5,10-Methylenetetrahydrofolate Dehydrogenasefrom

Total Page:16

File Type:pdf, Size:1020Kb

5,10-Methylenetetrahydrofolate Dehydrogenasefrom JOURNAL OF BACTERIOLOGY, Feb. 1991, p. 1414-1419 Vol. 173, No. 4 0021-9193/91/041414-06$02.00/0 Copyright 0 1991, American Society for Microbiology Purification and Characterization of NADP+-Dependent 5,10-Methylenetetrahydrofolate Dehydrogenase from Peptostreptococcus productus Marburg GERT WOHLFARTH, GABRIELE GEERLIGS, AND GABRIELE DIEKERT* Institutfur Mikrobiologie, Universitat Stuttgart, Azenbergstrasse 18, D-7000 Stuttgart 1, Federal Republic of Germany Received 19 June 1990/Accepted 7 December 1990 The 5,10-methylenetetrahydrofolate dehydrogenase of heterotrophicaily grown Peptostreptococcus productus Marburg was purified to apparent homogeneity. The purified enzyme catalyzed the reversible oxidation of methylenetetrahydrofolate with NADP+ as the electron acceptor at a specific activity of 627 U/mg of protein. The Km values for methylenetetrahydrofolate and for NADP+ were 27 and 113 ,M, respectively. The enzyme, which lacked 5,10-methenyltetrahydrofolate cyclohydrolase activity, was insensitive to oxygen and was thermolabile at temperatures above 40C. The apparent molecular mass of the enzyme was estimated by gel filtration to be 66 kDa. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed the presence of a single subunit of 34 kDa, accounting for a dimeric a2 structure of the enzyme. Kinetic studies on the initial reaction velocities with different concentrations of both substrates in the absence and presence of NADPH as the reaction product were interpreted to indicate that the enzyme followed a sequential reaction mechanism. After gentle ultracentrifugation of crude extracts, the enzyme was recovered to >95% in the soluble (supernatant) fraction. Sodium (10 FM to 10 mM) had no effect on enzymatic activity. The data were taken to indicate that the enzyme was similar to the methylenetetrahydrofolate dehydrogenases of other homoacetogenic bacteria and that the enzyme is not involved in energy conservation of P. productus. Homoacetogenic bacteria are strictly anaerobic eubacteria membrane, thus pointing to its proposed role in energy that mediate the total synthesis of acetate from CO2 in their conservation. However, the methylenetetrahydrofolate re- energy metabolism. The methyl group of acetate is formed duction was not dependent on sodium (19). from CO2 via formate and tetrahydrofolate-bound C-1 inter- Here we report on the isolation and properties of the mediates; synthesis of the carboxyl group proceeds via a methylenetetrahydrofolate dehydrogenase to elucidate the bound carbon monoxide (for recent reviews on homoaceto- possible role of this enzyme in energy conservation of gens and their energy metabolism, see references 3, 7, 13, homoacetogenic bacteria. Our data can be interpreted as and 20). Most homoacetogenic bacteria are able to grow on excluding such a role in the homoacetogen P. productus. H2 plus CO2 as energy sources. Therefore, reduction of CO2 This conclusion is supported by an earlier observation, that to acetate must be coupled with a net formation of ATP. in A. woodii the formation of the methyl group from form- Studies with Acetobacterium woodii (4) led to the assump- aldehyde, which does not involve methylenetetrahydrofolate tion that ATP synthesis is coupled to the formation of the dehydrogenase, was also sodium dependent (10). methyl group of acetate via a chemiosmotic mechanism. For the homoacetogen Peptostreptococcus productus (9) and other homoacetogens (10, 21), evidence was presented that MATERIALS AND METHODS an electrochemical sodium gradient formed upon synthesis and Dowex 50 ofthe methyl group from formate could play an essential role Materials. Tetrahydrofolic acid, DNase II, reaction in WX 8, 100/200 mesh, were from Serva (Heidelberg, Federal in energy conservation. The sodium-dependent Republic of Germany). Formaldehyde, 2-mercaptoethanol methyl group synthesis is not yet known. Therefore, we Federal studied the enzymes mediating methyl formation. Of partic- and folic acid were from Fluka (Neu-Ulm, Republic reactions suffi- ofGermany). NAD(P)+ and flavin adenine dinucleotide were ular interest are the enzymes that catalyze from Boehringer (Mannheim, Federal Republic of Germa- ciently exergonic to be possibly coupled to a sodium trans- re- location across the cytoplasmic membrane. These reactions ny). The chromatography and column materials except and with CO or H2 as active yellow 86-agarose were purchased from Pharmacia are, at least under standard conditions (Uppsala, Sweden). Centricon 30 tubes were from Amicon an electron donor, the reduction of methylenetetrahydrofo- and all other late to methyltetrahydrofolate and the formation of methyl- (Danvers, Mass.). Reactive yellow 86-agarose enetetrahydrofolate from methenyltetrahydrofolate. The for- chemicals of the highest available purity were obtained from mer reaction is the most exergonic step in methyl group Sigma (Deisenhofen, Federal Republic of Germany). synthesis. Studies of the methylenetetrahydrofolate reduc- Analytical methods. Methylenetetrahydrofolate dehydro- thermoautotrophicum (11) genase was assayed routinely by photometric determination tase in vesicles of Clostridium of the reduction of NADP+ and formation of methenyltet- and of the same enzyme purified from P. productus (19) = enzyme could be associated with the rahydrofolate from methylenetetrahydrofole at 350 nm (e indicated that the 5.6 mM-' cm-1 for NADPH and 24.9 mM-1 cm-' for methenyltetrahydrofolate) and 37°C. The assays were con- ducted aerobically in cuvettes filled with 1 ml of anaerobi- * Corresponding author. cally prepared 100 mM potassium phosphate buffer (pH 5.5) 1414 VOL. 173, 1991 METHYLENE-FH4 DEHYDROGENASE FROM P. PRODUCTUS 1415 or 100 mM Tris-HCl (pH 7.5) containing 50 mM 2-mercap- near 5 ,M sodium. The reversibility of the methylenetet- toethanol, 0.5 mM tetrahydrofolic acid, 10 mM formalde- rahydrofolate dehydrogenase reaction was studied in the hyde, and 0.3 mM NADP+. Methylenetetrahydrofolate was same assay system in the presence and absence of added formed nonenzymatically from tetrahydrofolate and formal- sodium (5 mM). The following substrate concentrations were dehyde (18). Only 25% of the tetrahydrofolate initially added used: methylenetetrahydrofolate ('biologically active'), 50 were converted to biologically active methylenetetrahydro- ,uM; and NADP+, 100 ,uM. After the equilibrium of the folate, since (i) two stereoisomers of tetrahydrofolate are reaction was reached, 100 ,uM NADPH was added. The present in the commercially available substance and (ii) part decrease in indicated the reoxidation of the subsequent absorption tetrahydrofolate was in its oxidized state as dihydro- of NADPH with methenyltetrahydrofolate as the electron folate (19). The concentration of convertible methylenetet- acceptor. No reverse reaction was observed when the en- rahydrofolate was determined as described earlier (19) by zyme was irreversibly inactivated by heating the cuvette to limiting the tetrahydrofolate concentration in the methylene- 60°C for 10 min prior to the addition of NADPH. tetrahydrofolate reductase and dehydrogenase assays with Purification of the excesses methylenetetrahydrofolate dehydroge- of the other substrates (NADH and NADP+) and nase. P. productus (ATCC 43917) cells were grown on formaldehyde. The reaction was started by the addition of glucose medium as described earlier (8). The cells were protein. The kinetic properties of the enzyme were analyzed harvested by centrifugation in the late logarithmic growth by varying the concentrations of methylenetetrahydrofolate phase and stored frozen at -20°C. and NADP+ as the substrates and NADPH as the product of (i) 1. of crude extracts and ammonium the Step Preparation reaction (see Fig. 3 and 4). The methylenetetrahydrofo- sulfate treatment. Frozen cells were suspended in an equal late concentrations of convertible substrate are given in volume of 50 mM Tris-HCl (pH 7.5) containing 5 mM Results and Discussion. mercaptoethanol, 1 mM 1 mM To exclude the MgCl2, phenylmethylsulfonyl presence of methenyltetrahydrofolate cy- fluoride, and 0.2 mg of DNase II per ml. The suspension was clohydrolase activity in the purified enzyme, the cyclohy- passed twice through a French pressure cell at 100,000 kPa. drolase reaction was measured by the addition of crude The crude extract was centrifuged at 80,000 x g and 4°C for extracts to methylenetetrahydrofolate dehydrogenase as- 60 min. The supernatant was stirred on ice, and ice-cold 3.2 says, which had been previously incubated with purified M ammonium sulfate (pH 7.0) was added to a final concen- dehydrogenase until the methylenetetrahydrofolate had been tration of 1.9 M. After being stirred on ice for 10 min, the completely converted to methenyltetrahydrofolate, i.e., un- mixture was centrifuged at 20,000 x g for 10 min to remove til a constant absorption was reached. The decrease of the precipitated protein. absorption due to the conversion of methenyltetrahydrofo- (ii) 2. on The late to Step Chromatography phenyl-Sepharose. formyltetrahydrofolate indicated the presence of supernatant was passed through a phenyl-Sepharose Fast cyclohydrolase in the crude extracts (0.38 ,umol/min/mg of Flow column (1.0 by 15 cm) preequilibrated with 1.6 M protein at pH 7.5). ammonium sulfate in basic buffer (20 mM Tris-HCI [pH 7.5] Protein was determined with bovine serum albumin as the containng 0.5 mM dithiothreitol). The column was washed standard by the Coomassie blue method (Bio-Rad, Munich, with 1.6 and 1.1 M ammonium sulfate ml Federal
Recommended publications
  • (ISU) at the University of Marburg
    In This Issue: March 21, 2016 Hessen International Summer University (ISU) at the University of Marburg Hessen International Summer University (ISU) at the University of Marburg Find your MBA, Master or Double Degree at the International Graduate Center in Bremen! Start your MBA programme in Germany at Kempten University of Applied Sciences Register now for the 2016 BSUA Berlin programme to work on your artistic The Hessen International Summer University (ISU) at the Philipps- potentials! Universität Marburg is a four-week summer study program, open to all candidates looking to combine their academic studies with an exciting Masters Programs at The Center for intercultural experience. Global Politics at Freie Universität The program offers an intensive German course (all levels, also for Berlin beginners), specialized seminars in English, credits (up to 9 ECTS), weekend field trips to various destinations in Germany and France and more! Vi si t: daad.org ISU in a nutshell Emai l: [email protected] ​ Dates: July 16 ​ August 13, 2016 ​ Program Topic: Business, Politics, and Conflicts in a Changing World. Selected Topics in: Business and Accounting Peace and Conflict Studies Middle Eastern Studies German Studies. Requirements: Applicants are expected to have a level of English language proficiency sufficient to participate in the academic and social environment of the program. Application documentation will include a letter of motivation and a transcript of records. Apply by March 31, 2016 and get an early-bird discount off the program fee!
    [Show full text]
  • Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications
    International Journal of Molecular Sciences Review Folic Acid Antagonists: Antimicrobial and Immunomodulating Mechanisms and Applications Daniel Fernández-Villa 1, Maria Rosa Aguilar 1,2 and Luis Rojo 1,2,* 1 Instituto de Ciencia y Tecnología de Polímeros, Consejo Superior de Investigaciones Científicas, CSIC, 28006 Madrid, Spain; [email protected] (D.F.-V.); [email protected] (M.R.A.) 2 Consorcio Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-915-622-900 Received: 18 September 2019; Accepted: 7 October 2019; Published: 9 October 2019 Abstract: Bacterial, protozoan and other microbial infections share an accelerated metabolic rate. In order to ensure a proper functioning of cell replication and proteins and nucleic acids synthesis processes, folate metabolism rate is also increased in these cases. For this reason, folic acid antagonists have been used since their discovery to treat different kinds of microbial infections, taking advantage of this metabolic difference when compared with human cells. However, resistances to these compounds have emerged since then and only combined therapies are currently used in clinic. In addition, some of these compounds have been found to have an immunomodulatory behavior that allows clinicians using them as anti-inflammatory or immunosuppressive drugs. Therefore, the aim of this review is to provide an updated state-of-the-art on the use of antifolates as antibacterial and immunomodulating agents in the clinical setting, as well as to present their action mechanisms and currently investigated biomedical applications. Keywords: folic acid antagonists; antifolates; antibiotics; antibacterials; immunomodulation; sulfonamides; antimalarial 1.
    [Show full text]
  • One Carbon Metabolism and Its Clinical Significance
    One carbon metabolism and its clinical significance Dr. Kiran Meena Department of Biochemistry Class 5 : 10-10-2019 (8:00 to 9:00 AM ) Specific Learning Objectives Describe roles of folic acid, cobalamin and S-adenosylmethionine (SAM) in transfer of one carbon units between molecules, and apply their relevance to disease states Describe synthesis of S-adenosylmethionine and its role in methylation reactions Explain how a cobalamin deficiency leads to a secondary folate deficiency Introduction Human body cannot synthesize folic acid Its also called vitamin B9 give rise to tetrahydrofolate (THF), carry one carbon groups ex. Methyl group Intestines releases mostly N5-methy-THF into blood One-carbon (1C) metabolism, mediated by folate cofactor, supports biosynthesis of purines and pyrimidines, aa homeostasis (glycine, serine and methionine) Table 14.4: DM Vasudevan’ s Textbook of Biochemistry for Medical Students 6th edition Enzyme co-factors involved in aa catabolism Involves one of three co-factors: Biotin, Tetrahydrofolate (THF) and S- adenosylmethionine (SAM) These cofactors transfer one-carbon groups in different oxidation states: 1. Biotin transfers carbon in its most oxidized state CO2, it require for catabolism and utilization of branched chain aa • Biotin responsible for carbon dioxide transfer in several carboxylase enzymes Cont-- 2. Tetrahydrofolate (THF) transfers one-carbon groups in intermediate oxidation states and as methyl groups • Tetrahydrobiopterin (BH4, THB) is a cofactor of degradation of phenylalanine • Oxidised form of THF, folate is vitamin for mammals • It converted into THF by DHF reductase 3. S-adenosylmethionine (SAM) transfers methyl groups, most reduced state of carbon THF and SAM imp in aa and nucleotide metabolism SAM used in biosynthesis of creatine, phosphatidylcholine, plasmenylcholine and epinephrine, also methylated DNA, RNA and proteins Enzymes use cobalamin as a cofactor 1.
    [Show full text]
  • L-Carnitine, Mecobalamin and Folic Acid Tablets) TRINERVE-LC
    For the use of a Registered Medical Practitioner or a Hospital or a Laboratory only (L-Carnitine, Mecobalamin and Folic acid Tablets) TRINERVE-LC 1. Name of the medicinal product Trinerve-LC Tablets 2. Qualitative and quantitative composition Each film- coated tablets contains L-Carnitine…………………….500 mg Mecobalamin……………….1500 mcg Folic acid IP…………………..1.5mg 3. Pharmaceutical form Film- coated tablets 4. Clinical particulars 4.1 Therapeutic indications Vitamin and micronutrient supplementation in the management of chronic disease. 4.2 Posology and method of administration For oral administration only. One tablet daily or as directed by physician. 4.3 Contraindications Hypersensitivity to any constituent of the product. 4.4 Special warnings and precautions for use L-Carnitine The safety and efficacy of oral L-Carnitine has not been evaluated in patients with renal insufficiency. Chronic administration of high doses of oral L-Carnitine in patients with severely compromised renal function or in ESRD patients on dialysis may result in accumulation of the potentially toxic metabolites, trimethylamine (TMA) and trimethylamine-N-oxide (TMAO), since these metabolites are normally excreted in the urine. Mecobalamin Should be given with caution in patients suffering from folate deficiency. The following warnings and precautions suggested with parent form – vitamin B12 The treatment of vitamin B12 deficiency can unmask the symptoms of polycythemia vera. Megaloblastic anemia is sometimes corrected by treatment with vitamin B12. But this can have very serious side effects. Don’t attempt vitamin B12 therapy without close supervision by healthcare provider. Do not take vitamin B12 if Leber’s disease, a hereditary eye disease.
    [Show full text]
  • Marburg Hemorrhagic Fever Fact Sheet
    Marburg Hemorrhagic Fever Fact Sheet What is Marburg hemorrhagic fever? Marburg hemorrhagic fever is a rare, severe type of hemorrhagic fever which affects both humans and non-human primates. Caused by a genetically unique zoonotic (that is, animal-borne) RNA virus of the filovirus family, its recognition led to the creation of this virus family. The four species of Ebola virus are the only other known members of the filovirus family. Marburg virus was first recognized in 1967, when outbreaks of hemorrhagic fever occurred simultaneously in laboratories in Marburg and Frankfurt, Germany and in Belgrade, Yugoslavia (now Serbia). A total of 37 people became ill; they included laboratory workers as well as several medical personnel and Negative stain image of an isolate of Marburg virus, family members who had cared for them. The first people showing filamentous particles as well as the infected had been exposed to African green monkeys or characteristic "Shepherd's Crook." Magnification their tissues. In Marburg, the monkeys had been imported approximately 100,000 times. Image courtesy of for research and to prepare polio vaccine. Russell Regnery, Ph.D., DVRD, NCID, CDC. Where do cases of Marburg hemorrhagic fever occur? Recorded cases of the disease are rare, and have appeared in only a few locations. While the 1967 outbreak occurred in Europe, the disease agent had arrived with imported monkeys from Uganda. No other case was recorded until 1975, when a traveler most likely exposed in Zimbabwe became ill in Johannesburg, South Africa – and passed the virus to his traveling companion and a nurse. 1980 saw two other cases, one in Western Kenya not far from the Ugandan source of the monkeys implicated in the 1967 outbreak.
    [Show full text]
  • MARBURG HEMORRHAGIC FEVER (Marburg HF)
    MARBURG HEMORRHAGIC FEVER (Marburg HF) REPORTING INFORMATION • Class A: Report immediately via telephone the case or suspected case and/or a positive laboratory result to the local public health department where the patient resides. If patient residence is unknown, report immediately via telephone to the local public health department in which the reporting health care provider or laboratory is located. Local health departments should report immediately via telephone the case or suspected case and/or a positive laboratory result to the Ohio Department of Health (ODH). • Reporting Form(s) and/or Mechanism: o Immediately via telephone. o For local health departments, cases should also be entered into the Ohio Disease Reporting System (ODRS) within 24 hours of the initial telephone report to the ODH. • Key fields for ODRS reporting include: import status (whether the infection was travel-associated or Ohio-acquired), date of illness onset, and all the fields in the Epidemiology module. AGENT Marburg hemorrhagic fever is a rare, severe type of hemorrhagic fever which affects both humans and non-human primates. Caused by a genetically unique zoonotic RNA virus of the family Filoviridae, its recognition led to the creation of this virus family. The five species of Ebola virus are the only other known members of the family Filoviridae. Marburg virus was first recognized in 1967, when outbreaks of hemorrhagic fever occurred simultaneously in laboratories in Marburg and Frankfurt, Germany and in Belgrade, Yugoslavia (now Serbia). A total of 31 people became ill, including laboratory workers as well as several medical personnel and family members who had cared for them.
    [Show full text]
  • Enbrace​​® ​HR DESCRIPTION​​: INGREDIENTS
    EnBrace® HR with DeltaFolate​ ™ ​ [1 NF Units] [15 mg DFE Folate] ​ ​ ANTI-ANEMIA PREPARATION as extrinsic/intrinsic factor concentrate plus folate. ​ Prescription Prenatal/Vitamin Drug For Therapeutic Use ​ ​ ​ Multi-phasic Capsules (30ct bottle) NDC 64661-650-30 ​ ​ ​ Rx Only [DRUG] ​ ​ ​ GLUTEN-FREE DESCRIPTION: EnBrace® HR is an​ orally administered prescription prenatal/vitamin drug for ​ ​ ​ ​ ​ ​ ​ ​ therapeutic use formulated for female macrocytic anemia patients that are in need of treatment, ​ and are under specific direction and monitoring of vitamin B12 and vitamin B9 status by a ​ ​ ​ ​ physician. EnBrace® HR is intended for women of childbearing age who are – or desire to ​ become, pregnant regardless of lactation status. EnBrace® HR may be prescribed for women at risk of depression as a result of folate or cobalamin deficiency - including folate-induced postpartum depression, or are at risk of folate-induced birth defects such as may be found with spina bifida and other neural tube defects (NTDs). INGREDIENTS: ​ Cobalamin intrinsic factor complex 1 NF Units* * ​ National​ Formulary Units (“NF UNITS”) equivalent to 50 mcg of active coenzyme cobalamin (as cobamamide concentrate with intrinsic factor) ALSO CONTAINS: 1 Folinic acid (B9-vitamer) 2.5 mg ​ ​ ​ ​ ​ + ​ 1 Control-release, citrated folic acid, DHF ​ (B9-Provitamin) 1 mg ​ ​ ​ ​ ​ 2 ​ Levomefolic acid (B9 & B12- cofactor) 5.23 mg 1 ​ ​ ​ ​ ​ ​ ​ ​ 6 mg DFE folate (vitamin B9) 2 ​ ​ 9​ mg DFE l-methylfolate magnesium (molar equivalent). FUNCTIONAL EXCIPIENTS: 13.6 mg FeGC as ferrous glycine cysteinate (1.5 mg 3 3,4 ​ elemental iron )​ [colorant], 25 mg ascorbates ​ (24 mg magnesium l-ascorbate, 1 mg ​ ​ ​ zinc l-ascorbate) [antioxidant], at least 23.33 mg phospholipid-omega3 complex5 ​ ​ ​ ​ [marine lipids], 500 mcg betaine (trimethylglycine) [acidifier], 1 mg magnesium ​ ​ ​ ​ l-threonate [stabilizer].
    [Show full text]
  • MARBURG VIRUS [African Hemorrhagic Fever, Green Or Vervet Monkey Disease]
    MARBURG VIRUS [African Hemorrhagic Fever, Green or Vervet Monkey Disease] SPECIES: Nonhuman primates, especially african green monkeys & macaques AGENT: Agent is classified as a Filovirus. It is an RNA virus, superficially resembling rhabdoviruses but has bizarre branching and filamentous or tubular forms shared with no other known virus group on EM. The only other member of this class of viruses is ebola virus. RESERVOIR AND INCIDENCE: An acute highly fatal disease first described in Marburg, Germany in 1967. Brought to Marburg in a shipment of infected African Green Monkeys from Uganda. 31 people were affected and 7 died in 1967. Exposure to tissue and blood from African Green monkeys (Cercopithecus aethiops) or secondary contact with infected humans led to the disease. No disease occurred in people who handled only intact animals or those who wore gloves and protective clothing when handling tissues. A second outbreak was reported in Africa in 1975 involving three people with no verified contact with monkeys. Third and fourth outbreaks in Kenya 1980 and 1987. Natural reservoir is unknown. Monkeys thought to be accidental hosts along with man. Antibodies have been found in African Green monkeys, baboons, and chimpanzees. 100% fatal in experimentally infected African Green Monkeys, Rhesus, squirrel monkeys, guinea pigs, and hamsters. TRANSMISSION: Direct contact with infected blood or tissues or close contact with infected patients. Virus has also been found in semen, saliva, and urine. DISEASE IN NONHUMAN PRIMATES: No clinical signs occur in green monkeys, but the disease is usually fatal after experimental infection of other primate species. Leukopenia and petechial hemorrhages throughout the body of experimentally infected monkeys, sometimes with GI hemorrhages.
    [Show full text]
  • Genome-Wide Association Study Identifies Vitamin B5 Biosynthesis As a Host Specificity Factor in Campylobacter
    Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter Samuel K. Shepparda,b,1, Xavier Didelotc, Guillaume Mericb, Alicia Torralbod, Keith A. Jolleya, David J. Kellye, Stephen D. Bentleyf,g, Martin C. J. Maidena, Julian Parkhillf, and Daniel Falushh aDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; bInstitute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom; cSchool of Public Health, St. Mary’s Campus, Imperial College London, London SW7 2AZ, United Kingdom; dDepartment of Animal Health, University of Cordoba, 14071 Cordoba, Spain; eDepartment of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; fWellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom; gDepartment of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0SP, United Kingdom; and hMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved June 3, 2013 (received for review March 22, 2013) Genome-wide association studies have the potential to identify sources and locations by multilocus sequence typing (MLST) has causal genetic factors underlying important phenotypes but have shown that there is genetic differentiation among sequence types rarely been performed in bacteria. We present an association (STs) associated with different hosts (8). Among wild birds, spe- mapping method that takes into account the clonal population cific bird species most often harbor their own Campylobacter lin- structure of bacteria and is applicable to both core and accessory eages (8, 9). However, in agricultural animals, although there are genome variation.
    [Show full text]
  • 5,10-Methylenetetrahydrofolate Dehydrogenase (Ec 1.5.1.5)
    Enzymatic Assay of 5,10-METHYLENETETRAHYDROFOLATE DEHYDROGENASE (EC 1.5.1.5) PRINCIPLE: 5,10-MeFH4DH 5,10-Methylene-FH4 + ß-NADP > 5,10-Methenyl-FH4 + ß-NADPH Abbreviations used: 5,10-Methylene-FH4 = 5,10-Methylenetetrahydrofolate 5,10-Methenyl-FH4 = 5,10-Methenyltetrahydrofolate 5,10-MeFH4DH = 5,10-Methylenetetrahydrofolate Dehydrogenase ß-NADP = ß-Nicotinamide Adenine Dinucleotide Phosphate, Oxidized Form ß-NADPH = ß-Nicotinamide Adenine Dinucleotide Phosphate, Reduced Form CONDITIONS: T = 25°C, pH = 7.5, A340nm, Light path = 1 cm METHOD: Continuous Spectrophotometric Rate Determination REAGENTS: A. 50 mM Potassium Phosphate Buffer with 100 mM Potassium Chloride, pH 7.5 at 25°C (Prepare 200 ml in deionized water using Potassium Phosphate, Monobasic, Anhydrous, and Potassium Chloride. Adjust to pH 7.5 at 25°C with 1 M NaOH.) B. 0.002% (w/v) Tetrahydrofolic Acid with 0.002% (v/v) Formaldehyde and 0.1% (v/v) 2-Mercaptoethanol Solution (FH4) (Immediately before used, prepare 100 ml in Reagent A using Tetrahydrofolic Acid, Formaldehyde, 37% Solution,1 and 2-Mercaptoethanol. ) C. 20 mM ß-Nicotinamide Adenine Dinucleotide Phosphate (ß-NADP) (Prepare 2 ml in deionized water using ß-Nicotinamide Adenine Dinucleotide Phosphate, Sodium Salt PREPARE FRESH. ) Page 1 of 3 45-1 Ramsey Road, Shirley, NY 11967, USA Email: [email protected] Tel: 1-631-562-8517 1-631-448-7888 Fax: 1-631-938-8127 Enzymatic Assay of 5,10-METHYLENETETRAHYDROFOLATE DEHYDROGENASE (EC 1.5.1.5) REAGENTS: (continued) D. 5,10-Methylenetetrahydrofolate Dehydrogenase Enzyme Solution (Immediately before use, prepare a solution containing 0.01 - 0.03 unit/ml of 5,10-Methylenetetrahydrofolate Dehydrogenase in cold Reagent A.) PROCEDURE: Pipette (in milliliters) the following reagents into suitable cuvettes: Test Blank Reagent B (FH4) 2.80 2.80 Reagent D (Enzyme Solution) 0.10 0.10 Mix by inversion and equilibrate to 25°C.
    [Show full text]
  • (ESI): Structures of Malonic Acid Diamide/Phospholipid Composites and Their Lipoplexes
    Electronic Supplementary Material (ESI) for Soft Matter. This journal is © The Royal Society of Chemistry 2016 Electronic Supporting Information (ESI): Structures of malonic acid diamide/phospholipid composites and their lipoplexes Christopher Janich,*,1,5 Stephanie Taßler,2 Annette Meister,3 Gerd Hause,4 Jens Schäfer,5 Udo Bakowsky,5 Gerald Brezesinski,2 Christian Wölk*,1 This article is dedicated to Professor Andreas Langner on occasion of his 60th birthday. We are very grateful for the allocation of the innovative research topic. 1 Martin Luther University Halle-Wittenberg, Institute of Pharmacy, Wolfgang-Langenbeck- Strasse 4, 06120 Halle (Saale), Germany 2 Max Planck Institute of Colloids and Interfaces, Science Park Potsdam-Golm, Am Mühlenberg 1, 14476 Potsdam, Germany 3 Martin Luther University Halle-Wittenberg, Institute of Chemistry, Physical Chemistry and Institute of Biochemistry and Biotechnology, von-Danckelmann-Platz 4, 06120 Halle (Saale), Germany 4 Martin Luther University Halle-Wittenberg, Biocenter, Weinbergweg 22, 06120 Halle (Saale) (Germany) 5 Philipps University Marburg, Department of Pharmaceutical Technology and Biopharmacy, Ketzerbach 63, 35037 Marburg, Germany *Corresponding Authors (CJ) E-mail: [email protected]. Tel: +49-345- 55-25077. Fax: +49-345-55-27018. (CW) E-mail: [email protected]. Tel: +49-345- 55-25078. Fax: +49-345-55-27018. 1 Detailed Information about the GAP fit. The GAP fit was performed with the program GAP 1.3, written and provided by Georg Pabst. For more details we refer to the describing literature published by Georg Pabst: 1. Pabst, G., M. Rappolt, H. Amenitsch, and P. Laggner. 2000. Structural information from multilamellar liposomes at full hydration: full q-range fitting with high quality xray data.
    [Show full text]
  • 179 Edited by F. Linneweh (Marburg, GFR). Springer- Verlag, Berlin
    BOOK REVIEWS AND NEWS 179 ERBLICHE DEFEKTE DES KOHLENHYDRAT-, A definite genetic variability in leprosy suscep­ AMINOSAEUREN UND PROTEINSTOFFWECHSELS tibility appears to be shown by this twin study carried out in endemic districts of India, where HEREDITARY ERRORS OF CARBOHYDRATE, concordance was found to be much higher AMINOACID, AND PROTEIN METABOLISM in the 62 MZ than in the 40 DZ twin pairs examined (60% vs. 20%). Edited by F. Linneweh (Marburg, GFR). Springer- Verlag, Berlin-Heidelberg-New York 1974. Part 1 in Vol. 7, Errors of Metabolism (Stoffwechselkrank- heiteri), of the Handbook of Internal Medicine LIGHT-EYED NEGROES (Handbuch der inneren Medizin) edited by H. Schwiegk. Hard cover with jacket, 17 x 15 cm, AND THE KLEIN-WAARDENBURG SYNDROME XX + 905 pp, 205 illustrations. Price: DM 348.00/ US S 142.00. Subscription price: DM 278.40/US By Jenni Soussi Tsafrir (Tel Aviv, Israel). The $ 113.60. MacMillan Press, London and Basingstoke. Hard cover with jacket, 15.5 x 23.5 cm, XIV + 153 pp, 21 illustrations, 20 colored plates, 12 tables. Price: Another important contribution to a large I 7.50 (approximately US $ 18.00). German handbook of internal medicine, this volume is of particular value to the medical The analysis of a series of 22 South African geneticist. It is essentially divided into four Negro families including light-eyed individuals parts. Part 1 provides a human genetic intro­ has shown that only few of these are clinically duction, centered on the clinical aspects of normal variant phenotypes, most subjects being heredity. Part 2 deals with the enzymatic defects actually affected by Klein-Waardenburg syn­ of carbohydrate metabolism: pentosuria; essen­ drome.
    [Show full text]