Ginkgoales Dr Moni Kumari Date: 28 and 29Th September B.Sc 2Nd Year

Total Page:16

File Type:pdf, Size:1020Kb

Ginkgoales Dr Moni Kumari Date: 28 and 29Th September B.Sc 2Nd Year Ginkgoales Dr Moni Kumari Date: 28 and 29th September B.Sc 2nd Year PG Botany Department Gaya College, Gaya Ginkgoales is a gymnosperm order containing only one extant species: Ginkgo biloba, the ginkgo tree It is classified in its Division: Ginkgophyta Class: Ginkgoopsida Order: Ginkgoales Family: Ginkgoaceae Genus: Ginkgo The only extant species within this group Ginkgo biloba is a highly adaptable plant that can grow in almost any temperate or Mediterranean climate. Resistant to pollution and pests. Long lived due to a beneficial combination of disease-resistant characteristics It can grow up to 30 meters tall and can live for a millenium. It is also well-known for its unique seeds, which have long been used as a food source in Asia. Cultivated predominantly in China Parts of the ginkgo tree are commonly added to foods and drinks or taken as a supplement due to its desirable health benefits. Some old ginkgoes produce aerial roots, known as chichi (Japanese; "nipples") or zhong-ru (Mandarin Chinese), which form on the undersides of large branches and grow downwards. Chichi growth is very slow, and may take hundreds of years to occur Ginkgoales was, however, very abundantly represented in the world by several species of about 16 genera during the Triassic period of Mesozoic age, i.e. about 200,000,000 years ago. Today, all the genera, except Ginkgo biloba, are extinct. Due to the presence of a number of primitive characters, as well as because of its long geological records, Ginkgo is called a “living fossil”. Details of the geological history of Ginkgoales indicate that its members started appearing on the earth during Permian Abundance worldwide distribution during Triassic and Jurassic periods of Mesozoic age Started fading out of existence during Cretaceous Now represented only in some parts of Southern and Eastern China by only one living member i.e. Ginkgo biloba. Ramanujam (1976), while tracing the geological history of Ginkgoales, reported that a few records of this order are known from Late Palaeozoic of India. These include Ginkgophyton, Psygmophyllum and Rhipidopsis. Seward (1938) considered Ginkgo “as one of the wonders of the world” and stated that has persisted with little change until the present through a long succession of ages when the earth was inhabited by animals and plants”. Arnold (1947) mentioned that “Ginkgo biloba is one of the oldest living plants and may indeed be the oldest living genus of the seed plants” General Characteristics of Ginkgoales: 1. Tall, well-branched trees with short and long shoots. However, some earliest fossil members were without short and long shoots. 2. Wood is pycnoxylic. It is the compact strong wood with large amount of xylem tracheids or wood and small amount of cortex and pith with little Parenchyma. 3. Leaves are large, leathery and fan-shaped or strap-shaped. They are often deeply divided. 4. Dichotomous venation is usually present in the leaves. 5. Un-branched, catkin-like male organs are axillary in position. 6. Male organs bear micro-sporangiophores. 7. Each micro-sporangiophore possesses 2-12 pendulous microsporangia. 8. Spermatozoids are motile and contain spiral bands of flagella. 9. Ovules are terminal in position on branched or un-branched axillary axes. They are 2-10 in number. 10. Ginkgo biloba has a very distinct appearance characterized by its fan-shaped leaves. 11. Ginkgo is dioecious, which means that pollen-producing structures and ovules are produced on separate trees. 12. The extract of the ginkgo leaves contains flavonoid glycosides and terpenoids (ginkgolides, bilobalides) and has been used pharmaceutically. 13. Mainly used as memory and concentration enhancer, and anti-vertigo agent. .
Recommended publications
  • The Jurassic Fossil Wood Diversity from Western Liaoning, NE China
    Jiang et al. Journal of Palaeogeography (2019) 8:1 https://doi.org/10.1186/s42501-018-0018-y Journal of Palaeogeography RESEARCH Open Access The Jurassic fossil wood diversity from western Liaoning, NE China Zi-Kun Jiang1,2, Yong-Dong Wang2,3*, Ning Tian4,5, Ao-Wei Xie2,6, Wu Zhang7, Li-Qin Li2 and Min Huang1 Abstract Western Liaoning is a unique region in China that bears diverse types of Jurassic plants, including leaves, fern rhizomes, and wood, providing significant proxy for vegetation and palaeoenvironment reconstruction of the well-known Yanliao Flora in East Asia. In particular, the silicified wood is very abundant in the fossil Lagerstätte of the Jurassic Tiaojishan Formation in Beipiao, western Liaoning. Previous and recent systematic investigations documented a high diversity of the Jurassic wood assemblages. These assemblages are dominated by conifers, followed by cycads and ginkgoaleans. In total, about 30 species belonging to 21 genera of fossil wood have been recorded so far, which are represented by Cycadopsida, Ginkgopsida, Coniferopsida, and Gymnospermae incertae sedis. The evolutionary implications of several distinctive fossil wood taxa as well as palaeoclimate implications are summarized based on their anatomical structures and growth ring patterns. This work approaches the vegetation development and evolutionary significances of the wood taxa and their relatives, and provides clues for the further understanding of the diversity of the Jurassic Yanliao Flora in East Asia. Keywords: Fossil wood, Diversity, Evolution, Tiaojishan Formation, Jurassic 1 Introduction 2004;Wangetal.,2009). Among these localities, western Fossil floras are a significant record for the vegetation Liaoning is a well-known fossil Lagerstätte with diverse and for the palaeoenvironment reconstructions of the and well-preserved fossil plant foliages and wood (Zhang Mesozoic.
    [Show full text]
  • Lessons from 20 Years of Plant Genome Sequencing: an Unprecedented Resource in Need of More Diverse Representation
    bioRxiv preprint doi: https://doi.org/10.1101/2021.05.31.446451; this version posted May 31, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Lessons from 20 years of plant genome sequencing: an unprecedented resource in need of more diverse representation Authors: Rose A. Marks1,2,3, Scott Hotaling4, Paul B. Frandsen5,6, and Robert VanBuren1,2 1. Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA 2. Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, USA 3. Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7701, South Africa 4. School of Biological Sciences, Washington State University, Pullman, WA, USA 5. Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT, USA 6. Data Science Lab, Smithsonian Institution, Washington, DC, USA Keywords: plants, embryophytes, genomics, colonialism, broadening participation Correspondence: Rose A. Marks, Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA; Email: [email protected]; Phone: (603) 852-3190; ORCID iD: https://orcid.org/0000-0001-7102-5959 Abstract The field of plant genomics has grown rapidly in the past 20 years, leading to dramatic increases in both the quantity and quality of publicly available genomic resources. With an ever- expanding wealth of genomic data from an increasingly diverse set of taxa, unprecedented potential exists to better understand the evolution and genome biology of plants.
    [Show full text]
  • Life in the End-Permian Dead Zone
    Life in the end-Permian dead zone Cindy V. Looy*†, Richard J. Twitchett‡, David L. Dilcher§, Johanna H. A. Van Konijnenburg-Van Cittert*, and Henk Visscher* *Laboratory of Palaeobotany and Palynology, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands; ‡Department of Earth Sciences, University of Southern California, Los Angeles, CA 90089-0740; and §Paleobotany Laboratory, Florida Museum of Natural History, University of Florida, Gainesville, FL 32611 Contributed by David L. Dilcher, May 1, 2001 The fossil record of land plants is an obvious source of information ecological crisis. On the basis of palynological data from a ‘‘dead on the dynamics of mass extinctions in the geological past. In zone’’ in a Permian–Triassic (P-Tr) transition sequence from conjunction with the end-Permian ecological crisis, Ϸ250 million East Greenland, in this paper we document evidence of non- years ago, palynological data from East Greenland reveal some equilibrium vegetation dynamics resulting in selective but time- unanticipated patterns. We document the significant time lag delayed extinctions among woody gymnosperms. between terrestrial ecosystem collapse and selective extinction among characteristic Late Permian plants. Furthermore, ecological The End-Permian ‘‘Dead Zone’’ crisis resulted in an initial increase in plant diversity, instead of a Latest Permian and earliest Triassic sediments in East Green- decrease. Paradoxically, these floral patterns correspond to a land (Fig. 1) are represented by the upper part of the Schuchert ‘‘dead zone’’ in the end-Permian faunal record, characterized by a Dal Formation and the overlying Wordie Creek Formation. The paucity of marine invertebrate megafossils. The time-delayed, predominantly fine-grained siliciclastic sediments of these for- end-Permian plant extinctions resemble modeled ‘‘extinction mations were deposited in a narrow, elongate, shallow-marine debt’’ responses of multispecies metapopulations to progressive basin.
    [Show full text]
  • A Visual Guide to Collecting Plant Tissues for DNA
    A visual guide to collecting plant tissues for DNA Collecting kit checklist Silica gel1 Permanent marker and pencil Resealable bags, airtight plastic container Razor blade / Surgical scissors Empty tea bags or coffee filters Ethanol and paper tissue or ethanol wipes Tags or jewellers tags Plant press and collecting book 1. Selection and preparation of fresh plant tissue: Sampling avoided. Breaking up leaf material will bruise the plant tissue, which will result in enzymes being released From a single plant, harvest 3 – 5 mature leaves, or that cause DNA degradation. Ideally, leaf material sample a piece of a leaf, if large (Picture A). Ideally should be cut into smaller fragments with thick a leaf area of 5 – 10 cm2 should be enough, but this midribs being removed (Picture C). If sampling robust amount should be adjusted if the plant material is leaf tissue (e.g. cycads, palms), use a razor blade or rich in water (e.g. a succulent plant). If leaves are surgical scissors (Picture D). small (e.g. ericoid leaves), sample enough material to equate a leaf area of 5 – 10 cm2. If no leaves are Succulent plants available, other parts can be sampled such as leaf buds, flowers, bracts, seeds or even fresh bark. If the If the leaves are succulent, use a razor blade to plant is small, select the biggest specimen, but never remove epidermal slices or scoop out parenchyma combine tissues from different individuals. tissue (Picture E). Cleaning Ideally, collect clean fresh tissues, however if the leaf or plant material is dirty or shows potential contamination (e.g.
    [Show full text]
  • JUDD W.S. Et. Al. (2002) Plant Systematics: a Phylogenetic Approach. Chapter 7. an Overview of Green
    UNCORRECTED PAGE PROOFS An Overview of Green Plant Phylogeny he word plant is commonly used to refer to any auto- trophic eukaryotic organism capable of converting light energy into chemical energy via the process of photosynthe- sis. More specifically, these organisms produce carbohydrates from carbon dioxide and water in the presence of chlorophyll inside of organelles called chloroplasts. Sometimes the term plant is extended to include autotrophic prokaryotic forms, especially the (eu)bacterial lineage known as the cyanobacteria (or blue- green algae). Many traditional botany textbooks even include the fungi, which differ dramatically in being heterotrophic eukaryotic organisms that enzymatically break down living or dead organic material and then absorb the simpler products. Fungi appear to be more closely related to animals, another lineage of heterotrophs characterized by eating other organisms and digesting them inter- nally. In this chapter we first briefly discuss the origin and evolution of several separately evolved plant lineages, both to acquaint you with these important branches of the tree of life and to help put the green plant lineage in broad phylogenetic perspective. We then focus attention on the evolution of green plants, emphasizing sev- eral critical transitions. Specifically, we concentrate on the origins of land plants (embryophytes), of vascular plants (tracheophytes), of 1 UNCORRECTED PAGE PROOFS 2 CHAPTER SEVEN seed plants (spermatophytes), and of flowering plants dons.” In some cases it is possible to abandon such (angiosperms). names entirely, but in others it is tempting to retain Although knowledge of fossil plants is critical to a them, either as common names for certain forms of orga- deep understanding of each of these shifts and some key nization (e.g., the “bryophytic” life cycle), or to refer to a fossils are mentioned, much of our discussion focuses on clade (e.g., applying “gymnosperms” to a hypothesized extant groups.
    [Show full text]
  • Ginkgo Biloba Maidenhair Tree1 Edward F
    Fact Sheet ST-273 November 1993 Ginkgo biloba Maidenhair Tree1 Edward F. Gilman and Dennis G. Watson2 INTRODUCTION Ginkgo is practically pest-free, resistant to storm damage, and casts light to moderate shade (Fig. 1). Young trees are often very open but they fill in to form a denser canopy. It makes a durable street tree where there is enough overhead space to accommodate the large size. The shape is often irregular with a large branch or two seemingly forming its own tree on the trunk. But this does not detract from its usefulness as a city tree unless the tree will be growing in a restricted overhead space. If this is the case, select from the narrow upright cultivars such as ‘Princeton Sentry’ and ‘Fairmont’. Ginkgo tolerates most soil, including compacted, and alkaline, and grows slowly to 75 feet or more tall. The tree is easily transplanted and has a vivid yellow fall color which is second to none in brilliance, even in the south. However, leaves fall quickly and the fall color show is short. GENERAL INFORMATION Scientific name: Ginkgo biloba Pronunciation: GINK-go bye-LOE-buh Common name(s): Maidenhair Tree, Ginkgo Family: Ginkgoaceae Figure 1. Middle-aged Maidenhair Tree. USDA hardiness zones: 3 through 8A (Fig. 2) Origin: not native to North America Uses: Bonsai; wide tree lawns (>6 feet wide); drought are common medium-sized tree lawns (4-6 feet wide); Availability: generally available in many areas within recommended for buffer strips around parking lots or its hardiness range for median strip plantings in the highway; specimen; sidewalk cutout (tree pit); residential street tree; tree has been successfully grown in urban areas where air pollution, poor drainage, compacted soil, and/or 1.
    [Show full text]
  • X. the Conifers and Ginkgo
    X. The Conifers and Ginkgo Now we turn our attention to the Coniferales, another great assemblage of seed plants. First let's compare the conifers with the cycads: Cycads Conifers few apical meristems per plant many apical meristems per plant leaves pinnately divided leaves undivided wood manoxylic wood pycnoxylic seeds borne on megaphylls seeds borne on stems We should also remember that these two groups have a lot in common. To begin with, they are both groups of woody seed plants. They are united by a small set of derived features: 1) the basic structure of the stele (a eustele or a sympodium, two words for the same thing) and no leaf gaps 2) the design of the apical meristem (many initials, subtended by a slowly dividing group of cells called the central mother zone) 3) the design of the tracheids (circular-bordered pits with a torus) We have three new seed plant orders to examine this week: A. Cordaitales This is yet another plant group from the coal forest. (Find it on the Peabody mural!) The best-known genus, Cordaites, is a tree with pycnoxylic wood bearing leaves up to about a foot and a half long and four inches wide. In addition, these trees bore sporangia (micro- and mega-) in strobili in the axils of these big leaves. The megasporangia were enclosed in ovules. Look at fossils of leaves and pollen-bearing shoots of Cordaites. The large, many-veined megaphylls are ancestral to modern pine needles; the shoots are ancestral to pollen-bearing strobili of modern conifers. 67 B.
    [Show full text]
  • Fundamentals of Palaeobotany Fundamentals of Palaeobotany
    Fundamentals of Palaeobotany Fundamentals of Palaeobotany cuGU .叮 v FimditLU'φL-EjAA ρummmm 吋 eαymGfr 伊拉ddd仇側向iep M d、 況 O C O W Illustrations by the author uc削 ∞叩N Nn凹創 刊,叫MH h 咀 可 白 a aEE-- EEA First published in 1987 by Chapman αndHallLtd 11 New Fetter Lane, London EC4P 4EE Published in the USA by Chα~pman and H all 29 West 35th Street: New Yo地 NY 10001 。 1987 S. V. M秒len Softcover reprint of the hardcover 1st edition 1987 ISBN-13: 978-94-010-7916-7 e-ISBN-13: 978-94-009-3151-0 DO1: 10.1007/978-94-009-3151-0 All rights reserved. No part of this book may be reprinted, or reproduced or utilized in any form or by any electronic, mechanical or other means, now known or hereafter invented, including photocopying and recording, or in any information storage and retrieval system, without permission in writing from the publisher. British Library Cataloguing in Publication Data Mey凹, Sergei V. Fundamentals of palaeobotany. 1. Palaeobotany I. Title 11. Osnovy paleobotaniki. English 561 QE905 Library 01 Congress Catα loging in Publication Data Mey凹, Sergei Viktorovich. Fundamentals of palaeobotany. Bibliography: p. Includes index. 1. Paleobotany. I. Title. QE904.AIM45 561 8ι13000 Contents Foreword page xi Introduction xvii Acknowledgements xx Abbreviations xxi 1. Preservation 抄'pes αnd techniques of study of fossil plants 1 2. Principles of typology and of nomenclature of fossil plants 5 Parataxa and eutaxa S Taxa and characters 8 Peculiarity of the taxonomy and nomenclature of fossil plants 11 The binary (dual) system of fossil plants 12 The reasons for the inflation of generic na,mes 13 The species problem in palaeobotany lS The polytypic concept of the species 17 Assemblage-genera and assemblage-species 17 The cladistic methods 18 3.
    [Show full text]
  • Jurassic Flora of Cape 1,Isburne Alaska
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR THE JURASSIC FLORA OF CAPE 1,ISBURNE ALASKA F. H. KNOWLTON Publishecl January 28, 1914 PART D OF PROFESSIONAL PAPER 85, "CONTRIBUTIONS TO GENERAL GEOLOGY 1913" WASHINGTON GOVERNMENT PRINTING OFFICE 1914 CONTENTS. Page . Introduction ............................................................................................ 39 The Corwin formation ..................................................................................... 39 Plant collections ......................................................................................... 40 Age of the plant-bearing beds ............................................................................. 41 Distribution of Jurassic floras ............................................................................. 43 Geographicrange .................................................................................... 43 Means of dispersal ................................................................................... 45 Avenues of dispersal ................................................................................. 45 Probable climatic conditions .......................................................................... 46 .The flora ................................................................................................ 46 ILLUSTRATIONS. Page . PLATESV-VIII . Jurassic flora of Cape Lisburne, Alaska .................................................... 57-64 THE' JUR,ASSIC FLORA OF CAPE
    [Show full text]
  • Gymnosperms on the EDGE Félix Forest1, Justin Moat 1,2, Elisabeth Baloch1, Neil A
    www.nature.com/scientificreports OPEN Gymnosperms on the EDGE Félix Forest1, Justin Moat 1,2, Elisabeth Baloch1, Neil A. Brummitt3, Steve P. Bachman 1,2, Stef Ickert-Bond 4, Peter M. Hollingsworth5, Aaron Liston6, Damon P. Little7, Sarah Mathews8,9, Hardeep Rai10, Catarina Rydin11, Dennis W. Stevenson7, Philip Thomas5 & Sven Buerki3,12 Driven by limited resources and a sense of urgency, the prioritization of species for conservation has Received: 12 May 2017 been a persistent concern in conservation science. Gymnosperms (comprising ginkgo, conifers, cycads, and gnetophytes) are one of the most threatened groups of living organisms, with 40% of the species Accepted: 28 March 2018 at high risk of extinction, about twice as many as the most recent estimates for all plants (i.e. 21.4%). Published: xx xx xxxx This high proportion of species facing extinction highlights the urgent action required to secure their future through an objective prioritization approach. The Evolutionary Distinct and Globally Endangered (EDGE) method rapidly ranks species based on their evolutionary distinctiveness and the extinction risks they face. EDGE is applied to gymnosperms using a phylogenetic tree comprising DNA sequence data for 85% of gymnosperm species (923 out of 1090 species), to which the 167 missing species were added, and IUCN Red List assessments available for 92% of species. The efect of diferent extinction probability transformations and the handling of IUCN data defcient species on the resulting rankings is investigated. Although top entries in our ranking comprise species that were expected to score well (e.g. Wollemia nobilis, Ginkgo biloba), many were unexpected (e.g.
    [Show full text]
  • Curriculum Vitae
    CURRICULUM VITAE ORCID ID: 0000-0003-0186-6546 Gar W. Rothwell Edwin and Ruth Kennedy Distinguished Professor Emeritus Department of Environmental and Plant Biology Porter Hall 401E T: 740 593 1129 Ohio University F: 740 593 1130 Athens, OH 45701 E: [email protected] also Courtesy Professor Department of Botany and PlantPathology Oregon State University T: 541 737- 5252 Corvallis, OR 97331 E: [email protected] Education Ph.D.,1973 University of Alberta (Botany) M.S., 1969 University of Illinois, Chicago (Biology) B.A., 1966 Central Washington University (Biology) Academic Awards and Honors 2018 International Organisation of Palaeobotany lifetime Honorary Membership 2014 Fellow of the Paleontological Society 2009 Distinguished Fellow of the Botanical Society of America 2004 Ohio University Distinguished Professor 2002 Michael A. Cichan Award, Botanical Society of America 1999-2004 Ohio University Presidential Research Scholar in Biomedical and Life Sciences 1993 Edgar T. Wherry Award, Botanical Society of America 1991-1992 Outstanding Graduate Faculty Award, Ohio University 1982-1983 Chairman, Paleobotanical Section, Botanical Society of America 1972-1973 University of Alberta Dissertation Fellow 1971 Paleobotanical (Isabel Cookson) Award, Botanical Society of America Positions Held 2011-present Courtesy Professor of Botany and Plant Pathology, Oregon State University 2008-2009 Visiting Senior Researcher, University of Alberta 2004-present Edwin and Ruth Kennedy Distinguished Professor of Environmental and Plant Biology, Ohio
    [Show full text]
  • Fossil and Living Cycads Say No More Megasporophylls
    hology orp a Miao et al., J Morphol Anat 2017, 1:2 nd M f A o n l a a t n o r m u y o J Journal of Morphology and Anatomy Research Article Article Open Access Fossil and Living Cycads Say "No More Megasporophylls" Yuyan Miao1,2, Zhong-Jian Liu3, Meina Wang3,4 and Xin Wang5* 1Beijing Museum of Natural History, Beijing, China 2State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, China 3Shenzhen Key Laboratory for Orchid Conservation and Utilization, National Orchid Conservation Center of China and Orchid Conservation and Research Center of Shenzhen, Shenzhen, China 4College of Landscape Architecture, Fujian Agriculture and Forestry University, Fuzhou, China 5CAS Key Laboratory of Economic Stratigraphy and Paleogeography, Nanjing Institute of Geology and Palaeontology, Nanjing, China Abstract The origins of angiosperms and cycads are still mysterious. To understand the evolution of these groups as well as other gymnosperms it was impossible without mentioning a frequently used term “megasporophyll”. “Megasporophyll” is a concept that has been used widely in botany. This term is more or less related with the famous saying “Alles ist Blatt” by Goethe. This term became popular since Arber and Parkin hypothesized that the carpels in the Magnoliales were equivalent to and derived from former foliar parts bearing ovules along their margins (“megasporophyll”). Many botanists uncritically called the parts in all the reproductive organs of seed plants as “sporophylls”, no matter what they actually saw in the plants. However, the fact is that none of the reproductive parts (fossil or living), except those in the Cycadales, are foliar or leaf-like.
    [Show full text]