(GSNOR1) Function Leads to an Altered DNA and Histone Methylation Pattern in Arabidopsis Thaliana

Total Page:16

File Type:pdf, Size:1020Kb

(GSNOR1) Function Leads to an Altered DNA and Histone Methylation Pattern in Arabidopsis Thaliana TECHNISCHE UNIVERSITÄT MÜNCHEN Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt (WZW) Lehrstuhl für Biochemische Pflanzenpathologie Loss of S-NITROSOGLUTATHIONE REDUCTASE 1 (GSNOR1) function leads to an altered DNA and histone methylation pattern in Arabidopsis thaliana Eva Rudolf Vollständiger Abdruck der von der Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt der Technischen Universität München zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften genehmigten Dissertation. Vorsitzender: Prof. Dr. Frank Johannes Prüfer der Dissertation: 1. Prof. Dr. Jörg Durner 2. apl. Prof. Dr. Ramon A. Torres Ruiz Die Dissertation wurde am 30.01.2020 bei der Technischen Universität München eingereicht und durch die Fakultät Wissenschaftszentrum Weihenstephan für Ernährung, Landnutzung und Umwelt am 20.04.2020 angenommen. To my family, Florian and Tobias. Publications and conference contributions related to this thesis: Izabella Kovacs, Alexandra Ageeva, Eva König and Christian Lindermayr, 2016. Chapter Two – S-Nitrosylation of Nuclear Proteins: New Pathways in Regulation of Gene Expression. In Advances in Botanical Research edited by David Wendehenne. Nitric Oxide and Signaling in Plants. Academic Press, 77, 15–39. Eva Rudolf, Markus Wirtz, Ignasi Forné and Christian Lindermayr. S-Nitrosothiols as architect of the methylome in Arabidopsis thaliana. EMBO Conference - Chromatin and Epigenetics 2017, Heidelberg, Germany, Poster. Eva Rudolf, Alexandra Ageeva-Kieferle, Alexander Mengel, Ignasi Forné, Rüdiger Hell, Axel Imhof, Markus Wirtz, Jörg Durner and Christian Lindermayr. Post-translational modification of histones: Nitric oxide modulates chromatin structure. Symposium - From Proteome to Phenotype: role of post- translational modifications 2017, Edinburgh, United Kingdom, Oral presentation. Alexandra Ageeva-Kieferle, Eva Rudolf and Christian Lindermayr, 2019. Redox-Dependent Chromatin Remodeling: A New Function of Nitric Oxide as Architect of Chromatin Structure in Plants. Frontiers in Plant Science, 10, 625. Christian Lindermayr, Eva Rudolf, Jörg Durner and Martin Groth, 2020. Interaction between metabolism and chromatin in plant models. Molecular Metabolism, 38, 100951. Eva Rudolf, Patrick Hüther, Ignasi Forné, Elisabeth Georgii, Yongtao Han, Markus Wirtz, Rüdiger Hell, Axel Imhof, Claude Becker, Jörg Durner and Christian Lindermayr. S-Nitrosoglutathione reductase regulates demethylation and expression of transposable elements and stress-responsive genes. In progress. Other publications and conference contributions: Felicitas Groß, Eva König, Jörg Durner and Jeremy Astier. Nitric oxide production in Arabidopsis thaliana. 5th Plant NO Club Meeting 2014, Munich, Germany, Poster. Zsuzsanna Kolbert, Árpád Molnár, Dóra Oláh, Gábor Feigl, Edit Horváth, László Erdei, Attila Ördög, Eva Rudolf, Teresa K. Barth and Christian Lindermayr, 2019. S-Nitrosothiol Signaling Is involved in Regulating Hydrogen Peroxide Metabolism of Zinc-Stressed Arabidopsis. Plant and Cell Physiology. 60, 2449–2463. Table of Contents Table of Contents .......................................................................................................................... I Summary ..................................................................................................................................... V Abbreviations ............................................................................................................................. VII List of Figures and Tables ............................................................................................................. IX 1 Introduction ......................................................................................................................... 1 1.1 Nitric oxide in plants ................................................................................................................ 1 1.2 S-Nitrosoglutathione is an intracellular mobile NO reservoir ................................................. 3 1.3 NO-mediated regulation of gene expression .......................................................................... 5 1.4 Chromatin methylation and metaboloepigenetic ................................................................... 6 1.4.1 Histone lysine methylation and demethylation in Arabidopsis ...................................... 7 1.4.2 DNA methylation and demethylation in Arabidopsis ...................................................... 8 1.4.3 Metabolic regulation of DNA and histone methylation ................................................ 10 1.5 Epigenetic effects of NO on DNA and histone methylation .................................................. 12 1.5.1 NO affects DNA and histone methylation pathways ..................................................... 13 1.5.2 NO affects metaboloepigenetic processes interacting with DNA and histone methylation ................................................................................................................................... 16 2 Aim of the thesis ................................................................................................................. 19 3 Materials and Methods ....................................................................................................... 20 3.1 Plant material and cultivation ............................................................................................... 20 3.2 Molecular biology methods................................................................................................... 21 3.2.1 Genomic DNA isolation using cetyltrimethylammonium bromide ............................... 21 3.2.2 Genomic DNA isolation using the DNeasy® Plant Mini Kit ............................................ 21 3.2.3 RNA extraction and cDNA synthesis .............................................................................. 22 3.3 Generation and characterization of transgenic lines ............................................................ 22 3.3.1 Preparation of competent Agrobacterium tumefaciens ............................................... 22 3.3.2 Transformation of Agrobacterium tumefaciens by electroporation ............................. 22 3.3.3 Transformation of Arabidopsis ...................................................................................... 23 3.3.4 Generation of transgenic 35S::AtSAHH1-tagged plants ................................................ 23 3.3.5 PCR-based genotyping of mutants and transgenic lines ............................................... 24 3.4 Epigenetic analysis and next generation sequencing ............................................................ 25 3.4.1 DNA methylation analysis by chop-PCR ........................................................................ 25 3.4.2 Whole genome bisulfite sequencing and data analysis ................................................ 25 3.4.3 RNA-sequencing ............................................................................................................ 27 I 3.4.4 Acid extraction of histones ............................................................................................ 27 3.4.5 Quantification of histone methylation and acetylation by LC-MS/MS ......................... 27 3.5 Protein analysis ..................................................................................................................... 30 3.5.1 Sodium dodecyl sulfate polyacrylamide gel electrophoresis ........................................ 30 3.5.2 Coomassie® staining of SDS-PAGE gels ......................................................................... 30 3.5.3 Immunoblotting ............................................................................................................. 30 3.5.4 Detection of S-nitrosated proteins ................................................................................ 31 3.6 Heterologous protein production and enzymatic activity assays ......................................... 32 3.6.1 Heterologous production of AtSAHH1 .......................................................................... 32 3.6.2 SAHH activity assay ........................................................................................................ 33 3.6.3 GSNOR activity assay ..................................................................................................... 33 3.6.4 GUS activity staining ...................................................................................................... 33 3.7 Metabolic analysis ................................................................................................................. 34 3.7.1 Quantification of chlorophyll contents ......................................................................... 34 3.7.2 Quantification of S-nitrosothiols ................................................................................... 34 3.7.3 Quantification of polyamines ........................................................................................ 35 3.7.4 Quantifications of thiols ................................................................................................ 35 3.8 Statistical data analysis.......................................................................................................... 35 4 Results ................................................................................................................................ 36 4.1 S-Nitrosation of AtSAHH1 .....................................................................................................
Recommended publications
  • Mechanisms Controlling the Selective Iron and Zinc Biofortification of Rice
    Nom/Logotip de la Universitat on s’ha llegit la tesi Mechanisms controlling the selective iron and zinc biofortification of rice Raviraj Banakar http://hdl.handle.net/10803/384320 ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual (RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de drets afecta tant als continguts de la tesi com als seus resums i índexs. ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización previa y expresa de la persona autora.
    [Show full text]
  • Integration of Adaptive Changes to Iron Deficiency in Plants
    G Model CPB-30; No. of Pages 12 ARTICLE IN PRESS Current Plant Biology xxx (2016) xxx–xxx Contents lists available at ScienceDirect Current Plant Biology jo urnal homepage: www.elsevier.com/locate/cpb From the proteomic point of view: Integration of adaptive changes to iron deficiency in plants a a,b,∗ Hans-Jörg Mai , Petra Bauer a Institute of Botany, Heinrich Heine University Düsseldorf, Universitätsstraße 1, Building 26.13, 02.36, 40225 Düsseldorf, Germany b CEPLAS Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, Düsseldorf, Germany a r t i c l e i n f o a b s t r a c t Article history: Knowledge about the proteomic adaptations to iron deficiency in plants may contribute to find possible Received 10 July 2015 new research targets in order to generate crop plants that are more tolerant to iron deficiency, to increase Received in revised form 22 January 2016 the iron content or to enhance the bioavailability of iron in food plants. We provide this update on adap- Accepted 1 February 2016 tations to iron deficiency from the proteomic standpoint. We have mined the data and compared ten studies on iron deficiency-related proteomic changes in six different Strategy I plant species. We sum- Keywords: marize these results and point out common iron deficiency-induced alterations of important biochemical Arabidopsis pathways based on the data provided by these publications, deliver explanations on the possible benefits Iron Proteome that arise from these adaptations in iron-deficient plants and present a concluding model of these adap- tations.
    [Show full text]
  • Polyamines Under Abiotic Stress: Metabolic Crossroads and Hormonal Crosstalks in Plants
    Metabolites 2012, 2, 516-528; doi:10.3390/metabo2030516 OPEN ACCESS metabolites ISSN 2218-1989 www.mdpi.com/journal/metabolites/ Review Polyamines under Abiotic Stress: Metabolic Crossroads and Hormonal Crosstalks in Plants Marta Bitrián, Xavier Zarza, Teresa Altabella, Antonio F. Tiburcio and Rubén Alcázar * Unit of Plant Physiology, Department of Natural Products and Plant Biology, Faculty of Pharmacy, University of Barcelona, Diagonal, 643, 08028 Barcelona, Spain * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel: +34 934024492; Fax: +34 934029043. Received: 22 June 2012; in revised form: 6 August 2012 / Accepted: 10 August 2012 / Published: 20 August 2012 Abstract: Polyamines are essential compounds for cell survival and have key roles in plant stress protection. Current evidence points to the occurrence of intricate cross-talks between polyamines, stress hormones and other metabolic pathways required for their function. In this review we integrate the polyamine metabolic pathway in the context of its immediate metabolic network which is required to understand the multiple ways by which polyamines can maintain their homeostasis and participate in plant stress responses. Keywords: polyamines; stress; metabolism; SAM; GABA; proline; ABA 1. Introduction Abiotic stresses such as cold/freezing, salinity, heat and drought represent serious threats to agriculture. Climatic change is predicted to increase global temperature, alter precipitation patterns and intensify drought, increasing the need to grow crops in saline soil [1,2]. Plants, which are sessile organisms, have evolved metabolic and hormonal pathways to cope with environmental challenges. The study of this natural evolution on stress responsiveness is providing new leads to crop protection.
    [Show full text]
  • Activation of a Gene Network in Durum Wheat Roots Exposed to Cadmium
    Aprile et al. BMC Plant Biology (2018) 18:238 https://doi.org/10.1186/s12870-018-1473-4 RESEARCH ARTICLE Open Access Activation of a gene network in durum wheat roots exposed to cadmium Alessio Aprile, Erika Sabella*, Marzia Vergine, Alessandra Genga, Maria Siciliano, Eliana Nutricati, Patrizia Rampino, Mariarosaria De Pascali, Andrea Luvisi, Antonio Miceli, Carmine Negro and Luigi De Bellis Abstract Background: Among cereals, durum wheat (Triticum turgidum L. subsp. durum) accumulates cadmium (Cd) at higher concentration if grown in Cd-polluted soils. Since cadmium accumulation is a risk for human health, the international trade organizations have limited the acceptable concentration of Cd in edible crops. Therefore, durum wheat cultivars accumulating low cadmium in grains should be preferred by farmers and consumers. To identify the response of durum wheat to the presence of Cd, the transcriptomes of roots and shoots of Creso and Svevo cultivars were sequenced after a 50-day exposure to 0.5 μM Cd in hydroponic solution. Results: No phytotoxic effects or biomass reduction was observed in Creso and Svevo plants at this Cd concentration. Despite this null effect, cadmium was accumulated in root tissues, in shoots and in grains suggesting a good cadmium translocation rate among tissues. The mRNA sequencing revealed a general transcriptome rearrangement after Cd treatment and more than 7000 genes were found differentially expressed in root and shoot tissues. Among these, the up-regulated genes in roots showed a clear correlation with cadmium uptake and detoxification. In particular, about three hundred genes were commonly up-regulated in Creso and Svevo roots suggesting a well defined molecular strategy characterized by the transcriptomic activation of several transcription factors mainly belonging to bHLH and WRKY families.
    [Show full text]
  • Data-Driven Insights Into Ligands, Proteins, and Genetic Mutations
    Data-Driven Insights into Ligands, Proteins, and Genetic Mutations by Jing Lu A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Bioinformatics) in the University of Michigan 2016 Doctoral Committee: Professor Heather A. Carlson, Chair Professor Charles L. Brooks III Assistant Professor Barry Grant Professor David S. Sept Professor Kerby A. Shedden © Jing Lu, 2016 Acknowledgements I would like to thank my advisor, Dr. Heather Carlson, for years of patient guidance, teaching, and support through the course of my PhD. I have learnt how to think critically and be rigorous in every step of research. I also want to express gratitude to my committee: Professor Charles L. Brooks III, Assistant Professor Barry Grant, Professor David S. Sept, Professor Kerby A. Shedden. Their advising is insightful and deepens my understanding of my research projects. I would like to thank Dr. Richard Smith for timely support for both my writing and research. For many Saturdays and Sundays, he promptly responds my requests for proofreading. Much of my work is built on his code in protein and ligand analysis. I would like to thank other members in Dr. Carlson’s lab for helping me with my work. Through the discussion with Dr. Jim Dunbar, I have learnt many critical ideas in Cheminformatics. Also, thank you to Sarah Graham and Jordan Clark for their tremendous friendship and willing to help with my writing. I would also thank previous members in Dr. Carlson’s lab. I would thank Dr. Phani Ghanakota for many late-night discussions and Dr.
    [Show full text]
  • Enhanced Calcium Carbonate-Biofilm Complex Formation by Alkali
    Lee and Park AMB Expr (2019) 9:49 https://doi.org/10.1186/s13568-019-0773-x ORIGINAL ARTICLE Open Access Enhanced calcium carbonate-bioflm complex formation by alkali-generating Lysinibacillus boronitolerans YS11 and alkaliphilic Bacillus sp. AK13 Yun Suk Lee and Woojun Park* Abstract Microbially induced calcium carbonate (CaCO3) precipitation (MICP) is a process where microbes induce condition favorable for CaCO3 formation through metabolic activities by increasing the pH or carbonate ions when calcium is near. The molecular and ecological basis of CaCO3 precipitating (CCP) bacteria has been poorly illuminated. Here, we showed that increased pH levels by deamination of amino acids is a driving force toward MICP using alkalitoler- ant Lysinibacillus boronitolerans YS11 as a model species of non-ureolytic CCP bacteria. This alkaline generation also facilitates the growth of neighboring alkaliphilic Bacillus sp. AK13, which could alter characteristics of MICP by chang- ing the size and shape of CaCO3 minerals. Furthermore, we showed CaCO3 that precipitates earlier in an experiment modifes membrane rigidity of YS11 strain via upregulation of branched chain fatty acid synthesis. This work closely examines MICP conditions by deamination and the efect of MICP on cell membrane rigidity and crystal formation for the frst time. Keywords: Alkaline generation, Dual species CaCO3 precipitation, Bacteria-CaCO3 interaction, Branched chain fatty acid synthesis, Membrane rigidity Introduction exopolysaccharide (EPS) formation, eventually leading to Calcium carbonate precipitating (CCP) bacteria con- microbially induced CaCO3 precipitation (MICP). Bac- tribute to the geochemical cycle as they precipitate car- terial metabolic pathways can create compounds that bonate minerals, including calcium carbonate in nature increase the solution pH.
    [Show full text]
  • Phloem Loading Via the Abaxial Bundle Sheath Cells in Maize Leaves
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.06.284943; this version posted September 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Phloem loading via the abaxial bundle sheath cells in maize leaves 2 3 4 Margaret Bezrutczyk1, Nora R. Zöllner1, Colin P. S. Kruse2, Thomas Hartwig1, Tobias 5 Lautwein3, Karl Köhrer3, Wolf B. Frommer1,4,* and Ji-Yun Kim1 6 7 8 AFFILIATIONS 9 1 Institute for Molecular Physiology, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, 10 Germany 11 2 Los Alamos National Laboratory, Los Alamos, New Mexico, USA, 87545 12 3 Biological and Medical Research Center (BMFZ), Genomics and Transcriptomics Laboratory 13 (GTL), Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany 14 4 Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 15 464-8601, Japan 16 17 * Correspondence: [email protected] 18 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.06.284943; this version posted September 8, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 ABSTRACT 20 Leaves are asymmetric, with differential functionalization of abaxial and adaxial tissues. The 21 bundle sheath (BS) surrounding the vasculature of the C3 crop barley is dorsoventrally 22 differentiated into three domains: adaxial structural, lateral S-type, and abaxial L-type. S-type cells 23 seem to transfer assimilates towards the phloem. Here we used single-cell RNA sequencing to 24 investigate BS differentiation in C4 maize.
    [Show full text]
  • Transcriptional Responses of Soybean Roots to Colonization With
    www.nature.com/scientificreports OPEN Transcriptional responses of soybean roots to colonization with the root endophytic fungus Received: 20 November 2017 Accepted: 15 May 2018 Piriformospora indica reveals Published: xx xx xxxx altered phenylpropanoid and secondary metabolism Ruchika Bajaj1,2, Yinyin Huang1, Sebhat Gebrechristos3, Brian Mikolajczyk4, Heather Brown5, Ram Prasad 2, Ajit Varma2 & Kathryn E. Bushley1 Piriformospora indica, a root endophytic fungus, has been shown to enhance biomass production and confer tolerance to various abiotic and biotic stresses in many plant hosts. A growth chamber experiment of soybean (Glycine max) colonized by P. indica compared to uninoculated control plants showed that the fungus signifcantly increased shoot dry weight, nutrient content, and rhizobial biomass. RNA-Seq analyses of root tissue showed upregulation of 61 genes and downregulation of 238 genes in colonized plants. Gene Ontology (GO) enrichment analyses demonstrated that upregulated genes were most signifcantly enriched in GO categories related to lignin biosynthesis and regulation of iron transport and metabolism but also mapped to categories of nutrient acquisition, hormone signaling, and response to drought stress. Metabolic pathway analysis revealed upregulation of genes within the phenylpropanoid and derivative pathways such as biosynthesis of monolignol subunits, favonoids and favonols (luteolin and quercetin), and iron scavenging siderophores. Highly enriched downregulated GO categories included heat shock proteins involved
    [Show full text]
  • BMC Structural Biology Biomed Central
    BMC Structural Biology BioMed Central Research article Open Access Natural history of S-adenosylmethionine-binding proteins Piotr Z Kozbial*1 and Arcady R Mushegian1,2 Address: 1Stowers Institute for Medical Research, 1000 E. 50th St., Kansas City, MO 64110, USA and 2Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, Kansas 66160, USA Email: Piotr Z Kozbial* - [email protected]; Arcady R Mushegian - [email protected] * Corresponding author Published: 14 October 2005 Received: 21 July 2005 Accepted: 14 October 2005 BMC Structural Biology 2005, 5:19 doi:10.1186/1472-6807-5-19 This article is available from: http://www.biomedcentral.com/1472-6807/5/19 © 2005 Kozbial and Mushegian; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: S-adenosylmethionine is a source of diverse chemical groups used in biosynthesis and modification of virtually every class of biomolecules. The most notable reaction requiring S- adenosylmethionine, transfer of methyl group, is performed by a large class of enzymes, S- adenosylmethionine-dependent methyltransferases, which have been the focus of considerable structure-function studies. Evolutionary trajectories of these enzymes, and especially of other classes of S-adenosylmethionine-binding proteins, nevertheless, remain poorly understood. We addressed this issue by computational comparison of sequences and structures of various S- adenosylmethionine-binding proteins. Results: Two widespread folds, Rossmann fold and TIM barrel, have been repeatedly used in evolution for diverse types of S-adenosylmethionine conversion.
    [Show full text]
  • Scrofulaceum Isolates. and Mycobacterium Mycobacterium
    Uric acid utilization by Mycobacterium intracellulare and Mycobacterium Downloaded from scrofulaceum isolates. J O Falkinham 3rd, K L George, B C Parker and H Gruft J. Bacteriol. 1983, 155(1):36. http://jb.asm.org/ Updated information and services can be found at: http://jb.asm.org/content/155/1/36 on February 13, 2012 by TECH SERVICES/SERIALS RECVG These include: CONTENT ALERTS Receive: RSS Feeds, eTOCs, free email alerts (when new articles cite this article), more» Information about commercial reprint orders: http://jb.asm.org/site/misc/reprints.xhtml To subscribe to to another ASM Journal go to: http://journals.asm.org/site/subscriptions/ JOURNAL OF BACTERIOLOGY, July 1983, P. 36-39 Vol. 155, No. 1 0021-9193/83/070036-04$02.00/0 Copyright © 1983, American Society for Microbiology Uric Acid Utilization by Mycobacterium intracellulare and Mycobacterium scrofulaceum Isolates Downloaded from JOSEPH 0. FALKINHAM 111,1* KAREN L. GEORGE,' BRUCE C. PARKER,1 AND HOWARD GRUFT2 Department ofBiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061,1 and Center for Laboratories and Research, New York State Department of Health, Albany, New York 122012 Received 10 December 1982/Accepted 3 April 1983 Forty-nine human and environmental isolates of Mycobacterium intracellulare and Mycobacterium scrofulaceum were tested for their ability to growon uric acid http://jb.asm.org/ and a number of its degradation products. Nearly all (88 to 90%) strains used uric acid or allantoin as a sole nitrogen source; fewer (47 to 69%) used allantoate, urea, or possibly ureidoglycollate. Enzymatic activities of one representative isolate demonstrated the existence of a uric acid degradation pathway resembling that in other aerobic microorganisms.
    [Show full text]
  • Norspermine Substitutes for Thermospermine in the Control of Stem Elongation in Arabidopsis Thaliana
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector FEBS Letters 584 (2010) 3042–3046 journal homepage: www.FEBSLetters.org Norspermine substitutes for thermospermine in the control of stem elongation in Arabidopsis thaliana Jun-Ichi Kakehi a, Yoshitaka Kuwashiro a, Hiroyasu Motose a, Kazuei Igarashi b, Taku Takahashi a,* a Graduate School of Natural Science and Technology, Okayama University, Okayama 700-8530, Japan b Graduate School of Pharmaceutical Sciences, Chiba University, Chiba 260-8675, Japan article info abstract Article history: Thermospermine is a structural isomer of spermine and is required for stem elongation in Arabid- Received 26 March 2010 opsis thaliana. We noted the C3C3 arrangement of carbon chains in thermospermine (C3C3C4), Revised 16 May 2010 which is not present in spermine (C3C4C3), and examined if it is functionally replaced with norsper- Accepted 17 May 2010 mine (C3C3C3) or not. Exogenous application of norspermine to acl5, a mutant defective in the syn- Available online 24 May 2010 thesis of thermospermine, partially suppressed its dwarf phenotype, and down-regulated the level Edited by Ulf-Ingo Flügge of the acl5 transcript which is much higher than that of the ACL5 transcript in the wild type. Further- more, in the Zinnia culture, differentiation of mesophyll cells into tracheary elements was blocked by thermospermine and norspermine but not by spermine. Our results indicate that norspermine Keywords: Arabidopsis can functionally substitute for thermospermine. Thermospermine Ó 2010 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved. Norspermine Polyamine Stem elongation Xylem 1.
    [Show full text]
  • Investigations About N-Aminopropyl Transferases Probably Involved in Biomineralization
    JOURNAL OF PHYSIOLOGY AND PHARMACOLOGY 2008, 59, Suppl 5, 27–37 www.jpp.krakow.pl P. ROMER1, 3, A. FALTERMEIER1, V. MERTINS1, T. GEDRANGE2, R. MAI2, P. PROFF1 INVESTIGATIONS ABOUT N-AMINOPROPYL TRANSFERASES PROBABLY INVOLVED IN BIOMINERALIZATION 1Department of Orthodontics, Regensburg University, Germany; 2Department of Orthodontics, Preventive and Pediatric Dentistry, Ernst-Moritz-Arndt University Greifswald, Germany; 3Department of Biochemistry I, Regensburg University, Germany Polyamines are widespread distributed all over in living organisms. In Thalassiosira pseudonana 10 N-aminopropyl transferase like nucleotide sequences exists. It is assumed that these sequences are involved in the biomineralization of the diatom shell. The cDNA of the sequences were cloned, recombinant overexpressed and assayed with decarboxylated S-adenosylmethionine and several radioactive labelled polyamines. However, only a spermidine synthase and a thermospermine synthase were found to be enzymatically active in an in vitro assay. Both enzyme activities could be recognized in the crude extracts of Thalassiosira pseudonana and Cyclotella meneghiana. In further investigations the kinetics of the thermospermine synthase was determined and a site-specific mutagenesis of the bindig cavity of decarboxylated S-adenosylmethionine was carried out. Key words: biomineralization, N-aminopropyl transferase, polyamine, thermospermine INTRODUCTION Polyamines are cationic and amphiphilic organic molecules that are ubiquitously present in almost all known organisms. Common
    [Show full text]