Comparison of Folic Acid Coenzyme Distribution Patterns in Patients with Methylenetetrahydrofolate Reductase and Methionine Synthetase Deficiencies

Total Page:16

File Type:pdf, Size:1020Kb

Comparison of Folic Acid Coenzyme Distribution Patterns in Patients with Methylenetetrahydrofolate Reductase and Methionine Synthetase Deficiencies 0031-3998/85/1912-1288$02.00/0 PEDIATRIC RESEARCH Vol. 19, No. 12, 1985 Copyright O 1985 International Pediatric Research Foundation, Inc. Printed in U.S.A. Comparison of Folic Acid Coenzyme Distribution Patterns in Patients with Methylenetetrahydrofolate Reductase and Methionine Synthetase Deficiencies E. REGULA BAUMGARTNER, E. L. R. STOKSTAD, H. WICK, J. E. WATSON, AND GABRIELLA KUSANO Department of Pediatrics, University of Basel, 4005, Basel, Switzerland [E.R.B., H. W.J and Department of Nutritional Sciences, University of California, Berkeley, California, 94720 [E.L.R.S., J.E. W., G.K.] ABSTRACT. Folic acid coenzyme distribution patterns dent 5-methyl-THF: homocysteine methyltransferase (EC were examined in the liver and kidney of two patients with 2.1.1.13) (methionine synthetase), designated cbl C and cbl D homocystinuria due to different inborn errors of metabo- mutants (1 1). In addition to homocystinuria these patients also lism affecting the remethylation of homocysteine to methi- have methylmalonic aciduria whereas folate levels in serum and onine. One patient, with severe mental retardation (and red blood cells are normal. The clinical symptoms vary widely; death at 3%yr), had greatly reduced levels of methylene- they include in the more severely affected patients (cbl C) failure tetrahydrofolic acid (THF) reductase in fibroblasts as well to thrive, developmental retardation, megaloblastic anemia (12- as in liver and kidney. Chromatographic separation of 19, and often early death (16). folate coenzymes in liver showed an abnormal pattern with We have followed two patients, one with each disorder (17). THF as the main component and almost no methyl-THF They illustrate the clinical and biochemical consequences of but total folate was normal. The other patient, who was defects at the point of interaction between folate and cobalamin dystrophic, microcephalic, and had megaloblastic anemia metabolism, namely at the transfer of the 5-methyl group from died at age 4 months. He had reduced levels of methionine 5-methyl-THF to homocysteine to produce methionine and synthetase in liver and kidney due to a defect of intracel- THF. The vascular changes resulting from homocystinemia have lular cobalamin metabolism. Chromatographic analysis of been discussed extensively (12, 18). The two disorders with his tissues showed methyl-THF to be the principal folate disturbances in different sites of folate metabolism vary greatly form and a markedly reduced total folate. These results in their clinical manifestations. It is to be expected that a defi- support the "methyl-THF trap" hypothesis and offer in- ciency of methylene-THF reductase would result in a decreased formation with respect to the possible therapy of these two proportion of methyl-THF relative to other folate coenzyme disorders. (Pediatr Res 19: 1288-1292,1985) forms. This has already been shown in fibroblast studies (10). On the other hand, malfunction of the methionine synthetase Abbreviations will lead to an accumulation of 5-methyl-THF since the meth- ylene-THF reductase reaction is essentially irreversible: i.e. re- THF, tetrahydrofolic acid duced folates are trapped as a deadend derivative and the indi- methyl-THF, methyltetrahydrofolic acid vidual becomes functionally folate deficient. This has been de- methylene-THF, methylenetetrahydtofolic acid scribed as the "methyl-THF trap" hypothesis (19-21). In order to test this assumption and to elucidate the discrep ancy in the clinical symptoms we have studied the folate coen- zyme distribution patterns in liver and kidney of these two Methylene-THF reductase (EC 2.2.2.68) deficiency, an inborn patients. error of folate metabolism, has been fairly well studied (1-8). This disorder is associated with a wide spectrum of neurologic CASE REPORTS abnormalities, often with mental retardation and rarely also with psychotic symptoms. The severity of the neurologic dysfunction Patient G.P. This patient was the second child of healthy, correlates with the degree of enzyme deficiency (9). Biochemi- consanguinous parents. His older brother was healthy. He was cally, the key findings are moderate homocystinuria and homo- born at term after an uneventful pregnancy and delivery. Weight, cystinemia accompanied by low or normal methionine levels length, and head circumference were at the 50th percentile. He and low folate levels in serum and red cells. Abnormal folate showed some dysmorphisms such as epicanthus, broad root of distribution has been observed in fibroblast cultures of these the nose, and syndactilism of the 2nd and 3rd toes. According patients (10). to his mother he was doing well during the first 6 months. At Homocystinuria with hypomethioninemia is also a key finding the age of 9 months he was unable to sit or to crawl. The in patients with a congenital defect of cobalamin coenzyme pediatrician was consulted only at the age of 1 yr and microce- synthesis leading to malfunction of the methyl-cobalamin depen- phaly, muscular hypotonia, and a pathological EEG were noted. Progressive neurologic deterioration led to his admission at Received May 21, 1984; accepted August 1, 1985. the age of 18 months. Weight was on the 50th, length on the Address reprint requests to Dr. R. Baumgartner, Department of Pediatrics University of Basel, Postfach 4005, Basel, Switzerland. 90th, but head circumference far below the 3rd percentile. The Supported in part by U.S. Public Health Service Grant AM-08171 from the boy had no coordinate eye movements, could not sit, and did National Institutes of Health. not even recognize his mother. He had muscular hypotonia and 88 DEFECTS IN METHk'L-THF METABOLISM 1289 minor motor seizures. The EEG was severely disorganized by pm; from controls A.J. 22 h pm, F.T. 9 h pm, E.H. 7% h pm slow background rhythms and sharp and slow wave complexes. and stored frozen at -60" C until analyzed. Exposure to artificial His mental age was 2 months. He had no evidence of ectopia light was carefully minimized during handling of the tissue and lentis, marfanoid features, or bone deformities. extraction procedures. Tissues (0.5 to 1.5 g depending on tissue The metabolic screening program revealed homocystinuria being studied) were homogenized with 9 volumes of ice cold 0.0 1 which was confirmed by ion exchange chromatography (99 M phosphate buffer pH 7.0 containing 1.0% mercaptoethanol. pmo1/24 h). In addition there was cystathioninuria (37.8 pmoll The homogenate was centrifuged at 20,000 x g for 30 min at 4" 24 h), elevated plasma homocysteine (35.6 pmol/liter) but very C. Duplicate 100 p1 samples of the supernatant (equivalent to 10 low concentrations of plasma methionine (4-12 pmol/liter). mg tissue) were used in the methionine synthetase and 200 p1 Methylmalonic acid was not detectable in urine. Serum folate samples in the methylene THF reductase assays. The extracts of concentrations were abnormally low (2 ng/ml, normal 6-20 ng/ kidney and liver used for the enzyme assays contained approxi- ml; Lactobacillus casei assay). The blood count was normal and mately 100 mg protein (Lowry method) per g tissue. The re- there were no megaloblastic alterations. The diagnosis of meth- mainder of the extract was frozen and stored at - 10" C for 1- 10 ylene-THF reductase deficiency was suspected. Treatment with days until folate distribution determinations were made. high doses of oral folic acid (5 mg/day) and hydroxocobalamin Methylene-THF reductase determination. The activity of this intramuscularly normalized the blood folate levels but had no enzyme in liver and kidney was determined by the "reverse clinical nor biochemical effect. The boy died unexpectedly at the direction" method of Kutzbach and Stokstad (22), in which age of 3% yr from bronchopneumonia. The histopathologic I4CH3-THFis enzymatically converted to I4C-formaldehydewith findings have been reported previously (18). Methylene-THF menadione as the electron acceptor. reductase deficiency was confirmed by enzyme assay in the Methionine synthetase determination. This was measured by patient's fibroblasts (2% of control values) (10). Addition of the method of Sauer and Jaenicke (23) in which cyanocobolamin coenzyme FAD did not stimulate the activity significantly (Wong was added and anaerobiosis maintained by dithiothreitol in a PWK, unpublished data). On the other hand, the activity of the nitrogen atmosphere. two BI2-dependent enzymes, methionine synthetase (Wong Folate distribution by column chromatatography. The frozen PWK, unpublished data), and MMA-CoA mutase (Baumgartner pH 7.0 extract was thawed, adjusted to pH 4.7 with HC1, 1% ER, unpublished data) in fibroblasts, were found to be normal. ascorbate added, the mixture heated to 100" C for 7 min, cooled, Cystathionine synthetase activity measured in liver was also centrifuged at 2000 rpm at room temperature, and the superna- normal (Baumgartner ER, unpublished data). tant incubated at 37" C for 3 h with a purified hog kidney Patient S.B. This case has been reported in detail elsewhere conjugase preparation (24). A sample equivalent to 200 mg of (12, 13, 17). S.B., first child of unrelated parents, was born at liver was chromatographed on a 9 x 200 mm QAE Sephadex term after an uncomplicated pregnancy with a birth weight and column using an exponential salt gradient containing 2% mer- head circumference in the 10th percentile and length in the 25th captoethanol as described by Chan (25). 2000 cpm (2 ng) of I4C- percentile. A younger brother is healthy. Neonatal hyperbiliru- methyl-THF was added to the extract before application to the binemia was treated with phototherapy. At 3 months of age he column to serve as a radioactive marker. Both the samples was admitted because of feeding difficulties, failure to thrive, and applied to the column and the column fractions were assayed progressive anemia. He presented with severe dystrophy (weight microbiologically with both L. casei (ATCC 4569) and strepto- below the 3rd percentile) and microcephaly (head circumference coccus faecalis (ATCC 8043) by the method of Tamura et al.
Recommended publications
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • One Carbon Metabolism and Its Clinical Significance
    One carbon metabolism and its clinical significance Dr. Kiran Meena Department of Biochemistry Class 5 : 10-10-2019 (8:00 to 9:00 AM ) Specific Learning Objectives Describe roles of folic acid, cobalamin and S-adenosylmethionine (SAM) in transfer of one carbon units between molecules, and apply their relevance to disease states Describe synthesis of S-adenosylmethionine and its role in methylation reactions Explain how a cobalamin deficiency leads to a secondary folate deficiency Introduction Human body cannot synthesize folic acid Its also called vitamin B9 give rise to tetrahydrofolate (THF), carry one carbon groups ex. Methyl group Intestines releases mostly N5-methy-THF into blood One-carbon (1C) metabolism, mediated by folate cofactor, supports biosynthesis of purines and pyrimidines, aa homeostasis (glycine, serine and methionine) Table 14.4: DM Vasudevan’ s Textbook of Biochemistry for Medical Students 6th edition Enzyme co-factors involved in aa catabolism Involves one of three co-factors: Biotin, Tetrahydrofolate (THF) and S- adenosylmethionine (SAM) These cofactors transfer one-carbon groups in different oxidation states: 1. Biotin transfers carbon in its most oxidized state CO2, it require for catabolism and utilization of branched chain aa • Biotin responsible for carbon dioxide transfer in several carboxylase enzymes Cont-- 2. Tetrahydrofolate (THF) transfers one-carbon groups in intermediate oxidation states and as methyl groups • Tetrahydrobiopterin (BH4, THB) is a cofactor of degradation of phenylalanine • Oxidised form of THF, folate is vitamin for mammals • It converted into THF by DHF reductase 3. S-adenosylmethionine (SAM) transfers methyl groups, most reduced state of carbon THF and SAM imp in aa and nucleotide metabolism SAM used in biosynthesis of creatine, phosphatidylcholine, plasmenylcholine and epinephrine, also methylated DNA, RNA and proteins Enzymes use cobalamin as a cofactor 1.
    [Show full text]
  • L-Carnitine, Mecobalamin and Folic Acid Tablets) TRINERVE-LC
    For the use of a Registered Medical Practitioner or a Hospital or a Laboratory only (L-Carnitine, Mecobalamin and Folic acid Tablets) TRINERVE-LC 1. Name of the medicinal product Trinerve-LC Tablets 2. Qualitative and quantitative composition Each film- coated tablets contains L-Carnitine…………………….500 mg Mecobalamin……………….1500 mcg Folic acid IP…………………..1.5mg 3. Pharmaceutical form Film- coated tablets 4. Clinical particulars 4.1 Therapeutic indications Vitamin and micronutrient supplementation in the management of chronic disease. 4.2 Posology and method of administration For oral administration only. One tablet daily or as directed by physician. 4.3 Contraindications Hypersensitivity to any constituent of the product. 4.4 Special warnings and precautions for use L-Carnitine The safety and efficacy of oral L-Carnitine has not been evaluated in patients with renal insufficiency. Chronic administration of high doses of oral L-Carnitine in patients with severely compromised renal function or in ESRD patients on dialysis may result in accumulation of the potentially toxic metabolites, trimethylamine (TMA) and trimethylamine-N-oxide (TMAO), since these metabolites are normally excreted in the urine. Mecobalamin Should be given with caution in patients suffering from folate deficiency. The following warnings and precautions suggested with parent form – vitamin B12 The treatment of vitamin B12 deficiency can unmask the symptoms of polycythemia vera. Megaloblastic anemia is sometimes corrected by treatment with vitamin B12. But this can have very serious side effects. Don’t attempt vitamin B12 therapy without close supervision by healthcare provider. Do not take vitamin B12 if Leber’s disease, a hereditary eye disease.
    [Show full text]
  • Enbrace​​® ​HR DESCRIPTION​​: INGREDIENTS
    EnBrace® HR with DeltaFolate​ ™ ​ [1 NF Units] [15 mg DFE Folate] ​ ​ ANTI-ANEMIA PREPARATION as extrinsic/intrinsic factor concentrate plus folate. ​ Prescription Prenatal/Vitamin Drug For Therapeutic Use ​ ​ ​ Multi-phasic Capsules (30ct bottle) NDC 64661-650-30 ​ ​ ​ Rx Only [DRUG] ​ ​ ​ GLUTEN-FREE DESCRIPTION: EnBrace® HR is an​ orally administered prescription prenatal/vitamin drug for ​ ​ ​ ​ ​ ​ ​ ​ therapeutic use formulated for female macrocytic anemia patients that are in need of treatment, ​ and are under specific direction and monitoring of vitamin B12 and vitamin B9 status by a ​ ​ ​ ​ physician. EnBrace® HR is intended for women of childbearing age who are – or desire to ​ become, pregnant regardless of lactation status. EnBrace® HR may be prescribed for women at risk of depression as a result of folate or cobalamin deficiency - including folate-induced postpartum depression, or are at risk of folate-induced birth defects such as may be found with spina bifida and other neural tube defects (NTDs). INGREDIENTS: ​ Cobalamin intrinsic factor complex 1 NF Units* * ​ National​ Formulary Units (“NF UNITS”) equivalent to 50 mcg of active coenzyme cobalamin (as cobamamide concentrate with intrinsic factor) ALSO CONTAINS: 1 Folinic acid (B9-vitamer) 2.5 mg ​ ​ ​ ​ ​ + ​ 1 Control-release, citrated folic acid, DHF ​ (B9-Provitamin) 1 mg ​ ​ ​ ​ ​ 2 ​ Levomefolic acid (B9 & B12- cofactor) 5.23 mg 1 ​ ​ ​ ​ ​ ​ ​ ​ 6 mg DFE folate (vitamin B9) 2 ​ ​ 9​ mg DFE l-methylfolate magnesium (molar equivalent). FUNCTIONAL EXCIPIENTS: 13.6 mg FeGC as ferrous glycine cysteinate (1.5 mg 3 3,4 ​ elemental iron )​ [colorant], 25 mg ascorbates ​ (24 mg magnesium l-ascorbate, 1 mg ​ ​ ​ zinc l-ascorbate) [antioxidant], at least 23.33 mg phospholipid-omega3 complex5 ​ ​ ​ ​ [marine lipids], 500 mcg betaine (trimethylglycine) [acidifier], 1 mg magnesium ​ ​ ​ ​ l-threonate [stabilizer].
    [Show full text]
  • 5,10-Methylenetetrahydrofolate Dehydrogenase (Ec 1.5.1.5)
    Enzymatic Assay of 5,10-METHYLENETETRAHYDROFOLATE DEHYDROGENASE (EC 1.5.1.5) PRINCIPLE: 5,10-MeFH4DH 5,10-Methylene-FH4 + ß-NADP > 5,10-Methenyl-FH4 + ß-NADPH Abbreviations used: 5,10-Methylene-FH4 = 5,10-Methylenetetrahydrofolate 5,10-Methenyl-FH4 = 5,10-Methenyltetrahydrofolate 5,10-MeFH4DH = 5,10-Methylenetetrahydrofolate Dehydrogenase ß-NADP = ß-Nicotinamide Adenine Dinucleotide Phosphate, Oxidized Form ß-NADPH = ß-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form CONDITIONS: T = 25°C, pH = 7.5, A340nm, Light path = 1 cm METHOD: Continuous Spectrophotometric Rate Determination REAGENTS: A. 50 mM Potassium Phosphate Buffer with 100 mM Potassium Chloride, pH 7.5 at 25°C (Prepare 200 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, and Potassium Chloride. Adjust to pH 7.5 at 25°C with 1 M NaOH.) B. 0.002% (w/v) Tetrahydrofolic Acid with 0.002% (v/v) Formaldehyde and 0.1% (v/v) 2-Mercaptoethanol Solution (FH4) (Immediately before used, prepare 100 ml in Reagent A using Tetrahydrofolic Acid, Formaldehyde, 37% Solution,1 and 2-Mercaptoethanol. ) C. 20 mM ß-Nicotinamide Adenine Dinucleotide Phosphate (ß-NADP) (Prepare 2 ml in deionized water using ß-Nicotinamide Adenine Dinucleotide Phosphate, Sodium Salt PREPARE FRESH. ) Page 1 of 3 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-562-8517 1-631-448-7888 Fax: 1-631-938-8127 Enzymatic Assay of 5,10-METHYLENETETRAHYDROFOLATE DEHYDROGENASE (EC 1.5.1.5) REAGENTS: (continued) D. 5,10-Methylenetetrahydrofolate Dehydrogenase Enzyme Solution (Immediately before use, prepare a solution containing 0.01 - 0.03 unit/ml of 5,10-Methylenetetrahydrofolate Dehydrogenase in cold Reagent A.) PROCEDURE: Pipette (in milliliters) the following reagents into suitable cuvettes: Test Blank Reagent B (FH4) 2.80 2.80 Reagent D (Enzyme Solution) 0.10 0.10 Mix by inversion and equilibrate to 25°C.
    [Show full text]
  • 5,10-Methylenetetrahydrofolate Dehydrogenasefrom
    JOURNAL OF BACTERIOLOGY, Feb. 1991, p. 1414-1419 Vol. 173, No. 4 0021-9193/91/041414-06$02.00/0 Copyright 0 1991, American Society for Microbiology Purification and Characterization of NADP+-Dependent 5,10-Methylenetetrahydrofolate Dehydrogenase from Peptostreptococcus productus Marburg GERT WOHLFARTH, GABRIELE GEERLIGS, AND GABRIELE DIEKERT* Institutfur Mikrobiologie, Universitat Stuttgart, Azenbergstrasse 18, D-7000 Stuttgart 1, Federal Republic of Germany Received 19 June 1990/Accepted 7 December 1990 The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophicaily grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 ,M, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric a2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to >95% in the soluble (supernatant) fraction. Sodium (10 FM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P.
    [Show full text]
  • Characterisation, Classification and Conformational Variability Of
    Characterisation, Classification and Conformational Variability of Organic Enzyme Cofactors Julia D. Fischer European Bioinformatics Institute Clare Hall College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 11 April 2011 This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the word limit of 60,000 words. Acknowledgements I would like to thank all the members of the Thornton research group for their constant interest in my work, their continuous willingness to answer my academic questions, and for their company during my time at the EBI. This includes Saumya Kumar, Sergio Martinez Cuesta, Matthias Ziehm, Dr. Daniela Wieser, Dr. Xun Li, Dr. Irene Pa- patheodorou, Dr. Pedro Ballester, Dr. Abdullah Kahraman, Dr. Rafael Najmanovich, Dr. Tjaart de Beer, Dr. Syed Asad Rahman, Dr. Nicholas Furnham, Dr. Roman Laskowski and Dr. Gemma Holli- day. Special thanks to Asad for allowing me to use early development versions of his SMSD software and for help and advice with the KEGG API installation, to Roman for knowing where to find all kinds of data, to Dani for help with R scripts, to Nick for letting me use his E.C. tree program, to Tjaart for python advice and especially to Gemma for her constant advice and feedback on my work in all aspects, in particular the chemistry side. Most importantly, I would like to thank Prof. Janet Thornton for giving me the chance to work on this project, for all the time she spent in meetings with me and reading my work, for sharing her seemingly limitless knowledge and enthusiasm about the fascinating world of enzymes, and for being such an experienced and motivational advisor.
    [Show full text]
  • University of Groningen Exploring the Cofactor-Binding and Biocatalytic
    University of Groningen Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Kopacz, Malgorzata IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check the document version below. Document Version Publisher's PDF, also known as Version of record Publication date: 2014 Link to publication in University of Groningen/UMCG research database Citation for published version (APA): Kopacz, M. (2014). Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes. Copyright Other than for strictly personal use, it is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license (like Creative Commons). The publication may also be distributed here under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license. More information can be found on the University of Groningen website: https://www.rug.nl/library/open-access/self-archiving-pure/taverne- amendment. Take-down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from the University of Groningen/UMCG research database (Pure): http://www.rug.nl/research/portal. For technical reasons the number of authors shown on this cover page is limited to 10 maximum. Download date: 29-09-2021 Exploring the cofactor-binding and biocatalytic properties of flavin-containing enzymes Małgorzata M. Kopacz The research described in this thesis was carried out in the research group Molecular Enzymology of the Groningen Biomolecular Sciences and Biotechnology Institute (GBB), according to the requirements of the Graduate School of Science, Faculty of Mathematics and Natural Sciences.
    [Show full text]
  • Metabolism of Oestriol in Vitro Department Ofbiochemistry
    Vol. 79 2-METHOXY- AND 2-HYDROXY-OESTRIOL FROM LIVER 361 Layne, D. S. & Marrian, G. F. (1958). Biochem. J. 70, 244. Midgeon, C. J., Wall, P. E. & Bertrand, J. (1959). J. clin. Levitz, M., Spitzer, J. R. & Twombly, G. H. (1958). J. biol. IInvet. 38, 619. Chem. 231, 787. Mueller, G. S. & Rumney, G. (1957). J. Amer. cheem. Soc. Lieberman, S., Tagnon, H. J. & Schulman, P. (1952). J. 79, 1004. din. Inve8t. 3i, 341. Riegel, I. L. & Mueller, G. C. (1954). J. biol. Chem. 210, Loke, K. H. (1958). Ph.D. Thesis: University of Edin- 249. burgh. Ryan, K. J. & Engel, L. L. (1953). Endocrinology, 52, 277. Loke, K. H. & Marrian, G. F. (1958). Biochim. biophy8. Saffran, M. & Jarman, D. F. (1960). Canad. J. Biochem. Acta, 27, 213. Physiol. 38, 303. Loke, K. H., Marrian, G. F., Johnson, W. S., Mayer, W. L. Sandberg, A. A., Slaunwhite, W. R. & Antoniades, H. N. & Cameron, D. D. (1958). Biochim. biophy8. Acta, 28, (1957). Recent Progr. Hormone Re8. 13, 209. 214. Stimmel, B. F. (1959). Fed. Proc. 18, 332. Marrian, G. F., Loke, K. H., Watson, E. J. D. & Panattoni, Szego, C. M. (1953). Endocrinology, 54, 649. M. (1957). Biochem. J. 60, 66. Weil-Malherbe, H. & Bone, A. D. (1957). Biochem. J. 67, Marrian, G. F. & Sneddon, A. (1960). Biochem. J. 74, 430. 65. Biochem. J. (1961) 79, 361 Metabolism of Oestriol in vitro COFACTOR REQUIREMENTS FOR THE FORMATION OF 2-HYDROXYOESTRIOL AND 2-METHOXYOESTRIOL BY R. J. B. KING* Department of Biochemistry, Univer8ity of Edinburgh (Received 2 September 1960) The conversion of oestriol into 2-hydroxyoestriol whereas this vitamin has no effect on the 11pl- and 2-methoxyoestriol by rat- and rabbit-liver hydroxylation of 1l-deoxycorticosterone (Tom- slices described in the preceding paper indicated a kins, Curran & Michael, 1958).
    [Show full text]
  • Thiamine Pyrophosphate
    CO-ENZYMES Coenzymes are organic non-protein molecules that bind with the protein molecule (apoenzyme) to form the active enzyme (holoenzyme). » Coenzymes are small molecules. » They cannot catalyze a reaction by themselves but they can help enzymes to do so. Example: Thiamine pyrophosphate, FAD, pantothenic acid etc. Salient features of coenzyme: Coenzymes are heat stable. They are low-molecular weight substances. The coenzymes combine loosely with the enzyme molecules and so, the coenzyme can be separated easily by dialysis. When the reaction is completed, the coenzyme is released from the apo-enzyme, and goes to some other reaction site. Thiamine pyrophosphate: Thiamine pyrophosphate (TPP), or thiamine diphosphate (ThDP), is a thiamine derivative, is also known as vitamin B1. Biological Function of Thiamine pyrophosphate: It maintains: The normal function of the heart; Normal carbohydrate and energy-yielding metabolism; The normal function of the nervous system; Normal neurological development and function; Normal psychological functions. Flavin Coenzymes: Flavin mono nucleotide (FMN) Flavin adenine di nucleotide (FMD) Flavin is the common name for a group of organic compounds based on pteridine,. The biochemical source is the riboflavin. It is commonly know as Vitamin B2. The flavin often attached with an adenosine diphosphate to form flavin adenine dinucleotide (FAD),and, in other circumstances, is found as flavin mononucleotide (FMN). Biological Functions and Importance: Normal energy-yielding metabolism; Normal metabolism of iron in the body; The maintenance of normal skin and mucous membranes; The maintenance of normal red blood cells; The maintenance of normal vision; The maintenance of the normal function of the nervous system. TH4 or Tetrahydrofolic acid: Tetrahydrofolic acid, or tetrahydrofolate, is a folic acid derivative.
    [Show full text]
  • New Therapies Immunosuppression and Chemotherapy
    Postgrad Med J 1997; 73: 617- 622 (© The Fellowship of Postgraduate Medicine, 1997 New therapies Postgrad Med J: first published as 10.1136/pgmj.73.864.617 on 1 October 1997. Downloaded from Pyridoxine deficiency: new approaches in Summary immunosuppression and chemotherapy Pyridoxine deficiency leads to im- pairment of immune responses. It appears that the basic derange- ment is the decreased rate of Antonios Trakatellis, Afrodite Dimitriadou, Myrto Trakatelli production of one-carbon units necessary for the synthesis of nucleic acids. The key factor is a Pyridoxine (vitamin Bj) pyridoxine enzyme, serine hydro- xymethyltransferase. This enzyme Pyridoxine (vitamin B6) was first isolated in 1938. Subsequent studies carried is very low in resting lymphocytes out by Snell and collaborators have demonstrated that the active coenzymes of but increases significantly under pyridoxine are pyridoxal phosphate and pyridoxamine phosphate (figure 1). the influence of antigenic or mito- These coenzymes participate together with a large number of apoenzymes, genic stimuli, thus supplying the mainly in conversion reactions of amino acids such as transaminations, increased demand for nucleic acid deaminations, decarboxylations, racemisations, dehydrations, etc, and are synthesis during an immune re- considered the most versatile biocatalysts. sponse. Serine hydroxymethyl- Many drugs and poisons antagonise the pyridoxal phosphate enzymes. One transferase activity is depressed of them 4-deoxypyridoxine (dB6) (figure 1), is phosphorylated by pyridoxine by deoxypyridoxine, a potent an- kinase to form 4-deoxypyridoxal phosphate, an antagonist of pyridoxal tagonist of pyridoxal phosphate, phosphate which competes for the active site of various B6 apoenzymes. and also by known immunosup- The pyridoxine deficiency state in experimental animals is produced by pressive or antiproliferative feeding them diets devoid of vitamin B6.
    [Show full text]
  • Neuroenhancement with Vitamin B12—Underestimated Neurological Significance
    Nutrients 2013, 5, 5031-5045; doi:10.3390/nu5125031 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Review Neuroenhancement with Vitamin B12—Underestimated Neurological Significance Uwe Gröber 1,*, Klaus Kisters 1,2 and Joachim Schmidt 1 1 Academy of Micronutrient Medicine, Zweigertstr. 55, Essen 45130, Germany; E-Mails: [email protected] (K.K.); [email protected] (J.S.) 2 St. Anna Hospital, Hospitalstr. 19, Herne 44649, Germany * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +49-201-8742984. Received: 6 June 2013; in revised form: 20 November 2013 / Accepted: 29 November 2013 / Published: 12 December 2013 Abstract: Vitamin B12 is a cofactor of methionine synthase in the synthesis of methionine, the precursor of the universal methyl donor S-Adenosylmethionine (SAMe), which is involved in different epigenomic regulatory mechanisms and especially in brain development. A Vitamin B12 deficiency expresses itself by a wide variety of neurological manifestations such as paraesthesias, skin numbness, coordination disorders and reduced nerve conduction velocity. In elderly people, a latent Vitamin B12 deficiency can be associated with a progressive brain atrophy. Moderately elevated concentrations of homocysteine (>10 µmol/L) have been associated with an increased risk of dementia, notably Alzheimer’s disease, in many cross-sectional and prospective studies. Raised plasma concentrations of homocysteine is also associated with both regional and whole brain atrophy, not only in Alzheimer’s disease but also in healthy elderly people. Clinician awareness should be raised to accurately diagnose and treat early Vitamin B12 deficiency to prevent irreversible structural brain damage.
    [Show full text]