Mycoheterotrophy Evolved from Mixotrophic Ancestors: Evidence in Cymbidium (Orchidaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
57. CEPHALANTHERA Richard, De Orchid. Eur. 21, 29, 38. 1817. 头蕊兰属 Tou Rui Lan Shu Chen Xinqi (陈心启 Chen Sing-Chi); Stephan W
Flora of China 25: 174–177. 2009. 57. CEPHALANTHERA Richard, De Orchid. Eur. 21, 29, 38. 1817. 头蕊兰属 tou rui lan shu Chen Xinqi (陈心启 Chen Sing-chi); Stephan W. Gale, Phillip J. Cribb Callithronum Ehrhart; Dorycheile Reichenbach; Eburophyton A. Heller; Xiphophyllum Ehrhart. Herbs, terrestrial, autotrophic or holomycotrophic. Rhizome creeping, cylindric, slender; roots fasciculate, filiform, fleshy, usually numerous though few in holomycotrophic species. Stem erect, unbranched, leafy, with 1 to a few subcymbiform or cylindric basal sheaths. Leaves alternate, plicate, sessile, directly sheathing stem at base, reduced to membranous sheaths in holomycotrophic species. Inflorescence terminal, racemose, many or few flowered, rarely 1-flowered; proximal floral bracts foliaceous and usually longer than flowers, distal ones much shorter. Flowers resupinate, suberect, weakly spreading and campanulate, or rarely widely spreading, white, pink, or yellow; ovary slightly twisted, glabrous. Sepals free, similar to each other, subequal. Petals slightly shorter than sepals, ± connivent with sepals; lip adnate to base of column, 2-partite or rarely simple and not distinct from petals in peloric forms; hypochile with erect lateral lobes embracing column, saccate or with a short spur at base; epichile spreading, ovate-elliptic, apex obtuse or acute; disk with 3–7 longitudinal lamellae, or unornamented in peloric forms. Column erect, usually with 2 narrow lateral wings; anther erect, hinged, 2-locular; pollinia 2, each 2-partite, granular-farinaceous, lacking caudicles and viscidia; stigma concave, rounded; rostellum inconspicuous or absent. Capsule erect. About 15 species: mainly in Europe, N Africa, and E Asia, but also in the Himalayas, SE Asia, and extending to the west coast of North America; nine species (four endemic) in China. -
Dispersion of Vascular Plant in Mt. Huiyangsan, Korea
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Korean Nature Vol. 3, No. 1 1-10, 2010 Dispersion of Vascular Plant in Mt. Huiyangsan, Korea Hyun-Tak Shin1, Sung-Tae Yoo2, Byung-Do Kim2, and Myung-Hoon YI3* 1Gyeongsangnam-do Forest Environment Research Institute, Jinju 660-871, Korea 2Daegu Arboretum 284 Daegok-Dong Dalse-Gu Daegu 704-310, Korea 3Department of Landscape Architecture, Graduate School, Yeungnam University, Gyeongsan 712-749, Korea Abstract: We surveyed that vascular plants can be classified into 90 families and 240 genus, 336 species, 69 variants, 22 forms, 3 subspecies, total 430 taxa. Dicotyledon plant is 80.9%, monocotyledon plant is 9.8%, Pteridophyta is 8.1%, Gymnosermae is 1.2% among the whole plant family. Rare and endangered plants are Crypsinus hastatus, Lilium distichum, Viola albida, Rhododendron micranthum, totalling four species. Endemic plants are Carex okamotoi, Salix koriyanagi for. koriyanagi, Clematis trichotoma, Thalictrum actaefolium var. brevistylum, Galium trachyspermum, Asperula lasiantha, Weigela subsessilis, Adenophora verticillata var. hirsuta, Aster koraiensis, Cirsium chanroenicum and Saussurea seoulensis total 11 taxa. Specialized plants are 20 classification for I class, 7 classifications for the II class, 7 classifications for the III class, 2 classification for the IV class, and 1 classification for the V class, total 84 taxa. Naturalized plants specified in this study are 10 types but Naturalization rate is not high compared to the area of BaekDu-DaeGan. This survey area is focused on the center of BaekDu- DaeGan, and it has been affected by excessive investigations and this area has been preserved as Buddhist temples' woods. -
Forma Nov.: a New Peloric Orchid from Ibaraki Prefecture, Japan
The Japanese Society for Plant Systematics ISSN 1346-7565 Acta Phytotax. Geobot. 65 (3): 127–139 (2014) Cephalanthera falcata f. conformis (Orchidaceae) forma nov.: A New Peloric Orchid from Ibaraki Prefecture, Japan 1,* 1 1 HirosHi Hayakawa , CHiHiro Hayakawa , yosHinobu kusumoto , tomoko 1 1 2 3,4 nisHida , Hiroaki ikeda , tatsuya Fukuda and Jun yokoyama 1National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, Ibaraki 305-8604, Japan. *[email protected] (author for correspondences); 2Faculty of Agriculture, Kochi University, Nan- koku, Kochi 783-8502, Japan; 3Faculty of Science, Yamagata University, Kojirakawa, Yamagata 990-8560, Japan; 4Institute for Regional Innovation, Yamagata University, Kaminoyama, Yamagata 999-3101, Japan We recognize a new peloric form of the orchid Cephalanthera falcata (Thunb.) Blume f. conformis Hi- ros. Hayak. et J. Yokoy., which occurs in the vicinity of the Tsukuba mountain range in Ibaraki Prefec- ture, Japan. This peloric form is sympatric with C. falcata f. falcata. The peloric flowers have a petal-like lip. The flowers are radially symmetrical and the perianth parts spread weakly compared to normal flow- ers. The stigmas are positioned at the column apex, thus neighboring stigmas and the lower parts of the pollinia are conglutinated. We observed similar vegetative traits among C. falcata f. falcata, C. falcata f. albescens S. Kobayashi, and C. falcata f. conformis. The floral morphology in C. falcata f. conformis resembles that of C. nanchuanica (S.C. Chen) X.H. Jin et X.G. Xiang (i.e., similar petal-like lip and stig- ma position at the column apex; syn. Tangtsinia nanchuanica S.C. -
PC22 Doc. 22.1 Annex (In English Only / Únicamente En Inglés / Seulement En Anglais)
Original language: English PC22 Doc. 22.1 Annex (in English only / únicamente en inglés / seulement en anglais) Quick scan of Orchidaceae species in European commerce as components of cosmetic, food and medicinal products Prepared by Josef A. Brinckmann Sebastopol, California, 95472 USA Commissioned by Federal Food Safety and Veterinary Office FSVO CITES Management Authorithy of Switzerland and Lichtenstein 2014 PC22 Doc 22.1 – p. 1 Contents Abbreviations and Acronyms ........................................................................................................................ 7 Executive Summary ...................................................................................................................................... 8 Information about the Databases Used ...................................................................................................... 11 1. Anoectochilus formosanus .................................................................................................................. 13 1.1. Countries of origin ................................................................................................................. 13 1.2. Commercially traded forms ................................................................................................... 13 1.2.1. Anoectochilus Formosanus Cell Culture Extract (CosIng) ............................................ 13 1.2.2. Anoectochilus Formosanus Extract (CosIng) ................................................................ 13 1.3. Selected finished -
Independent Degradation in Genes of the Plastid Ndh Gene Family in Species of the Orchid Genus Cymbidium (Orchidaceae; Epidendroideae)
RESEARCH ARTICLE Independent degradation in genes of the plastid ndh gene family in species of the orchid genus Cymbidium (Orchidaceae; Epidendroideae) Hyoung Tae Kim1, Mark W. Chase2* 1 College of Agriculture and Life Sciences, Kyungpook University, Daegu, Korea, 2 Jodrell Laboratory, Royal a1111111111 Botanic Gardens, Kew, Richmond, Surrey, United Kingdom a1111111111 * [email protected] a1111111111 a1111111111 a1111111111 Abstract In this paper, we compare ndh genes in the plastid genome of many Cymbidium species and three closely related taxa in Orchidaceae looking for evidence of ndh gene degradation. OPEN ACCESS Among the 11 ndh genes, there were frequently large deletions in directly repeated or AT- Citation: Kim HT, Chase MW (2017) Independent rich regions. Variation in these degraded ndh genes occurs between individual plants, degradation in genes of the plastid ndh gene family apparently at population levels in these Cymbidium species. It is likely that ndh gene trans- in species of the orchid genus Cymbidium fers from the plastome to mitochondrial genome (chondriome) occurred independently in (Orchidaceae; Epidendroideae). PLoS ONE 12(11): e0187318. https://doi.org/10.1371/journal. Orchidaceae and that ndh genes in the chondriome were also relatively recently transferred pone.0187318 between distantly related species in Orchidaceae. Four variants of the ycf1-rpl32 region, Editor: Zhong-Jian Liu, The National Orchid which normally includes the ndhF genes in the plastome, were identified, and some Cymbid- Conservation Center of China; The Orchid ium species contained at least two copies of that region in their organellar genomes. The Conservation & Research Center of Shenzhen, four ycf1-rpl32 variants seem to have a clear pattern of close relationships. -
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes
Networks in a Large-Scale Phylogenetic Analysis: Reconstructing Evolutionary History of Asparagales (Lilianae) Based on Four Plastid Genes Shichao Chen1., Dong-Kap Kim2., Mark W. Chase3, Joo-Hwan Kim4* 1 College of Life Science and Technology, Tongji University, Shanghai, China, 2 Division of Forest Resource Conservation, Korea National Arboretum, Pocheon, Gyeonggi- do, Korea, 3 Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, United Kingdom, 4 Department of Life Science, Gachon University, Seongnam, Gyeonggi-do, Korea Abstract Phylogenetic analysis aims to produce a bifurcating tree, which disregards conflicting signals and displays only those that are present in a large proportion of the data. However, any character (or tree) conflict in a dataset allows the exploration of support for various evolutionary hypotheses. Although data-display network approaches exist, biologists cannot easily and routinely use them to compute rooted phylogenetic networks on real datasets containing hundreds of taxa. Here, we constructed an original neighbour-net for a large dataset of Asparagales to highlight the aspects of the resulting network that will be important for interpreting phylogeny. The analyses were largely conducted with new data collected for the same loci as in previous studies, but from different species accessions and greater sampling in many cases than in published analyses. The network tree summarised the majority data pattern in the characters of plastid sequences before tree building, which largely confirmed the currently recognised phylogenetic relationships. Most conflicting signals are at the base of each group along the Asparagales backbone, which helps us to establish the expectancy and advance our understanding of some difficult taxa relationships and their phylogeny. -
===Обзорные Статьи ======Orchids of Russia: Annotated Checklist and Geographic Distribution
Nature Conservation Research. Заповедная наука 2020. 5(Suppl.1): 1–18 https://dx.doi.org/10.24189/ncr.2020.018 ============== REVIEW ARTICLES ================ ============= ОБЗОРНЫЕ СТАТЬИ =============== ORCHIDS OF RUSSIA: ANNOTATED CHECKLIST AND GEOGRAPHIC DISTRIBUTION Petr G. Efimov Komarov Botanical Institute of RAS, Russia e-mail: [email protected] Received: 07.03.2020. Revised: 11.04.2020. Accepted: 13.04.2020. A checklist of orchids is presented for Russia. Data from the project «Biodiversity Mapping of Orchidaceae of Russia» are supplemented by the literature data in order to analyse the geographical distribution of species. We consider that the orchid diversity of Russia comprises 135 species and 13 subspecies belonging to 38 genera, in- cluding several taxa with status «uncertain for Russia»: Dactylorhiza majalis, D. sambucina, Epipactis purpurata, Cephalanthera caucasica, Anacamptis laxiflora subsp. palustris, and Platanthera komarovii subsp. maximovic- ziana. Krasnodarsky Krai has the highest number of orchid species (56 species), followed by Sakhalin Region (50), Republic of Dagestan (49), Republic of Crimea (45), Primorsky Krai (42), and Khabarovsky Krai (41). Only in As- trakhan Region there are no orchids known. One species (Anacamptis laxiflora, from one locality) is known from the Republic of Kalmykia, three species from Chukotsky Autonomous Okrug, eight species from Nenetsky Au- tonomous Okrug. Gymnadenia conopsea is the most widely distributed species, being found in 74 regions (90%), followed by Corallorhiza trifida (73 regions), Dactylorhiza incarnata (72), and D. viridis (71). Twenty-five species are known from only one administrative region. Eleven of them have been found in Sakhalin Region, four of them in Republic of Dagestan. Cephalanthera erecta, Epipactis euxina, and E. -
PC25 Doc. 32.2
Original language: English PC25 Doc. 32.2 CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ___________________ Twenty-fifth meeting of the Plants Committee Online, 2-4, 21 and 23 June 2021 Species specific matters Maintenance of the Appendices Orchids checklists APPENDIX-II ORCHID CHECKLIST 1. This document has been submitted by the Scientific Authority for Flora of the United Kingdom of Great Britain and Northern Ireland.* 2. The context of this document pertains to PC24 Com. 8 (Rev. by Sec.). The UK Scientific Authority and the United Nations Environment Programme – World Conservation Monitoring Centre (UNEP-WCMC) were to prepare a checklist for Orchidaceae, presenting Appendix I and Appendix II species separately. a) This was to be undertaken by generating an output for Orchidaceae from the World Checklist of Selected Plant Families. The output includes accepted names, synonyms and country-level distribution information. b) The dataset for Orchidaceae was provided by The World Checklist of Selected Plant Families. The World Checklist of Selected Plant Families has become an international collaborative programme with more than 150 contributors from 22 countries. The main goal of the World Checklist of Selected Plant Families is to provide high quality peer reviewed baseline data on all accepted taxa included in each family. c) To make the review of proposed changes manageable, a comparison was undertaken between the World Checklist of Selected Plant Families output and the current CITES nomenclature standard references for Orchidaceae. 3. The Appendix I Orchid Checklist was adopted at the 18th CITES Conference of the Parties (Switzerland, 2019). This checklist and the proposed checklist were compiled using the same methodology. -
A New Peloric Form of Cephalanthera Erecta (Orchidaceae) from Japan
ISSN 1346-7565 Acta Phytotax. Geobot. 71 (2): 163–169 (2020) doi: 10.18942/apg.201918 A New Peloric Form of Cephalanthera erecta (Orchidaceae) from Japan 1,* 2 3,† 3,4,‡ HIROSHI HAYAKAWA , KENJI SUETSUGU , SHOHEI FUJIMORI , TAKUTO SHITARA , JUN 5 6 YOKOYAMA AND TOMOHISA YUKAWA 1Museum of Natural and Environmental History, Shizuoka, 5762 Oya, Suruga-ku, Shizuoka 422-8017, Japan. *[email protected] (author for correspondence); 2Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan; 3Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan; 4Iriomote Sta- tion, Tropical Biosphere Research Center, University of the Ryukyus, 870 Uehara, Taketomi-cho, Yaeyama-gun, Okinawa 907-1541, Japan; 5Faculty of Science, Yamagata University, Kojirakawa, Yamagata 990-8560, Japan; 6Tsukuba Botanical Garden, National Museum of Nature and Science, 1-1, Amakubo 4, Tsukuba, Ibaraki 305-0005, Japan; †Present address: Department of Horticulture, Kochi Prefectural Makino Botanical Garden, 4200-6 Godai- san,, Kochi 781-8125, Japan; ‡Present address: Institute of Agriculture, Tokyo University of Agriculture and Technol- ogy, 3-5-8 Saiwai, Fuchu-shi, Tokyo 183-8509, Japan A new peloric form of Cephalanthera erecta (Thunb.) Blume (Orchidaceae) is reported from Hokkaido, Honshu, and Shikoku, Japan. Cephalanthera erecta f. pelorica Hiros. Hayak. & Suetsugu has an incon- spicuous lip and stigmas positioned at the apex of the column. The flowers of C. erecta f. pelorica re- semble those of the probable peloric form of C. erecta (i.e., C. erecta var. oblanceolata N. -
Journal-Of-Plant-Resources -2020.Pdf
Volume 18 Number 1 Government of Nepal Ministry of Forests and Environment Department of Plant Resources Thapathali, Kathmandu, Nepal 2020 ISSN 1995 - 8579 Journal of Plant Resources, Vol. 18, No. 1 JOURNAL OF PLANT RESOURCES Government of Nepal Ministry of Forests and Environment Department of Plant Resources Thapathali, Kathmandu, Nepal 2020 Advisory Board Mr. Dhananjaya Paudyal Mr. Keshav Kumar Neupane Mr. Mohan Dev Joshi Managing Editor Mr. Tara Datt Bhat Editorial Board Prof. Dr. Dharma Raj Dangol Ms. Usha Tandukar Mr. Rakesh Kumar Tripathi Mr. Pramesh Bahadur Lakhey Ms. Nishanta Shrestha Ms. Pratiksha Shrestha Date of Online Publication: 2020 July Cover Photo: From top to clock wise direction. Inflorescence bearing multiple flowers in a cluster - Rhododendron cowanianum Davidian (PC: Pratikshya Chalise) Vanda cristata Wall. ex Lindl. (PC: Sangram Karki) Seedlings developed in half strength MS medium of Dendrobium crepidatum Lindl. & Paxton (PC: Prithivi Raj Gurung) Pycnoporus cinnabarinus (Jacq.: Fr.) Karst. (PC: Rajendra Acharya) Preparative HPLC (PC: Devi Prasad Bhandari) Flower head of Mimosa diplotricha C. Wright (PC: Lila Nath Sharma) © All rights reserved Department of Plant Resources (DPR) Thapathali, Kathmandu, Nepal Tel: 977-1-4251160, 4251161, 4268246, E-mail: [email protected] Citation: Name of the author, year of publication. Title of the paper, J. Pl. Res. vol. 18, Issue 1 pages, Department of Plant Resources, Thapathali, Kathmandu, Nepal. ISSN: 1995-8579 Published By: Publicity and Documentation Section Department of Plant Resources (DPR), Thapathali, Kathmandu, Nepal. Reviewers: The issue can be retrieved from http://www.dpr.gov.np Prof. Dr.Anjana Singh Dr. Krishna Bhakta Maharjan Prof. Dr. Ram Kailash Prasad Yadav Dr. -
Effect of Historical Factors on Genetic Variation in the Three Terrestrial Orchids Cephalanthera Erecta, Cephalanthera Falcata
M. Y. Chung et al. Effect of historical factor on genetic variation in three Cephalanthera species 1 1 Effect of historical factors on genetic variation in the three terrestrial 2 orchids Cephalanthera erecta, Cephalanthera falcata, and Cephalanthera 3 longibracteata on the Korean Peninsula differing in breeding systems 4 5 Mi Yoon Chung, Nhan Thien Lu, Jordi López-Pujol, Sonia Herrando-Moraira, Jae Min 6 Chung, Huai Zhen Tian, Kenji Suetsugu, Takayuki Kawahara, Tomohisa Yukawa, 7 Masayuki Maki, Pankaj Kumar, Young-Dong Kim, and Myong Gi Chung 8 9 M.Y. Chung, Research Institute of Natural Science, Gyeongsang National University, 10 Jinju 52828, Republic of Korea. – N. T. Lu and M. G. Chung (http://orcid.org/0000- 11 0002-1283-3574) ([email protected]), Division of Life Science and the Research 12 Institute of Natural Science, Gyeongsang National University, Jinju 52828, Republic of 13 Korea. – J. López-Pujol and S. Herrando-Moraira, Botanic Institute of de Barcelona 14 (IBB, CSIC-ICUB), Passeig del Migdia s/n, Barcelona 08038, Spain. – J. M. Chung, 15 Plant Conservation Division, Korea National Arboretum, Pocheon 11186, Republic of 16 Korea. – H. Z. Tian, School of Life Sciences, East China Normal University, Shanghai 17 200241, China. – K. Suetsugu, Department of Biology, Graduate School of Science, 18 Kobe University, Kobe, 657-8501, Japan. –T. Kawahara, Hokkaido Research Center, 19 Forestry and Forest Products Research Institute, Sapporo, Hokkaido, Japan. –T. 20 Yukawa, Tsukuba Botanical Garden, National Science Museum, Tsukuba, Ibaraki, 21 Japan. –M. Maki, Botanic Gardens, Tohoku University, Kawauchi 12-2, Sendai 12-2, 22 Sendai 980-0862, Japan. -
Biogeography and Ecology of Tulasnellaceae
Chapter 12 Biogeography and Ecology of Tulasnellaceae Franz Oberwinkler, Darı´o Cruz, and Juan Pablo Sua´rez 12.1 Introduction Schroter€ (1888) introduced the name Tulasnella in honour of the French physicians, botanists and mycologists Charles and Louis Rene´ Tulasne for heterobasidiomycetous fungi with unique meiosporangial morphology. The place- ment in the Heterobasidiomycetes was accepted by Rogers (1933), and later also by Donk (1972). In Talbot’s conspectus of basidiomycetes genera (Talbot 1973), the genus represented an order, the Tulasnellales, in the Holobasidiomycetidae, a view not accepted by Bandoni and Oberwinkler (1982). In molecular phylogenetic studies, Tulasnellaceae were included in Cantharellales (Hibbett and Thorn 2001), a position that was confirmed by following studies, e.g. Hibbett et al. (2007, 2014). 12.2 Systematics and Taxonomy Most tulasnelloid fungi produce basidiomata on wood, predominantly on the underside of fallen logs and twigs. Reports on these collections are mostly published in local floras, mycofloristic listings, or partial monographic treatments. F. Oberwinkler (*) Institut für Evolution und O¨ kologie, Universita¨tTübingen, Auf der Morgenstelle 1, 72076 Tübingen, Germany e-mail: [email protected] D. Cruz • J.P. Sua´rez Museum of Biological Collections, Section of Basic and Applied Biology, Department of Natural Sciences, Universidad Te´cnica Particular de Loja, San Cayetano Alto s/n C.P, 11 01 608 Loja, Ecuador © Springer International Publishing AG 2017 237 L. Tedersoo (ed.), Biogeography of Mycorrhizal Symbiosis, Ecological Studies 230, DOI 10.1007/978-3-319-56363-3_12 238 F. Oberwinkler et al. Unfortunately, the ecological relevance of Tulasnella fruiting on variously decayed wood or on bark of trees is not understood.