Circadian Systems in Development and Photoperiodism in Japanese Quail

Total Page:16

File Type:pdf, Size:1020Kb

Circadian Systems in Development and Photoperiodism in Japanese Quail Louisiana State University LSU Digital Commons LSU Historical Dissertations and Theses Graduate School 1983 Circadian Systems in Development and Photoperiodism in Japanese Quail. Albert C. Russo Jr Louisiana State University and Agricultural & Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses Recommended Citation Russo, Albert C. Jr, "Circadian Systems in Development and Photoperiodism in Japanese Quail." (1983). LSU Historical Dissertations and Theses. 3907. https://digitalcommons.lsu.edu/gradschool_disstheses/3907 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU Digital Commons. For more information, please contact [email protected]. INFORMATION TO USERS This reproduction was made from a copy of a document sent to us for microfilming. While the most advanced technology has been used to photograph and reproduce this document, the quality of the reproduction is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help clarify markings or notations which may appear on this reproduction. 1.The sign or “target” for pages apparently lacking from the document photographed is “Missing Page(s)”. If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure complete continuity. 2. When an image on the film is obliterated with a round black mark, it is an indication of either blurred copy because of movement during exposure, duplicate copy, or copyrighted materials that should not have been filmed. For blurred pages, a good image of the page can be found in the adjacent frame. If copyrighted materials were deleted, a target note will appear listing the pages in the adjacent frame. 3. When a map, drawing or chart, etc., is part of the material being photographed, a definite method of “sectioning” the material has been followed. It is customary to begin filming at the upper left hand corner of a large sheet and to continue from left to right in equal sections with small overlaps. If necessary, sectioning is continued again—beginning below the first row and continuing on until complete. 4. For illustrations that cannot be satisfactorily reproduced by xerographic means, photographic prints can be purchased at additional cost and inserted into your xerographic copy. These prints are available upon request from the Dissertations Customer Services Department. 5. Some pages in any document may have indistinct print. In all cases the best available copy has been filmed. University Micrcxilms International 300 N. Zeeb Road Ann Arbor, Ml 48106 8400139 Russo, Albert C., Jr. CIRCADIAN SYSTEMS IN DEVELOPMENT AND PHOTOPERIODISM IN JAPANESE QUAIL The Louisiana State University and Agricultural and Mechanical Col.Ph.D. 1983 University Microfilms International300 N. Zeeb Road, Ann Arbor, Ml 48106 PLEASE NOTE: In all cases this material has been filmed in the best possible way from the available copy. Problems encountered with this document have been identified here with a check mark V . 1. Glossy photographs or pages_______ 2. Colored illustrations, paper or print______ 3. Photographs with dark background______ 4. Illustrations are poor copy_______ 5. Pages with black marks, not original _______copy 6. Print shows through as there is text on both sides of page_______ 7. Indistinct, broken or small print on several pages */ / / ' 8. Print exceeds margin requirements______ 9. Tightly bound copy with print lost in spine_______ 10. Computer printout pages with indistinct print______ 11. P a g e (s)_____________lacking when material received, and not available from school or author. 12. Page(s)_____________seem to be missing in numbering only as text follows. 13. Two pages numbered_____________. Text follows. 14. Curling and wrinkled p a g_______ e s 15. Other________________________________________________________________________________ University Microfilms International CIRCADIAN SYSTEMS IN DEVELOPMENT AND PHOTOPERIODISM IN JAPANESE QUAIL A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Zoology and Physiology by Albert C. Russo, Jr. B.S., Louisiana State University, 1971 M.S., Louisiana State University, 1974 August, 1983 ACKNOWLEDGEMENTS I would like to express my sincere thanks and appreciation to Dr. Albert H. Meier for his guidance, patience, friendship, and enthusiasm for science which made every day fun and exciting. I thank Drs. J. Caprio, J.P. Woodring, K. Corkum, A. Aammond, and W. Johnson for reviewing the manuscript. I further thank Dr. W. Johnson for supplying the Japanese quail for this study as well as teaching me how to care for them. I thank all of my fellow graduates students, especially John M. Wilson for help along the way. Above all, I thank my parents, Mr. and Mrs. Albert C. Russo, Sr., for giving me life, and L. Blair Roy for saving it. TABLE OF CONTENTS Page Acknowledgements ..................................................... il List of Tables ....................................................... v List of Figures ........................................................vl Section I. Maturation of the Circadian Rhythm of Adrenal Cortical Hormone and Thyroxine in Japanese Quail: Effect of hypo- and hyperthyroidism ................... 1 Abstract ................................................. 2 Introduction ............................................. 3 Materials and Methods ........................... 5 Results ................................................. 9 Discussion................................................. 36 Literature Cited ........................................ 43 Section II. Relation of the Circadian Rhythm of Adrenal Cortical Hormone and Photosensitivity in Japanese Quail .......................................... 48 A b s t r a c t ................................................... 49 Introduction ............................................. 50 Materials and M e t h o d s ................ 52 R e s u l t s ................................................... 54 Discussion................................................. 63 Literature Cited ........................................ 68 Section III. The Roles of the Eyes, the Rhythm of Adrenal Cortical Hormone, and Thyroxine in Photo- periodism in Japanese Quail ............................ 70 A b s t r a c t ................................................... 71 Introduction ............................................. 72 Materials and Methods .................................. 74 R e s u l t s ................................................... 77 iii Page Discussion................................................. 92 Literature Cited ......................................... 100 V i t a ................................................................... 105 iv LIST OF TABLES Page Section I: Table 1 Body weights, paired testes weights, and ovary weights of 7-, 17-, 27- and 37-day old Japanese quail treated with thiouracil or thyroxine................................ 15 Section II: Table 1 Paired testes weights of intact and enucleated Japanese quail injected with TRH or s a l i n e .......................... 56 Section III: Table 1 Body weights, paired testes weights and ovary weights of Japanese quail pretreated with LD 8:16 for three weeks and then transferred to continuous darkness (DD) . 80 Table 2 Plasma thyroxine concentrations of reproductively developed or regressed enucleated Japanese quail maintained on different daylengths and sampled at six times of d a y ............................... 81 v LIST OF FIGURES Page Section I: Figure 1. Daily rhythm of plasma ACH concentration in 7-, 17-, 27-, and 37-day old Japanese quail maintained on LD 1 6 : 8 ..................................................... 16 Figure 2. Effects of 0.2% 2-thlouracil and 0.001% L-thyroxine in the diet on the daily rhythm of plasma ACH concen­ tration in 7-day old Japanese quail maintained on LD 1 6 : 8 ..................................................... 18 Figure 3. Effects of 0.2% 2-thiouracil and 0.001% L-thyroxine in the diet on the daily rhythm of plasma ACH concen­ tration in 17-day old Japanese quail maintained on LD 1 6 : 8 .....................................................20 Figure 4. Effects of 0.2% 2-thiouracil and 0.001% L-thyroxine in the diet on the daily rhythm of plasma ACH concen­ tration in 27-day old Japanese quail maintained on LD 1 6 : 8 .....................................................22 Figure 5. Effects of 0.2% thiouracil and 0.001% L-thyroxine in the diet on the daily rhythm of plasma ACH concen­ tration in 37-day old Japanese quail maintained on LD 1 6 : 8 .....................................................24 Figure 6. Daily rhythm of plasma thyroxine concentration in 7-, 17-, 27-, and 37-day old Japanese quail maintained on LD 16:8 ...................................... 26 Figure 7. Effects of 0.2% thiouracil in the diet on the daily rhythm of plasma thyroxine concentration in 7-day old Japanese quail maintained on LD 1 6 : 8 ..................... 28 Figure 8. Effects of 0.2% 2-thiouracil and 0.001% L-thyroxine in the
Recommended publications
  • Reproductive Seasonality in Captive Wild Ruminants: Implications for Biogeographical Adaptation, Photoperiodic Control, and Life History
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2012 Reproductive seasonality in captive wild ruminants: implications for biogeographical adaptation, photoperiodic control, and life history Zerbe, Philipp Abstract: Zur quantitativen Beschreibung der Reproduktionsmuster wurden Daten von 110 Wildwiederkäuer- arten aus Zoos der gemässigten Zone verwendet (dabei wurde die Anzahl Tage, an denen 80% aller Geburten stattfanden, als Geburtenpeak-Breite [BPB] definiert). Diese Muster wurden mit verschiede- nen biologischen Charakteristika verknüpft und mit denen von freilebenden Tieren verglichen. Der Bre- itengrad des natürlichen Verbreitungsgebietes korreliert stark mit dem in Menschenobhut beobachteten BPB. Nur 11% der Spezies wechselten ihr reproduktives Muster zwischen Wildnis und Gefangenschaft, wobei für saisonale Spezies die errechnete Tageslichtlänge zum Zeitpunkt der Konzeption für freilebende und in Menschenobhut gehaltene Populationen gleich war. Reproduktive Saisonalität erklärt zusätzliche Varianzen im Verhältnis von Körpergewicht und Tragzeit, wobei saisonalere Spezies für ihr Körpergewicht eine kürzere Tragzeit aufweisen. Rückschliessend ist festzuhalten, dass Photoperiodik, speziell die abso- lute Tageslichtlänge, genetisch fixierter Auslöser für die Fortpflanzung ist, und dass die Plastizität der Tragzeit unterstützend auf die erfolgreiche Verbreitung der Wiederkäuer in höheren Breitengraden wirkte. A dataset on 110 wild ruminant species kept in captivity in temperate-zone zoos was used to describe their reproductive patterns quantitatively (determining the birth peak breadth BPB as the number of days in which 80% of all births occur); then this pattern was linked to various biological characteristics, and compared with free-ranging animals. Globally, latitude of natural origin highly correlates with BPB observed in captivity, with species being more seasonal originating from higher latitudes.
    [Show full text]
  • Photoperiodic Properties of Circadian Rhythm in Rat
    Photoperiodic properties of circadian rhythm in rat by Liang Samantha Zhang A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Neuroscience) in The University of Michigan 2011 Doctoral Committee: Associate Professor Jimo Borjigin, Chair Professor Theresa M. Lee Professor William Michael King Associate Professor Daniel Barclay Forger Assistant Professor Jiandie Lin © Liang Samantha Zhang 2011 To my loving grandparents, YaoXiang Zhang and AnNa Yu ii Acknowledgements To all who have played a role in my life these past four years, I give my thanks. First of all, I give my gratitude to the members of Borjigin Lab. To my mentor Dr. Jimo Borjigin whose intelligence and accessibility has carried me through in this journey within the circadian field. To Dr. Tiecheng Liu, who taught me all the technical knowledge necessary to perform the work presented in this dissertation, and whose surgical skills are second to none. To all the undergrads I have trained over the years, namely Abeer, Natalie, Christof, Tara, and others, whose combined hundreds if not thousands of hours in manually analyzing melatonin data have been an indispensible asset to myself and the lab. To Michelle and Ricky for taking care of all the animals over the years, which has made life much easier for the rest of us. To Alexandra, who was willing to listen and share her experiences, and to Sean, who has been a good friend both in and out of the lab. I would also like to thank my committee members for their help and support over the years.
    [Show full text]
  • Photoperiodism in Hamsters: Abrupt Versus Gradual Changes in Day Length Differentially Entrain Morning and Evening Circadian Oscillators
    Photoperiodism in Hamsters: Abrupt Versus Gradual Changes in Day Length Differentially Entrain Morning and Evening Circadian Oscillators Michael R. Gorman,*,‡,1 David A. Freeman,§,2 and Irving Zucker*,† Departments of *Psychology and †Integrative Biology, University of California, Berkeley, CA 94720; ‡Department of Psychology, University of Michigan, Ann Arbor, MI 48109; and §Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269 Abstract In studies of photoperiodism, animals typically are transferred abruptly from a long (e.g., 16 h light per day [16L]) to a short (8L) photoperiod, and circadian oscillators that regulate pineal melatonin secretion are presumed to reentrain rapidly to the new photocycle. Among rats and Siberian hamsters, however, reentrainment rates vary de- pending on whether additional darkness is added to morning or evening, and a subset of hamsters (nonresponders) fails ever to reentrain normally to short photoperiods. The authors assessed whether several short-day responses occurred at different rates when darkness was extended into morning versus evening hours and the effectiveness of abrupt versus gradual shortening in day lengths (DLs). Entrainment patterns of photoresponsive hamsters also were compared to those of photononresponsive hamsters. Responsive hamsters transferred on a single day from 16L to 8L underwent more rapid gonadal regression, weight loss, decreases in follicle-stimulating hormone titers, and expansion of nocturnal locomotor activity when darkness was added to morning versus evening. When the dark phase was extended gradually by 8 h over 16 weeks, short-day responses occurred at the same rate whether darkness was appended to morning or evening or was added symmetrically.
    [Show full text]
  • Photoperiodism in Pigs
    Photoperiodism in Pigs Studies on timing of male puberty and melatonin Hikan Anderson Department of Clinical Chemistry Department of Animal Breeding and Genetics Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2000 Acta Universitatis Agriculturae Sueciae Veterinaria 90 ISSN 1401-6257 ISBN 91-576-5901-X 0 2000 HBkan Anderson, Uppsala Tryck: SLU Service/Repro, Uppsala 2000 Abstract Andersson, H. 2000. Photoperiodism in pigs. Studies on timing of male puberty and melatonin. Doctoral thesis ISSN 1401-6257, ISBN 91-576-5901-X. The routine castration of male piglets, which is performed in many countries to avoid boar taint in meat, is a cause for great concern in terms of animal welfare. Castrates also have reduced feed efficiency and more fat than do entire males. More of the ingested energy therefore goes to fat tissue than to muscle tissue. The European wild boar is a seasonal short-day breeder and although domestic pigs breed all year round there are indications that they remain responsive to photoperiod. Since boar taint is closely associated with male sexual maturation, the use of artificial light regimens to delay puberty could be a non-invasive method of reducing boar taint in entire males. Therefore, a series of experiments were performed in order to study photoperiodism in young pigs. In two experiments, matched winter-born siblings of crossbred males were allocated after weaning to either one of two light-sealed rooms with high-intensity light regimens or a conventional stable environment. In the first study, groups subjected to an 'artificial autumn' treatment and an 'artificial spring' treatment were compared with a 'natural spring' group.
    [Show full text]
  • Light Signals and Flowering
    Journal of Experimental Botany, Vol. 57, No. 13, pp. 3387–3393, 2006 Major Themes in Flowering Research Special Issue doi:10.1093/jxb/erl071 Advance Access publication 15 September, 2006 Light signals and flowering Brian Thomas* Warwick HRI, University of Warwick, Wellesbourne CV35 9EF, UK Received 14 March 2006; Accepted 31 May 2006 Abstract considered both with regard to light acting directly through photomorphogenetic mechanisms, or alterations in photo- Physiological studies over a long period have shown synthetic assimilation or as part of the more complex that light acts to regulate flowering through the three regulatory mechanisms of photoperiodism. Much of the main variables of quality, quantity, and duration. body of literature on physiological studies will be assumed Intensive molecular genetic and genomic studies with although it is worth noting that many of the revelations the model plant Arabidopsis have given considerable from recent molecular genetic studies were presaged by insight into the mechanisms involved, particularly careful whole plant studies. Thus, concepts of photoper- with regard to quality and photoperiod. For photo- iodic control of flowering, based on physiological studies, periodism light, acting through phytochromes and envisaged an external coincidence circadian model with cryptochromes, the main photomorphogenetic photo- multiple photoreceptors acting in the leaf to generate receptors, acts to entrain and interact with a circadian a complex mobile flowering signal (Thomas and Vince- rhythm of CONSTANS (CO) expression leading to Prue, 1997). The explosion of knowledge and resources in transcription of the mobile floral integrator, FLOW- Arabidopsis thaliana has resulted in much of the fine detail ERING LOCUS T (FT).
    [Show full text]
  • Bio 314 Animal Behv Bio314new
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314: COURSE TITLE: ANIMAL BEHAVIOUR xii i BIO 314: ANIMAL BEHAVIOUR Course Writers/Developers Miss Olakolu Fisayo Christie Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Course Editor: Dr. Adesina Adefunke Ministry of Health, Alausa. Lagos NATIONAL OPEN UNIVERSITY OF NIGERIA xii i BIO 314 COURSE GUIDE Introduction Animal Behaviour (314) is a second semester course. It is a two credit units compustory course which all students offering Bachelor of Science (BSc) in Biology must take. This course deals with the theories and principles of adaptive behaviour and evolution of animals. The course contents are history of ethology. Reflex and complex behaviour. Orientation and taxes. Fixed action patterns, releasers, motivation and driver. Displays, displacement activities and conflict behaviour. Learning communication and social behaviour. The social behaviour of primates. Hierarchical organization. The physiology of behaviour. Habitat selection, homing and navigation. Courtship and parenthood. Biological clocks. What you will learn in this course In this course, you have the course units and a course guide. The course guide will tell you briefly what the course is all about. It is a general overview of the course materials you will be using and how to use those materials. It also helps you to allocate the appropriate time to each unit so that you can successfully complete the course within the stipulated time limit. The course guide also helps you to know how to go about your Tutor-Marked-Assignment which will form part of your overall assessment at the end of the course.
    [Show full text]
  • VERNALIZATION and PHOTOPERIODISM
    VERNALIZATION and PHOTOPERIODISM hy A. E. MURNEEK and R. O. WHYTE with H. A. Allard, H. A. Borthwick, Erwin Bunning, G. L. FuNKE, Karl C. Hamner, S. B. Hendricks, A. Lang, M. Y. Nuttonson, M. W. Parker, R. H. Roberts, S. M. Sircar, B. Esther Struckmeyer and F. W. Went Fore-word by Kenneth V. Thimann WALTHAM, MASS., U.SA. Published by the Chronica Botanica Company Marine Biological Laboratory July 19, 1958 Received _ Accession No. ^°^^^ P^ess Company Given By ' New York City" Place,_ — — : The Chronica Botanica Co., International Plant Science Publishers CHRONICA BOTANICA, an International Collec- LOTSYA — A Biological Miscellany:— tion of Studies in the Method and History of Biology l.MuRNEEK, Whyte, et al. : Vernalization and Photo- and Agriculture, founded and edited by Frans Ver- periodisra (p. 196, $4.50) doorn, is available at $7.50 a year to regular sub- 2. Knight; Dictionary of Genetics (p. 184, $4.50) scribers (postfree, foreign and domestic). —Regular 3.WALLACE, et al.: Rothamsted International Sympo- subscribers to Chronica Botanica receive Biologia sium on Trace Elements (in press) {cf. infra) free. 4.Vavilov's Selected Writings, translated by Chester Strong, buckram binding cases, stamped with gold, (in press) may be obtained for recent volumes (vols. 4, 5, 6, 7, 8, 9, 10, 11/12) at $1.25 (postfree). 'A New Series of Plant Science Books': Vols. 1-3, Annual Records of Current Research, Activi- ties and Events in the Pure and Applied Plant Sci- Tree Growth (revised ed. in prep.) I.MacDougai.: ences, are still available at $9.00 a volume (paper), Pulp (revised ed., published abroad, 2.Grant: Wood or $10.50 (buckram).
    [Show full text]
  • 15. Photoperiodism
    15. PHOTOPERIODISM Photoperiodism is the phenomenon of physiological changes that occur in plants in response to relative length of day and night (i.e. photoperiod). The response of the plants to the photoperiod, expressed in the form of flowering is also called as photoperiodism. The phenomenon of photoperiodism was first discovered by Garner and Allard (1920). Depending upon the duration of photoperiod, the plants are classified into three categories. 1. Short day plants (SDP) 2. Long day plants (LDP) 3. Day neutral plants (DNP) 1. Short day plants These plants require a relatively short day light period (usually 8-10 hours) and a continuous dark period of about 14-16 hours for subsequent flowering. These plants are also known as long-night plants E.g. Rice, coffee, soybean, tobacco and chrysanthemum • In short day plants, the dark period is critical and must be continuous. If this dark period is interrupted with a brief exposure of red light (660-665 nm wavelength), the short day plant will not flower. • Maximum inhibition of flowering with red light occurs at about the middle of critical dark period. • However, the inhibitory effect of red light can be overcome by a subsequent exposure with far-red light (730-735 mm wavelength) • Interruption of the light period with red light does not have inhibitory effect on flowering in short day plants. • Prolongation of the continuous dark period initiates early flowering. 2. Long day plants These plants require longer day light period (usually 14-16 hours) in a 24 hours cycle for subsequent flowering. These plants are also called as short night plants.
    [Show full text]
  • Insect Photoperiodism: Bünning’S Hypothesis, the History and Development of an Idea
    EUROPEAN JOURNAL OF ENTOMOLOGYENTOMOLOGY ISSN (online): 1802-8829 Eur. J. Entomol. 118: 1–13, 2021 http://www.eje.cz doi: 10.14411/eje.2021.001 REVIEW Insect photoperiodism: Bünning’s hypothesis, the history and development of an idea DAVID SAUNDERS 21, Leadervale Road, Edinburgh EH16 6PB, Scotland, United Kingdom; e-mail: david59.saunders@mypostoffi ce.co.uk Key words. Insects, photoperiodism, diapause, Bünning’s hypothesis, clock models Abstract. In insects, the photoperiodic system comprises a linked sequence of events from photoreception to fi nal seasonally- appropriate phenotypes such as overwintering diapause. The fi rst and last of these events are reasonably well known, but central phenomena such as those distinguishing short from long days (time measurement) and the nature, accumulation and transfer of this information through development, metamorphosis and sometimes across generations remains obscure. Bünning’s intuitive suggestion that photoperiodic time measurement was a function of the circadian system, made eight decades ago, however, has provided a framework for numerous studies investigating these connections. This review examines the development of Bünning’s hypothesis from its origin in plants to the physiology of diapause in insects. Despite considerable inter-species differences, a close and probably causal relationship between circadian rhythmicity and photoperiodism is indicated. INTRODUCTION cadian rhythmicity. This approach revealed many parallels In 1936, the German plant physiologist Erwin Bünning between the two time-measuring systems, but progress suggested that time measurement inherent in the photoper- remained slow, mainly because the fundamental nature of iodic phenomenon was a function of the circadian system circadian rhythmicity itself was largely unknown. In in- (Bünning, 1936).
    [Show full text]
  • Photoperiodism and Circadian Rhythms
    Photoperiodism and Circadian Rhythms KARL C. HAMNER University of California, Los Angeles, California Many of you were present at the conference on aspect... In retrospect, the necessity of accepting the photoperiodism held in Gatlinburg, Tennessee, in theory of an endogenous rhythm to explain photo- October 1957, the title of which was "Photoperiodism periodic responses with regard to flowering does not and Related Phenomena in Plants and Animals" [1] seem to be very great yet!" I believe my own work and At the conference I presented a paper based upon work the work of my students in addition to Btinning's which led me to believe that photoperiodism in plants work provides fairly conclusive evidence that endoge- was affected by an endogenous rhythm. Prior to the nous rhythms participate in the photoperiodic reaction, conference I had read some of the literature on endoge- and that something very close to Bfinning's hypothesis nous rhythms, but at the conference I was astounded may be the case. by the papers presented which indicated that scientists working with a wide variety of responses had obtained RHYTHMIC RESPONSES TO CYCLE LENGTH a tremendous fund of information on rhythms unrelated Twenty years ago Snyder [4], working with me, to photoperiodism. Because of the fact that the data obtained results which indicated that the flowering which I presented was partly that of my students, and response of Biloxi soybean (Glycine max) was rhythmic, had been previously unpublished, and because I depending upon the amount of interrupted darkness recognized that I could not discuss the results critically interspersed between the high intensity light period in relation to all of the information available, I re- and the continuous dark period.
    [Show full text]
  • Growth and Physiological Responses of Lettuce Grown Under Pre-Dawn Or End-Of-Day Sole-Source Light-Quality Treatments
    horticulturae Article Growth and Physiological Responses of Lettuce Grown under Pre-Dawn or End-Of-Day Sole-Source Light-Quality Treatments Skarleth Chinchilla 1, Luigi G. Izzo 2 ID , Edzard van Santen 3 and Celina Gómez 1,* ID 1 Environmental Horticulture Department, University of Florida, 1549 Fifield Hall, Gainesville, FL 32611-0670, USA; [email protected] 2 Department of Agricultural Sciences, University of Naples Federico II, via Universitá 100, 80055 Portici, Italy; [email protected] 3 IFAS Statistical Consulting Unit and Agronomy Department, University of Florida, 404 McCarty Hall C, Gainesville, FL 32611-0500, USA; evsanten@ufl.edu * Correspondence: cgomezv@ufl.edu; Tel.: +1-352-273-4568 Received: 30 April 2018; Accepted: 4 June 2018; Published: 7 June 2018 Abstract: The objective of this study was to evaluate growth and physiological responses of ‘Cherokee’ and ‘Waldmann’s Green’ lettuce (Lactuca sativa) exposed to small changes in light quality and intensity within a 24-h period. Three pre-dawn (PD; 0600 to 0700) and three end-of-day (EOD; 2100 to 2200) treatments were evaluated in the study, each providing 50 ± 2 µmol·m−2·s−1 of either blue, red, or broadband white light from light-emitting diodes (LEDs). To account for the main daily light integral (DLI), broadband white LEDs provided 210 ± 2 µmol·m−2·s−1 from 0700 to 2200 or from 0600 to 2100 for the PD or EOD treatments, respectively. A control treatment was included which provided 200 ± 2 µmol· m−2·s−1 of white light from 0600 to 2200. All treatments provided a DLI of 11.5 mol·m−2·day−1 over a 16-h photoperiod.
    [Show full text]
  • Chapter 1 Photosynthesis
    Revised Edition: 2016 ISBN 978-1-283-50684-7 © All rights reserved. Published by: The English Press 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: [email protected] Table of Contents Chapter 1 - Photosynthesis Chapter 2 - Photomorphogenesis Chapter 3 - Visual System Chapter 4 - Circadian Rhythm Chapter 5 - Bioluminescence Chapter 6 - Ultraviolet Chapter 7 - Light Therapy Chapter 8 - Light Effects on Circadian Rhythm and Scotobiology WT ________________________WORLD TECHNOLOGIES________________________ Chapter 1 Photosynthesis WT Composite image showing the global distribution of photosynthesis, including both ocea- nic phytoplankton and vegetation Overall equation for the type of photosynthesis that occurs in plants Photosynthesis is a process that converts carbon dioxide into organic compounds, es- pecially sugars, using the energy from sunlight. Photosynthesis occurs in plants, algae, ________________________WORLD TECHNOLOGIES________________________ and many species of bacteria, but not in archaea. Photosynthetic organisms are called photoautotrophs, since they can create their own food. In plants, algae, and cyanoba- cteria, photosynthesis uses carbon dioxide and water, releasing oxygen as a waste product. Photosynthesis is vital for all aerobic life on Earth. As well as maintaining the normal level of oxygen in the atmosphere, nearly all life either depends on it directly as a source of energy, or indirectly as the ultimate source of the energy in their food (the exceptions are chemoautotrophs that live in rocks or around deep sea hydrothermal vents). The rate of energy capture by photosynthesis is immense, approximately 100 terawatts, which is about six times larger than the power consumption of human civilization. As well as energy, photosynthesis is also the source of the carbon in all the organic compounds within organisms' bodies.
    [Show full text]