agriculture Research Institute, Russia. 3 St. Petersburg Institute of Informatics and Automatization, Russian Academy of Sciences, Russia. Corresponding author: [email protected] Abstract: This report presents preliminary results of mapping and analyzing wild reindeer spatial dynamics in Taimyr, Russia. We collected, spatially referenced, and systematized comprehensive aerial and land survey information spanning from 1969 to 2003, which is the most complete long-term data available about a wild reindeer herd in Eurasia. The report introduces some of the mapping products and presents a summary of our observations on spatiotemporal changes in reindeer distribution and migration. Using these data and new digital products in the GIS (Geographic Information Systems) environment, we were able to observe the long-term shift of the Taimyr Reindeer Herd’s summer, winter, and calving areas to the east and south with a simultaneous expansion of the habitat. We identified and confirmed locations of large reindeer concentrations (herds) seasonally formed throughout the study period. Using the most recent summer survey data (2009) we also were able to confirm the existence of two major migration flows in the fall: eastern (most reindeer) and western. Key words: long-term observations, mapping, migration, Russia, spatial dynamics, Taimyr, wild reindeer. Rangifer, 32 (1): 57–63 Introduction of historical observations is limited.
    [Show full text]
  • Polar Ecology
    Woodcut by Aron of Kangeq, Nuuk, 1860 Off Ilulissat, Greenland FREDRIK EHRENSTRÖM STEFAN LUNDGREN Svalbard KUBUS 35 Polar Ecology The polar bear is hungry. Using her sensitive nose, she searches for a seal. She spots one lying on the ice, and as she creeps closer, her steps become careful. The seal has good hearing, good eyesight, and a good sense of smell. It is ready to dive into the water as soon as it senses danger nearby. So, very stealthily, the polar bear puts one paw in front of the other in the snow until she is only 30 meters from her prey. Her final rush is an explosion of energy, and she pounces on the seal. This time, luck is with her, and she enjoys a good meal of seal blubber, her favorite food. The rest of the seal is left behind when she moves on over the ice, but close behind comes the Arctic fox, like a shadow waiting for its share. This meal on the ice illustrates two key points in discussing contaminants in the Arctic. Predation is the pathway by which contaminants move from animal to animal in Arctic food webs. Moreover, it is no coincidence that the polar bear is a picky eater when hunting is good, choosing only the blubber and leav- ing the rest of the seal. Energy is important for sur- vival in cold environments and a preference for fatty foods is one of many adaptations shown by Arctic animals. This chapter discusses plant and animal life in the Arctic, with a focus on adaptations that can make Arctic ecosystems especially vulnerable to contami- nants.
    [Show full text]