Genome-Wide Association Study Identifies Vitamin B5 Biosynthesis As a Host Specificity Factor in Campylobacter
Genome-wide association study identifies vitamin B5 biosynthesis as a host specificity factor in Campylobacter Samuel K. Shepparda,b,1, Xavier Didelotc, Guillaume Mericb, Alicia Torralbod, Keith A. Jolleya, David J. Kellye, Stephen D. Bentleyf,g, Martin C. J. Maidena, Julian Parkhillf, and Daniel Falushh aDepartment of Zoology, University of Oxford, Oxford OX1 3PS, United Kingdom; bInstitute of Life Science, College of Medicine, Swansea University, Swansea SA2 8PP, United Kingdom; cSchool of Public Health, St. Mary’s Campus, Imperial College London, London SW7 2AZ, United Kingdom; dDepartment of Animal Health, University of Cordoba, 14071 Cordoba, Spain; eDepartment of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, United Kingdom; fWellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Cambridge CB10 1SA, United Kingdom; gDepartment of Medicine, University of Cambridge, Addenbrookes Hospital, Cambridge CB2 0SP, United Kingdom; and hMax Planck Institute for Evolutionary Anthropology, 04103 Leipzig, Germany Edited by W. Ford Doolittle, Dalhousie University, Halifax, Canada, and approved June 3, 2013 (received for review March 22, 2013) Genome-wide association studies have the potential to identify sources and locations by multilocus sequence typing (MLST) has causal genetic factors underlying important phenotypes but have shown that there is genetic differentiation among sequence types rarely been performed in bacteria. We present an association (STs) associated with different hosts (8). Among wild birds, spe- mapping method that takes into account the clonal population cific bird species most often harbor their own Campylobacter lin- structure of bacteria and is applicable to both core and accessory eages (8, 9). However, in agricultural animals, although there are genome variation.
[Show full text]