Titan II Small Multisatellite Mission Approach
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade. -
Paper Session I-C - Delta II Development and Flight Results
1991 (28th) Space Achievement: A Global The Space Congress® Proceedings Destiny Apr 23rd, 2:00 PM - 5:00 PM Paper Session I-C - Delta II Development and Flight Results Sam K. Mihara McDonnell Douglas Space Systems Company, Huntington Beach, CA Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Mihara, Sam K., "Paper Session I-C - Delta II Development and Flight Results" (1991). The Space Congress® Proceedings. 7. https://commons.erau.edu/space-congress-proceedings/proceedings-1991-28th/april-23-1991/7 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. MDC91H1017 APRIL 1991 DELTA II (MODEL 7925) DEVELOPMENT AND FLIGHT RESULTS S.K. MIHARA Presented to Twenty-Eighth Space Congress Cocoa Beach, Florida April 1991 McDonnell Douglas Space Systems Company /tfCDO/V/V^f.1. DOUGLAS a-to DELTA II (MODEL 7925) DEVELOPMENT AND FLIGHT RESULTS S.K. MIHARA* ABSTRACT This paper describes the design changes to the latest Delta Launch vehicle. Delta II Model 7925, The results of developments on five main subsystems are described. The paper includes the flight results of Delta II launches to date. DELTA HISTORY The McDonnell Douglas Space Systems Company (MDSSC) Delta launch vehicle has been a NASA space "workhorse" for 31 years. It had its beginnings in the mid-1950s with the Thor vehicle. Subsequently, the NASA Goddard Space Flight Center contracted for the development of an interim space launch vehicle using a modified Thor first stage with Vanguard missile components for the second and third stages. -
Bob Farquhar
1 2 Created by Bob Farquhar For and dedicated to my grandchildren, their children, and all humanity. This is Copyright material 3 Table of Contents Preface 4 Conclusions 6 Gadget 8 Making Bombs Tick 15 ‘Little Boy’ 25 ‘Fat Man’ 40 Effectiveness 49 Death By Radiation 52 Crossroads 55 Atomic Bomb Targets 66 Acheson–Lilienthal Report & Baruch Plan 68 The Tests 71 Guinea Pigs 92 Atomic Animals 96 Downwinders 100 The H-Bomb 109 Nukes in Space 119 Going Underground 124 Leaks and Vents 132 Turning Swords Into Plowshares 135 Nuclear Detonations by Other Countries 147 Cessation of Testing 159 Building Bombs 161 Delivering Bombs 178 Strategic Bombers 181 Nuclear Capable Tactical Aircraft 188 Missiles and MIRV’s 193 Naval Delivery 211 Stand-Off & Cruise Missiles 219 U.S. Nuclear Arsenal 229 Enduring Stockpile 246 Nuclear Treaties 251 Duck and Cover 255 Let’s Nuke Des Moines! 265 Conclusion 270 Lest We Forget 274 The Beginning or The End? 280 Update: 7/1/12 Copyright © 2012 rbf 4 Preface 5 Hey there, I’m Ralph. That’s my dog Spot over there. Welcome to the not-so-wonderful world of nuclear weaponry. This book is a journey from 1945 when the first atomic bomb was detonated in the New Mexico desert to where we are today. It’s an interesting and sometimes bizarre journey. It can also be horribly frightening. Today, there are enough nuclear weapons to destroy the civilized world several times over. Over 23,000. “Enough to make the rubble bounce,” Winston Churchill said. The United States alone has over 10,000 warheads in what’s called the ‘enduring stockpile.’ In my time, we took care of things Mano-a-Mano. -
National Reconnaissance Office Review and Redaction Guide
NRO Approved for Release 16 Dec 2010 —Tep-nm.T7ymqtmthitmemf- (u) National Reconnaissance Office Review and Redaction Guide For Automatic Declassification Of 25-Year-Old Information Version 1.0 2008 Edition Approved: Scott F. Large Director DECL ON: 25x1, 20590201 DRV FROM: NRO Classification Guide 6.0, 20 May 2005 NRO Approved for Release 16 Dec 2010 (U) Table of Contents (U) Preface (U) Background 1 (U) General Methodology 2 (U) File Series Exemptions 4 (U) Continued Exemption from Declassification 4 1. (U) Reveal Information that Involves the Application of Intelligence Sources and Methods (25X1) 6 1.1 (U) Document Administration 7 1.2 (U) About the National Reconnaissance Program (NRP) 10 1.2.1 (U) Fact of Satellite Reconnaissance 10 1.2.2 (U) National Reconnaissance Program Information 12 1.2.3 (U) Organizational Relationships 16 1.2.3.1. (U) SAF/SS 16 1.2.3.2. (U) SAF/SP (Program A) 18 1.2.3.3. (U) CIA (Program B) 18 1.2.3.4. (U) Navy (Program C) 19 1.2.3.5. (U) CIA/Air Force (Program D) 19 1.2.3.6. (U) Defense Recon Support Program (DRSP/DSRP) 19 1.3 (U) Satellite Imagery (IMINT) Systems 21 1.3.1 (U) Imagery System Information 21 1.3.2 (U) Non-Operational IMINT Systems 25 1.3.3 (U) Current and Future IMINT Operational Systems 32 1.3.4 (U) Meteorological Forecasting 33 1.3.5 (U) IMINT System Ground Operations 34 1.4 (U) Signals Intelligence (SIGINT) Systems 36 1.4.1 (U) Signals Intelligence System Information 36 1.4.2 (U) Non-Operational SIGINT Systems 38 1.4.3 (U) Current and Future SIGINT Operational Systems 40 1.4.4 (U) SIGINT -
Records of Prime Contracts Awarded by the Military Services And
""" "II" n "'1"1""" National Archives and Records Adlninistration 8601 Adelphi Road College Park, Maryland 2fJUO-6tJOl List ofDcicumentation Military Prime CQntractFile. 1966-1975 Records of the Office ofthe Secretary ofDefense, Record Group 330 Accession Number: NN1-330-79-003 I. Basic Documentation 1. List ofDocumentation 1 2. tis! ofProourement Manuals (prepared 1995) 1 3. User Note 1 1 4. Abstract (prepared 1988) 1 5. rntroduction (prepared 1988) 2 6. NARA prepared record layout (April 200 1) :3 7. Valjdatl'on Statement (prepared 1988) 2 8. User Note 2 1 9. Agency prepared record layouts (prepared 1970) 3 10. UserNote3 1 11. DD Form 350J i 97 t (source for MPCf) 1 12. Agency description ofDD Form 350 . 1 13. Agency description of ><FlXS" data variable t II. Additional Documentation L NARA Magnetic Tape Record Inventory (January 19(2) 3 2. NARAMagnetic Tape Record lnllentoty (February 1972) 3 3. DcpaIimcnt ofDefense Publil,:aiions 4. MPCF Procurement Coding Manual. FY 1966 59 5. MPCF Procurement Codlng Manual. FY 1967 65 6. MPCF Procurement Coding Manual, FY 1968 68 7. MPCF Procurement Coding Manual, FY 1969 73 8. MPCF Procurement Coding Manual, FY 1970 78 9, MPCF Procurement Coding Manual, FY 1971 81 10. MPCf Procurement Coding Manual, FY 1972 89 11. MPCF Procurement Coding Manual, FY 1913 101 12. MPCF Procurement Coding Manual, FY 1974 79 13, MPCF Procurement Coding Manual, FY 1975 80 m. Processing Materials 1. AERie Verification Reports 2. NARA Sample Dumps (prepared 1988) 3. Agency SampleDurnps (1966-1975) William P. Fischer April 22. 2002 NARA Reference Copy Page # 1 Me. -
10/2/95 Rev EXECUTIVE SUMMARY This Report, Entitled "Hazard
10/2/95 rev EXECUTIVE SUMMARY This report, entitled "Hazard Analysis of Commercial Space Transportation," is devoted to the review and discussion of generic hazards associated with the ground, launch, orbital and re-entry phases of space operations. Since the DOT Office of Commercial Space Transportation (OCST) has been charged with protecting the public health and safety by the Commercial Space Act of 1984 (P.L. 98-575), it must promulgate and enforce appropriate safety criteria and regulatory requirements for licensing the emerging commercial space launch industry. This report was sponsored by OCST to identify and assess prospective safety hazards associated with commercial launch activities, the involved equipment, facilities, personnel, public property, people and environment. The report presents, organizes and evaluates the technical information available in the public domain, pertaining to the nature, severity and control of prospective hazards and public risk exposure levels arising from commercial space launch activities. The US Government space- operational experience and risk control practices established at its National Ranges serve as the basis for this review and analysis. The report consists of three self-contained, but complementary, volumes focusing on Space Transportation: I. Operations; II. Hazards; and III. Risk Analysis. This Executive Summary is attached to all 3 volumes, with the text describing that volume highlighted. Volume I: Space Transportation Operations provides the technical background and terminology, as well as the issues and regulatory context, for understanding commercial space launch activities and the associated hazards. Chapter 1, The Context for a Hazard Analysis of Commercial Space Activities, discusses the purpose, scope and organization of the report in light of current national space policy and the DOT/OCST regulatory mission. -
The 22 September 1979 Vela Incident—Part II: Radionu- Clide and Hydroacoustic Evidence for a Nuclear Explosion”
SCIENCE & GLOBAL SECURITY ,VOL.,NO.,– https://doi.org/./.. The September Vela Incident: The Detected Double-Flash Christopher M. Wrighta and Lars-Erik De Geer b aUNSW Canberra, School of Physical, Environmental and Mathematical Sciences, Research Group on Science & Security, The Australian Defence Force Academy, Canberra BC, Australia; b(Retired) FOI, Swedish Defense Research Agency, and the Preparatory Commission for the Comprehensive Nuclear-Test-Ban Treaty Organisation, Flädervägen , Upplands Väsby, Sweden ABSTRACT ARTICLE HISTORY On 22 September 1979 two optical sensors on U.S. satellite Vela Received March 6911 detected a double-flash of light that appeared characteristic Accepted October of an atmospheric nuclear explosion conducted over the south- ern Atlantic or Indian Ocean. It became known as the Vela Inci- dent, Event 747, or Alert 747. An anomaly between the amplitude of the two signals during the second pulse led a U.S. govern- ment expert panel established to assess the event to conclude in mid-1980 that a more likely explanation was the impact of a small meteoroid on the satellite, the debris from which reflected sunlight into the sensors’ field of view. No model was presented to support the contention, and a similar anomaly—known as background modulation—was a given for the second pulse of all confirmed explosions detected by Vela, though beginning later. Nonetheless, this event has remained the subject of intense debate. This article reviews the evidence and presents an updated analysis of the original Vela signal based on recently declassi- fied literature and on modern knowledge of interplanetary dust and hyper velocity impact. Given the geometry of the satellite, and that the bulk of the surface comprised solar panels, much of the debris from any collision would be carried away from the sensors’ field of view. -
The Delta Launch Vehicle- Past, Present, and Future
The Space Congress® Proceedings 1981 (18th) The Year of the Shuttle Apr 1st, 8:00 AM The Delta Launch Vehicle- Past, Present, and Future J. K. Ganoung Manager Spacecraft Integration, McDonnell Douglas Astronautics Co. H. Eaton Delta Launch Program, McDonnell Douglas Astronautics Co. Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Ganoung, J. K. and Eaton, H., "The Delta Launch Vehicle- Past, Present, and Future" (1981). The Space Congress® Proceedings. 7. https://commons.erau.edu/space-congress-proceedings/proceedings-1981-18th/session-6/7 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. THE DELTA LAUNCH VEHICLE - PAST, PRESENT AND FUTURE J. K. Ganoung, Manager H. Eaton, Jr., Director Spacecraft Integration Delta Launch Program McDonnell Douglas Astronautics Co. McDonnell Douglas Astronautics Co. INTRODUCTION an "interim space launch vehicle." The THOR was to be modified for use as the first stage, the The Delta launch vehicle is a medium class Vanguard second stage propulsion system, was used expendable booster managed by the NASA Goddard as the Delta second stage and the Vanguard solid Space Flight Center and used by the U.S. rocket motor became Delta's third stage. Government, private industry and foreign coun Following the eighteen month development program tries to launch scientific, meteorological, and failure to launch its first payload into or applications and communications satellites. -
Development of the Titan Stage III
1965 (2nd) New Dimensions in Space The Space Congress® Proceedings Technology Apr 5th, 8:00 AM Development of the Titan Stage III James G. Davis Martin Company Follow this and additional works at: https://commons.erau.edu/space-congress-proceedings Scholarly Commons Citation Davis, James G., "Development of the Titan Stage III" (1965). The Space Congress® Proceedings. 4. https://commons.erau.edu/space-congress-proceedings/proceedings-1965-2nd/session-7/4 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in The Space Congress® Proceedings by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. DEVELOPMENT OF THE TITAN STAGE III James G. Davis Martin Company Canaveral Division Cocoa Beach, Florida Summary This paper presents the design and the field test program associ ated with the development of the propulsion module for the third stage of the Titan III Standard Space Launch Vehicle. The primary objective of this vehicle development is to provide a launch vehicle with the capability of performing a wide variety of space missions. The vehicle configuration(s) evolved to satisfy this objective consists of a modi fied Titan II equipped with a third stage designated as Configuration ftA M or Core, and the addition of two segmented solid propellant rocket motors, one on either side of the Core designated as Configuration ft C ff . The third stage of this vehicle is called the transtage. This stage is composed of two modules: the control module, which contains the guidance, flight controls, and attitude control subsystems} and the propulsion module which is identified as stage III. -
Seismographic Study of Mid-Continental Primary Wave Travel Times
A SEISHOGRAPHIC STUDY GOP MID^OHTBENTAL PRIMARY WAVE TRAVEL TIMES by JON FERRELL HOLIES B, S.f Kansas State University, l?6l A Tr^SLS submitted in partial I'ulfillment of the requirements for the degree MASTER OF SCIENCE Department of Geology and Geography KANSAS STATE UNIVERSITY Manhattan, Kansas 196h Approved byt u Major Professor LD WIS TABLE OF CONTENTS INTRODUCTION 1 PROJECT VELA UNIFORM 1 SAINT LOUIS UNIVERSITY SPONSORSHIP k The Role and Location of the Manhattan Station 6 MANHATTAN SEISMOGRAPH STATION 7 Pnysical Plant 7 Operation and Theory 10 SEISMOGRAPHIC STUDY OF MID-CONTINENTAL PRIMARY WAVE TRAVEL TIMES .. 19 Characteristics of Primary Waves 19 Calculations 23 Travel Tines 26 Summary 28 Conclusion APPENDIX I 38 REFERENCES ^ ACKNaYIEDCBOTS I would lilce to express my appreciation for the aid given to me by- Father William Stauder, S.J. in developing the outline of this thesis and his suggestions in the preparation of the text. I am also indebted to Dr. J.R. Chelikowsky for his assistance and guidance with the work on the thesis and in the operation of the seismograph station throughout the past year. • INTRODUCTION A seismograph station was established at Kansas State University by St. Louis University in the fall of 1961, A research assistantship -was granted at Kansas State to initiate seismic studies in addition to operation of the station for St. Louis. The purpose was to create a basic seismic program in the event that the Kansas State Geology Depart- ment takes over full operation of the station. The text of this thesis is divided into two areas, (1) a discussion of the Manhattan Station's development and operation, and (2) basic research on travel times of primary waves in the mict-continent. -
Desind Finding
NATIONAL AIR AND SPACE ARCHIVES Herbert Stephen Desind Collection Accession No. 1997-0014 NASM 9A00657 National Air and Space Museum Smithsonian Institution Washington, DC Brian D. Nicklas © Smithsonian Institution, 2003 NASM Archives Desind Collection 1997-0014 Herbert Stephen Desind Collection 109 Cubic Feet, 305 Boxes Biographical Note Herbert Stephen Desind was a Washington, DC area native born on January 15, 1945, raised in Silver Spring, Maryland and educated at the University of Maryland. He obtained his BA degree in Communications at Maryland in 1967, and began working in the local public schools as a science teacher. At the time of his death, in October 1992, he was a high school teacher and a freelance writer/lecturer on spaceflight. Desind also was an avid model rocketeer, specializing in using the Estes Cineroc, a model rocket with an 8mm movie camera mounted in the nose. To many members of the National Association of Rocketry (NAR), he was known as “Mr. Cineroc.” His extensive requests worldwide for information and photographs of rocketry programs even led to a visit from FBI agents who asked him about the nature of his activities. Mr. Desind used the collection to support his writings in NAR publications, and his building scale model rockets for NAR competitions. Desind also used the material in the classroom, and in promoting model rocket clubs to foster an interest in spaceflight among his students. Desind entered the NASA Teacher in Space program in 1985, but it is not clear how far along his submission rose in the selection process. He was not a semi-finalist, although he had a strong application. -
The Global Positioning System
The Global Positioning System Assessing National Policies Scott Pace • Gerald Frost • Irving Lachow David Frelinger • Donna Fossum Donald K. Wassem • Monica Pinto Prepared for the Executive Office of the President Office of Science and Technology Policy CRITICAL TECHNOLOGIES INSTITUTE R The research described in this report was supported by RAND’s Critical Technologies Institute. Library of Congress Cataloging in Publication Data The global positioning system : assessing national policies / Scott Pace ... [et al.]. p cm. “MR-614-OSTP.” “Critical Technologies Institute.” “Prepared for the Office of Science and Technology Policy.” Includes bibliographical references. ISBN 0-8330-2349-7 (alk. paper) 1. Global Positioning System. I. Pace, Scott. II. United States. Office of Science and Technology Policy. III. Critical Technologies Institute (RAND Corporation). IV. RAND (Firm) G109.5.G57 1995 623.89´3—dc20 95-51394 CIP © Copyright 1995 RAND All rights reserved. No part of this book may be reproduced in any form by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from RAND. RAND is a nonprofit institution that helps improve public policy through research and analysis. RAND’s publications do not necessarily reflect the opinions or policies of its research sponsors. Cover Design: Peter Soriano Published 1995 by RAND 1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138 RAND URL: http://www.rand.org/ To order RAND documents or to obtain additional information, contact Distribution Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet: [email protected] PREFACE The Global Positioning System (GPS) is a constellation of orbiting satellites op- erated by the U.S.