Overview of the Rocky Intertidal Systems of Southern California Mark M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Journal of Anthropological Archaeology 54 (2019) 235–253
Journal of Anthropological Archaeology 54 (2019) 235–253 Contents lists available at ScienceDirect Journal of Anthropological Archaeology journal homepage: www.elsevier.com/locate/jaa Technological change and interior settlement on western Santa Rosa Island, T California ⁎ Christopher S. Jazwa , Richard L. Rosencrance Department of Anthropology, University of Nevada, Reno, NV 89557, United States ARTICLE INFO ABSTRACT Keywords: We use data on site distributions, chronology, and artifact assemblages from a large, fat upland landscape on Site chronology Santa Rosa Island to better understand the relationship between coastal and interior settlement patterns on Coastal archaeology California’s northern Channel Islands. This region, Pocket Field, was an important hub of occupation during the Mobility patterns late Pleistocene/early Holocene (before 7550 cal BP) and throughout the late Holocene (3600–168 cal BP). A Territoriality radiocarbon chronology for the region suggests that settlement patterns are consistent with what has been Artifact typologies observed in coastal locations, with an increase in site density throughout the late Holocene. Groundstone is an Medieval climatic anomaly important component of the late Holocene archaeological record, although it decreases in importance following the droughts of the Medieval Climatic Anomaly (MCA; 1150–600 cal BP). Olivella biplicata shell bead production at dense midden sites indicates that occupation of the region was not just for access to terrestrial resources. An increase in sites with projectile points during the MCA may refect an increase in interpersonal violence and indicate that increasing territoriality that occurred on the coast may have extended into the island interior. Our study demonstrates that interior sites were integral components of island settlement and subsistence patterns, even when diet is heavily marine-oriented. -
Private Boating and Boater Activities in the Channel Islands: a Spatial Analysis and Assessment
CALIFORNIA MARINE RECREATION Catamaran at anchor, Coches Prietos anchorage Private Boating and Boater Activities in the Channel Islands: A spatial analysis and assessment FINAL REPORT Prepared for: The Resources Legacy Fund Foundation (RLFF) The National Marine Sanctuary Program (NMSP) Prepared by: Chris LaFranchi1 Linwood Pendleton2 March 2008 1 Founder, NaturalEquity (www.naturalequity.org) Social Science Coordinator, Channel Islands National Marine Sanctuary (CINMS) Email: [email protected] 2 Senior Fellow and Director of Economic Research The Ocean Foundation, Dir. Coastal Ocean Values Center Adjunct Associate Professor, UCLA www.coastalvalues.org Email: [email protected] Acknowledgments Of the many individuals who contributed to this effort, we thank Bob Leeworthy, Ryan Vaughn, Miwa Tamanaha, Allison Chan, Erin Gaines, Erin Myers, Dennis Carlson, Alexandra Brown, the captain and crew of the research vessel Shearwater, volunteers from the Sanctuary’s Naturalist Corps, Susie Williams, Christy Loper, Peter Black, and the man boaters who volunteered their time during focus group meetings and survey pre-test efforts. 2 Contents Page 1. Summary……………………………. ……………………………….. 4 2. Introduction …………………………………………………………... 18 2.1. The Study ………………………….…………………………….. 18 2.2. Background ………………………….…………………………… 19 2.3. The Human Dimension of Marine Management ………………… 19 2.4. The Need for Baseline Data ……………………………………... 20 2.5. Policy and Management Context ………………………………... 21 2.6. Market and Non-Market Economics of Non-Consumptive Use … 22 3. Research Tasks and Methods ………………………………………… 25 3.1. Overall Approach ………………………………………………… 25 3.2. Use of Four Integrated Survey Instruments …………….……….. 26 3.3. Biophysical Attributes of the Marine Environment ……………… 30 4. Baseline Data Set ……………………………………………………. 32 4.1. Summary of Responses: Postcard Survey Of Private Boaters….. 32 4.2. -
Revised Essd-2020-161 (20 September 2020)
1 1 Half-hourly changes in intertidal temperature at nine wave-exposed 2 locations along the Atlantic Canadian coast: a 5.5-year study 3 Ricardo A. Scrosati, Julius A. Ellrich, Matthew J. Freeman 4 Department of Biology, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada 5 Correspondence to: Ricardo A. Scrosati ([email protected]) 6 Abstract. Intertidal habitats are unique because they spend alternating periods of 7 submergence (at high tide) and emergence (at low tide) every day. Thus, intertidal temperature 8 is mainly driven by sea surface temperature (SST) during high tides and by air temperature 9 during low tides. Because of that, the switch from high to low tides and viceversa can determine 10 rapid changes in intertidal thermal conditions. On cold-temperate shores, which are 11 characterized by cold winters and warm summers, intertidal thermal conditions can also change 12 considerably with seasons. Despite this uniqueness, knowledge on intertidal temperature 13 dynamics is more limited than for open seas. This is especially true for wave-exposed intertidal 14 habitats, which, in addition to the unique properties described above, are also characterized by 15 wave splash being able to moderate intertidal thermal extremes during low tides. To address this 16 knowledge gap, we measured temperature every half hour during a period of 5.5 years (2014- 17 2019) at nine wave-exposed rocky intertidal locations along the Atlantic coast of Nova Scotia, 18 Canada. This data set is freely available from the figshare online repository (Scrosati and 19 Ellrich, 2020a; https://doi.org/10.6084/m9.figshare.12462065.v1). -
PROTISTS Shore and the Waves Are Large, Often the Largest of a Storm Event, and with a Long Period
(seas), and these waves can mobilize boulders. During this phase of the storm the rapid changes in current direction caused by these large, short-period waves generate high accelerative forces, and it is these forces that ultimately can move even large boulders. Traditionally, most rocky-intertidal ecological stud- ies have been conducted on rocky platforms where the substrate is composed of stable basement rock. Projec- tiles tend to be uncommon in these types of habitats, and damage from projectiles is usually light. Perhaps for this reason the role of projectiles in intertidal ecology has received little attention. Boulder-fi eld intertidal zones are as common as, if not more common than, rock plat- forms. In boulder fi elds, projectiles are abundant, and the evidence of damage due to projectiles is obvious. Here projectiles may be one of the most important defi ning physical forces in the habitat. SEE ALSO THE FOLLOWING ARTICLES Geology, Coastal / Habitat Alteration / Hydrodynamic Forces / Wave Exposure FURTHER READING Carstens. T. 1968. Wave forces on boundaries and submerged bodies. Sarsia FIGURE 6 The intertidal zone on the north side of Cape Blanco, 34: 37–60. Oregon. The large, smooth boulders are made of serpentine, while Dayton, P. K. 1971. Competition, disturbance, and community organi- the surrounding rock from which the intertidal platform is formed zation: the provision and subsequent utilization of space in a rocky is sandstone. The smooth boulders are from a source outside the intertidal community. Ecological Monographs 45: 137–159. intertidal zone and were carried into the intertidal zone by waves. Levin, S. A., and R. -
Island Fox Subspecies
PETITION TO LIST FOUR ISLAND FOX SUBSPECIES San Miguel Island fox (U. l. littoralis) Santa Rosa Island fox (U. l. santarosae) Santa Cruz Island fox (U. l. santacruzae) Santa Catalina Island fox (U. l. catalinae) AS ENDANGERED SPECIES Center for Biological Diversity Institute for Wildlife Studies June 1, 2000 TABLE OF CONTENTS Notice of Petition ..............................................................1 Executive Summary ...........................................................2 Systematics Species Description ...........................................................4 Taxonomy ..................................................................4 Distribution and Evolution .......................................................4 Significance .................................................................6 Natural History Habitat Use and Home Range ....................................................6 Food Habits .................................................................6 Social Organization ............................................................7 Reproduction ................................................................7 Survival and Mortality ..........................................................8 Competition With Other Species ..................................................9 Population Status and Trend San Miguel Island (U. l. littoralis) .................................................9 Santa Rosa Island (U. l. santarosae) .............................................10 Santa Cruz Island (U. l. santacruzae) -
San Miguel Island Trail Guide Timhaufphotography.Com Exploring San Miguel Island
National Park Service U.S. Department of the Interior Channel Islands National Park San Miguel Island Trail Guide timhaufphotography.com Exploring San Miguel Island Welcome to San Miguel Island, one of private boaters to contact the park to five islands in Channel Islands National ensure the island is open before coming Park. This is your island. It is also your ashore. responsibility. Please take a moment to read this bulletin and learn what you Many parts of San Miguel are closed can do to take care of San Miguel. This to protect wildlife, fragile plants, and information and the map on pages three geological features. Several areas, and four will show you what you can see however, are open for you to explore on and do here on San Miguel. your own. Others are open to you only when accompanied by a park ranger. About the Island San Miguel is the home of pristine On your own you may explore the tidepools, rare plants, and the strange Cuyler Harbor beach, Nidever Canyon, caliche forest. Four species of seals and Cabrillo monument, and the Lester ranch sea lions come here to breed and give site. Visitors are required to stay on the birth. For 10,000 years the island was designated island trail system. No off- home to the seagoing Chumash people. trail hiking is permitted. The island was Juan Rodriguez Cabrillo set foot here a bombing range and there are possible in 1542 as the first European to explore unexploded ordnance. In addition, the California coast. For 100 years the visitors must be accompanied by a ranger island was a sheep ranch and after that beyond the ranger station. -
Checklist of Marine Gastropods Around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1
www.symbiosisonline.org Symbiosis www.symbiosisonlinepublishing.com ISSN Online: 2475-4706 Research Article International Journal of Marine Biology and Research Open Access Checklist of Marine Gastropods around Tarapur Atomic Power Station (TAPS), West Coast of India Ambekar AA1*, Priti Kubal1, Sivaperumal P2 and Chandra Prakash1 1ICAR-Central Institute of Fisheries Education, Panch Marg, Off Yari Road, Versova, Andheri West, Mumbai - 400061 2Center for Environmental Nuclear Research, Directorate of Research SRM Institute of Science and Technology, Kattankulathur-603 203 Received: July 30, 2018; Accepted: August 10, 2018; Published: September 04, 2018 *Corresponding author: Ambekar AA, Senior Research Fellow, ICAR-Central Institute of Fisheries Education, Off Yari Road, Versova, Andheri West, Mumbai-400061, Maharashtra, India, E-mail: [email protected] The change in spatial scale often supposed to alter the Abstract The present study was carried out to assess the marine gastropods checklist around ecologically importance area of Tarapur atomic diversity pattern, in the sense that an increased in scale could power station intertidal area. In three tidal zone areas, quadrate provide more resources to species and that promote an increased sampling method was adopted and the intertidal marine gastropods arein diversity interlinks [9]. for Inthe case study of invertebratesof morphological the secondand ecological largest group on earth is Mollusc [7]. Intertidal molluscan communities parameters of water and sediments are also done. A total of 51 were collected and identified up to species level. Physico chemical convergence between geographically and temporally isolated family dominant it composed 20% followed by Neritidae (12%), intertidal gastropods species were identified; among them Muricidae communities [13]. -
Climate Change Report for Gulf of the Farallones and Cordell
Chapter 6 Responses in Marine Habitats Sea Level Rise: Intertidal organisms will respond to sea level rise by shifting their distributions to keep pace with rising sea level. It has been suggested that all but the slowest growing organisms will be able to keep pace with rising sea level (Harley et al. 2006) but few studies have thoroughly examined this phenomenon. As in soft sediment systems, the ability of intertidal organisms to migrate will depend on available upland habitat. If these communities are adjacent to steep coastal bluffs it is unclear if they will be able to colonize this habitat. Further, increased erosion and sedimentation may impede their ability to move. Waves: Greater wave activity (see 3.3.2 Waves) suggests that intertidal and subtidal organisms may experience greater physical forces. A number of studies indicate that the strength of organisms does not always scale with their size (Denny et al. 1985; Carrington 1990; Gaylord et al. 1994; Denny and Kitzes 2005; Gaylord et al. 2008), which can lead to selective removal of larger organisms, influencing size structure and species interactions that depend on size. However, the relationship between offshore significant wave height and hydrodynamic force is not simple. Although local wave height inside the surf zone is a good predictor of wave velocity and force (Gaylord 1999, 2000), the relationship between offshore Hs and intertidal force cannot be expressed via a simple linear relationship (Helmuth and Denny 2003). In many cases (89% of sites examined), elevated offshore wave activity increased force up to a point (Hs > 2-2.5 m), after which force did not increase with wave height. -
OREGON ESTUARINE INVERTEBRATES an Illustrated Guide to the Common and Important Invertebrate Animals
OREGON ESTUARINE INVERTEBRATES An Illustrated Guide to the Common and Important Invertebrate Animals By Paul Rudy, Jr. Lynn Hay Rudy Oregon Institute of Marine Biology University of Oregon Charleston, Oregon 97420 Contract No. 79-111 Project Officer Jay F. Watson U.S. Fish and Wildlife Service 500 N.E. Multnomah Street Portland, Oregon 97232 Performed for National Coastal Ecosystems Team Office of Biological Services Fish and Wildlife Service U.S. Department of Interior Washington, D.C. 20240 Table of Contents Introduction CNIDARIA Hydrozoa Aequorea aequorea ................................................................ 6 Obelia longissima .................................................................. 8 Polyorchis penicillatus 10 Tubularia crocea ................................................................. 12 Anthozoa Anthopleura artemisia ................................. 14 Anthopleura elegantissima .................................................. 16 Haliplanella luciae .................................................................. 18 Nematostella vectensis ......................................................... 20 Metridium senile .................................................................... 22 NEMERTEA Amphiporus imparispinosus ................................................ 24 Carinoma mutabilis ................................................................ 26 Cerebratulus californiensis .................................................. 28 Lineus ruber ......................................................................... -
Island Views Volume 3, 2005 — 2006
National Park Service Park News U.S. Department of the Interior The official newspaper of Channel Islands National Park Island Views Volume 3, 2005 — 2006 Tim Hauf, www.timhaufphotography.com Foxes Returned to the Wild Full Circle In OctobeR anD nOvembeR 2004, The and November 2004, an additional 13 island Chumash Cross Channel in Tomol to Santa Cruz Island National Park Service (NPS) released 23 foxes on Santa Rosa and 10 on San Miguel By Roberta R. Cordero endangered island foxes to the wild from were released to the wild. The foxes will be Member and co-founder of the Chumash Maritime Association their captive rearing facilities on Santa Rosa returned to captivity if three of the 10 on The COastal portion OF OuR InDIg- and San Miguel Islands. Channel Islands San Miguel or five of the 13 foxes on Santa enous homeland stretches from Morro National Park Superintendent Russell Gal- Rosa are killed or injured by golden eagles. Bay in the north to Malibu Point in the ipeau said, “Our primary goal is to restore Releases from captivity on Santa Cruz south, and encompasses the northern natural populations of island fox. Releasing Island will not occur this year since these Channel Islands of Tuqan, Wi’ma, Limuw, foxes to the wild will increase their long- foxes are thought to be at greater risk be- and ‘Anyapakh (San Miguel, Santa Rosa, term chances for survival.” cause they are in close proximity to golden Santa Cruz, and Anacapa). This great, For the past five years the NPS has been eagle territories. -
Shell Microstructure of the Patellid Gastropod Collisella Scabra (Gould): Ecological and Phylogenetic Implications
THE VELIGER The Veliger 48(4):235-242(January 25,2007) O CMS, Inc.,2005 Shell Microstructure of the Patellid Gastropod Collisella scabra (Gould): Ecological and Phylogenetic Implications SARAH E. GILMAN* Section of Evolution and Ecology, and Center for Population Biology, University of California, Davis, Davis, cA 95616-8755 Abstract. Shell microstructure has a long history of use in both taxonomic and ecological research on molluscs. I report here on a study of the microstructure of Collisella scabra, also known as Macclintockia scabra and Lottia scabra. I used a combination of SEM and light microscopy of acetate peels, whole shells, and shell fragments to examine the shell layers and microstructure. Regular growth bands were not present in most shells examined. Several shells showed multiple bands of myostracum, which indicate periods of extreme rates of size change, and may be evidence of abiotic stress. This study also suggests that shell layers previously described as "modified foliated" are "irregular complex crossed lamellar," with both fibrous and foliated second order structures. The presence of fibrous shell structures, in addition to other shared morphological characters noted by previous authors, suggests an affinity with the Lottiidae rather than the Nacellidae. INTRODUCTION scabra shells, and 2) to verify the earlier shell microstructure descriptions, including phylogenetic Shell microstructure has a long history of use in both implications. taxonomic and ecological research on molluscs. Shell growth bands are commonly used as records of individual growth (Frank, 1975; Hughes, 1986; Arnold MATERIALS AND METHODS et al., 1998) and for reconstructing environmental conditions (Rhoads &LuIz,l980; Jones, 1981;Kirby et Collection and Preparation of Shells al., 1998). -
San Miguel Archaelogy.P65
ARCHAEOLOGICAL INVESTIGATIONS AT THE POINT BENNETT PINNIPED ROOKERY ON SAN MIGUEL ISLAND Phillip L. Walker1, Douglas J. Kennett 2, Terry L. Jones3, and Robert DeLong4 1Department of Anthropology, University of California, Santa Barbara, CA 93106 (805) 685-8424, FAX (805) 685-8424, E-mail: [email protected] 2Department of Anthropology, California State University, Long Beach, CA 90840 (805) 965-0262, FAX (805) 893-8707, E-mail: [email protected] 3Social Science Department, California Polytechnic State University, San Luis Obispo, CA 93407 (805) 756-2523, FAX (805) 545-0694, E-mail: [email protected] 4National Marine Mammal Laboratory, Bldg. 4, 7600 Sand Point Way, N. E. Seattle, WA 98115 (206) 526-4038, FAX (206) 526-6615, E-mail: [email protected] ABSTRACT Point Bennett, on the western tip of San Miguel Is- Euro-Americans had on other Pacific Coast pinniped breed- land, California, is the site of one of the largest pinniped ing grounds during the nineteenth century. rookeries on the West Coast of North America. Findings During October of 1996 and 1997, test excavations from late Holocene shell middens situated on and adjacent were undertaken at archaeological sites near Point Bennett. to the modern rookery suggest that the pinniped population Both sites, CA-SMI-602 and CA-SMI-528, suffer from ex- of this breeding area was considerably smaller between 1425 tensive erosion, and the testing was designed to salvage as and 1500 AD than it is today. Archaeological evidence sug- much information as possible from the deposits before they gests that temporal variation in the size and species compo- are lost.