Is Glycine an 'Antidote'

Total Page:16

File Type:pdf, Size:1020Kb

Is Glycine an 'Antidote' Editorial Open Heart: first published as 10.1136/openhrt-2014-000103 on 28 May 2014. Downloaded from The cardiometabolic benefits of glycine: Is glycine an ‘antidote’ to dietary fructose? Mark F McCarty,1 James J DiNicolantonio2 To cite: McCarty MF, VASCULAR PROTECTIVE PROPERTIES OF gated chloride channels. They also demon- DiNicolantonio JJ. The SUPPLEMENTAL GLYCINE strated that human platelets likewise were glycine cardiometabolic benefits of glycine: Is glycine an Supplemental glycine, via activation of responsive and expressed such channels. Studies ‘antidote’ to dietary glycine-gated chloride channels that are evaluating the interaction of glycine with aspirin fructose?. Open Heart expressed on a number of types of cells, or other pharmaceutical platelet-stabilising 2014;1:e000103. including Kupffer cells, macrophages, lym- agents would clearly be appropriate, as would a doi:10.1136/openhrt-2014- phocytes, platelets, cardiomyocytes and endo- clinical study examining the impact of supple- 000103 thelial cells, has been found to exert mental glycine on platelet function. anti-inflammatory, immunomodulatory, cyto- Another recent study has established that car- protective, platelet-stabilising and antiangio- diomyocytes express chloride channels.17 This genic effects in rodent studies that may be of may rationalise evidence that preadministration Accepted 26 April 2014 – clinical relevance.1 17 The plasma concentra- of glycine (500 mg/kg intraperitoneal) reduces tion of glycine in normally nourished indivi- the infarct size by 21% when rats are subse- — — duals around 200 µM is near the Km for quently subjected to cardiac ischaemia- activation of these channels, implying that reperfusion injury; this effect was associated the severalfold increases in plasma glycine with increases in ventricular ejection fraction achievable with practical supplementation and fractional shortening in the glycine pre- 17 can be expected to further activate these treated animals as compared with the controls. http://openheart.bmj.com/ channels in vivo.18 19 The impact on mem- This protection was associated with a reduction brane polarisation of such activation will in cardiomyocyte apoptosis, blunted activation hinge on the intracellular chloride content; of p38 MAP kinase and JNK and decreased Fas cells which actively concentrate chloride ligand expression. A previous study had against a gradient will be depolarised by reported that 3 mM glycine promoted increased channel activation, whereas other cells will survival of cardiomyocytes in vitro subjected to experience hyperpolarisation. In cells that 1 h of ischaemia and then reoxygenated, and fail to concentrate chloride and that express was also protective in an ex vivo model of voltage-activated calcium channels, glycine cardiac ischaemia reperfusion.20 on September 25, 2021 by guest. Protected copyright. tends to suppress calcium influx; this effect is Vascular endothelial cells express glycine- thought to mediate much of the protection gated chloride channels, and it has been sug- afforded by glycine.1 The role of chloride gested that glycine might exert an antiathero- channel activation in the mediation of gly- sclerotic effect by hyperpolarising the cine’s physiological effects is commonly vascular endothelium.19 Since such cells do assessed by the concurrent application of the not express voltage-gated calcium channels, chloride channel inhibitor strychnine; if this the impact of endothelial hyperpolarisation is abolishes glycine’s effect, this effect is most to increase calcium influx, as calcium follows likely mediated by chloride channels. the charge gradient.21 This in turn would be From the standpoint of vascular health, a expected to promote the calcium-mediated 1NutriGuard Research, Inc, Encinitas, California, USA recent report that glycine can stabilise platelets is activation of endothelial nitric oxide synthase. 2 7 fl Department of Preventive of evident interest. When rats were fed diets Moreover, endothelial polarisation in uences Cardiology, Saint Luke’s Mid containing 2.5–5% glycine, bleeding time nicotinamide adenine dinucleotide phos- America Heart Institute, approximately doubled, and the amplitude of phate (NADPH) oxidase activity; this is Kansas City, Missouri, USA platelet aggregation in whole blood triggered by boosted by depolarisation and conversely 22–24 Correspondence to ADP or collagen was halved. This effect was inhibited by hyperpolarisation. The Dr James J DiNicolantonio; blocked by strychnine, and the investigators were vascular-protective impact of potassium-rich [email protected] able to confirm that platelets express glycine- diets is suspected to be mediated in part by McCarty MF, DiNicolantonio JJ. Open Heart 2014;1:e000103. doi:10.1136/openhrt-2014-000103 1 Open Heart Open Heart: first published as 10.1136/openhrt-2014-000103 on 28 May 2014. Downloaded from the endothelial hyperpolarisation that results from and vascular function in rats.38 39 Glycine decreased the modest physiological increases in the plasma potassium elevated non-esterified fatty acid content of the liver of level (reflecting increased activity of the electrogenic sucrose-fed rats, increased the state IV oxidation rate of sodium pump).25 26 Other factors being equal, an hepatic mitochondria, corrected an elevation of blood increase in endothelial nitric oxide generation coupled pressure, normalised the serum triglycerides and insulin, with a decrease in superoxide production could be prevented an increase in abdominal fat mass and, in the expected to have an antiatherogenic and antihyperten- vasculature, boosted glutathione, decreased oxidative sive effect. Also speaking in favour of the antiathero- stress and normalised endothelium-dependent vasodila- sclerotic potential for glycine is a study demonstrating tion. Of likely relevance to these findings is a recent clin- that glycine exerts an anti-inflammatory effect on human ical report that supplemental glycine (15 g daily in three coronary arterial cells exposed to tumour necrosis factor divided doses) administered to patients with metabolic (TNF) α in vitro; activation of NF-κB was suppressed, as syndrome lessened indices of oxidative stress in erythro- was the expression of E-selectin and interleukin-6.27 So cytes and leucocytes, while lowering systolic blood pres- far, there are no published studies evaluating the impact sure.40 These findings are of considerable interest, of dietary glycine on atherogenesis in rodent models. particularly in the light of evidence that high dietary Evidence that glycine has an antihypertensive effect in fructose intakes can promote metabolic syndrome and sucrose-fed rats is discussed below. non-alcoholic fatty liver disease in humans and increase – Glycine is a biosynthetic precursor for creatine, LDL cholesterol.41 43 haeme, nucleic acids and the key intracellular antioxi- The protective effects of glycine in sucrose-fed rats, dant glutathione. Measures which raise or conserve and in humans with metabolic syndrome, are not intracellular glutathione levels may be of benefitfrom readily explained on the basis of the known metabolic the standpoint of oxidant-mediated mechanisms that effects of glycine. Fructose is known to exert its adverse impair vascular health. A recent clinical study reports effects primarily via its impact on liver metabolism; it is that concurrent supplementation of elderly participants catabolised almost exclusively in the liver, and its oxida- with glycine and cysteine (100 mg/kg/day of each, cyst- tion, unlike that of glucose, is not regulated by meta- eine administered as its N-acetyl derivative) reverses the bolic need.41 44 As a result, a high intake of fructose marked age-related reduction in erythrocyte glutathione floods the liver with substrate and suppresses hepatic levels while lowering the serum markers of oxidative fatty acid oxidation, while promoting de novo lipogen- stress28; the authors, however, did not prove that the sup- esis and triglyceride synthesis; increased generation of plemental glycine was crucial for this effect. malonyl-coenzyme A is responsible for the first two With respect to diabetes, it is of interest that high effects, whereas an increase in glycerol-3-phosphate http://openheart.bmj.com/ intakes of glycine have the potential to oppose the for- contributes importantly to fructose’s stimulatory impact mation of Amadori products, precursors to the advanced on triglyceride synthesis. These effects also increase glycation endproducts (AGEs) that mediate diabetic hepatic production of diacylglycerols, which impair complications.29 30 Indeed, supplementation of human hepatic insulin sensitivity via activation of protein kinase diabetics with glycine—5 g, 3-4 times daily—is reported C-ε.45 46 The increased triglyceride content of to decrease haemoglobin glycation.31 32 A similar effect fructose-exposed hepatocytes can be expected to stabil- has been reported in streptozotocin-treated diabetic ise apoB100 and accelerate secretion of very-low-density rats.33 These studies did not measure AGEs per se, so lipoprotein (VLDL) particles47 48; this phenomenon their findings should be interpreted cautiously. may explain the elevation of LDL cholesterol induced on September 25, 2021 by guest. Protected copyright. Nonetheless, glycine supplementation has delayed the by high-fructose intakes.42 The increased hepatic secre- progression of cataract, inhibited microaneurysm forma- tion of VLDL triglyceride presumably is responsible for tion, normalised the proliferative
Recommended publications
  • Targeting Glycine Reuptake in Alcohol Seeking and Relapse
    JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. TITLE PAGE Targeting Glycine Reuptake in Alcohol Seeking and Relapse Valentina Vengeliene, Martin Roßmanith, Tatiane T. Takahashi, Daniela Alberati, Berthold Behl, Anton Bespalov, Rainer Spanagel Downloaded from The primary laboratory of origin: Institute of Psychopharmacology, Central Institute of jpet.aspetjournals.org Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; at ASPET Journals on September 30, 2021 VV, MR, TTT, RS: Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; DA: Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, CH-4070 Basel, Switzerland; BB, AB: Department of Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany; AB: Department of Psychopharmacology, Pavlov Medical University, St Petersburg, Russia JPET #244822 JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. RUNNING TITLE GlyT1 in Alcohol Seeking and Relapse Corresponding author with complete address: Valentina Vengeliene, Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J5, 68159 Mannheim, Germany Email: [email protected], phone: +49-621-17036261; fax: +49-621- Downloaded from 17036255 jpet.aspetjournals.org The number of text pages: 33 Number of tables: 0 Number of figures: 6 Number of references: 44 at ASPET Journals on September 30, 2021 Number of words in the Abstract: 153 Number of words in the Introduction: 729 Number of words in the Discussion: 999 A recommended section assignment to guide the listing in the table of content: Drug Discovery and Translational Medicine 2 JPET #244822 JPET Fast Forward.
    [Show full text]
  • Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors
    Neurochemical Research (2019) 44:735–750 https://doi.org/10.1007/s11064-018-02712-1 REVIEW PAPER Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors Sumit Barua1 · Jong Youl Kim1 · Jae Young Kim1 · Jae Hwan Kim4 · Jong Eun Lee1,2,3 Received: 15 October 2018 / Revised: 19 December 2018 / Accepted: 24 December 2018 / Published online: 4 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regu- late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders.
    [Show full text]
  • Flavor Masking/Enhancement
    T,&YJJIVMRK %RMQEP*IIHW *PEZSV1EWOMRK)RLERGIQIRX 'LIQMGEP-RXIVQIHMEXI ® §%7MQTPI%QMRS%GMH [MXL'SQTPI\*YRGXMSREPMX] Glycine, also known as aminoacetic acid, is the simplest amino acid. Found naturally in many foods, glycine is also synthesized in the human body, where, among other functions, it helps improve glycogen storage, is utilized in the synthesis of hemoglobin, collagen, and glutathione, and facilitates the amelioration of high blood fat and uric acid levels. In addition to the important metabolic functions glycine &YJJIVMRKT,7XEFMPM^EXMSR performs, this versatile substance is widely used in With acidic and basic properties in the same molecule, a range of applications, such as flavor enhancers and glycine acts to buffer or stabilize the pH of those maskers, pH buffers and stabilizers, ingredients in phar- systems containing it. Many of the uses for glycine maceutical products, and as a chemical intermediate. depend on this ability. Glycine’s efficiency in stabilizing pH has resulted in %X,SQIMRE,SWXSJ%TTPMGEXMSRW its wide usage as a buffering agent in many pharma- ceutical products. Antacid and analgesic products are often formulated with glycine to stabilize the acidity *PEZSV1EWOMRK*PEZSV)RLERGIQIRX of the digestive tract and prevent hyperacidity. Glycine Glycine has a refreshingly sweet taste, and is one and a has been shown to promote the gastric absorption of half times as sweet as sugar. In addition to its sweetness, certain drugs, including aspirin. glycine also has the ability to mellow saltiness and bit- terness. The bitter after-taste of saccharin, for example, When formulated in an aluminum-zirconium is masked by glycine. Carbonated soft drinks and flavor tetrachlorohydrex complex, glycine buffers the high concentrates based on saccharin may contain up to 0.2 acidity of active ingredients in antiperspirants.
    [Show full text]
  • Toluene Toxicity
    Case Studies in Environmental Medicine Course: SS3061 Date: February 2001 Original Date: August 1993 Expiration Date: February 28, 2007 TOLUENE TOXICITY Environmental Alert Use of toluene is increasing, in part because of its popularity as a solvent replacement for benzene. Gasoline contains 5% to 7% toluene by weight, making toluene a common airborne contaminant in industrialized countries. Many organic solvents have great addictive potential; toluene is the most commonly abused hydrocarbon solvent, primarily through “glue sniffing.” This monograph is one in a series of self- instructional publications designed to increase the primary care provider’s knowledge of hazardous substances in the environment and to aid in the evaluation of potentially exposed patients. This course is also available on the ATSDR Web site, www.atsdr.cdc.gov/HEC/CSEM/. See page 3 for more information about continuing medical education credits, continuing nursing education units, and continuing education units. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine Toluene Toxicity Table of Contents ATSDR/DHEP Authors: Kim Gehle, MD, MPH; Felicia Pharagood-Wade, MD; Darlene Case Study ......................................................................................... 5 Johnson, RN, BSN, MA; Lourdes Who’s At Risk .................................................................................... 5 Rosales-Guevara, MD ATSDR/DHEP Revision Planners: Exposure Pathways ...........................................................................
    [Show full text]
  • Effects of Glycine on Collagen, PDGF, and EGF Expression in Model of Oral Mucositis
    nutrients Article Effects of Glycine on Collagen, PDGF, and EGF Expression in Model of Oral Mucositis Odara Maria de Sousa Sá 1,* , Nilza Nelly Fontana Lopes 2, Maria Teresa Seixas Alves 3 and Eliana Maria Monteiro Caran 4 1 Department of Pediatrics, Federal University of São Paulo, São Paulo 04023-062, Brazil 2 Former Head Division of Dentistry, Pediatric Oncology Institute, São Paulo 04023-062, Brazil; nnfl[email protected] 3 Department of Pathology, Federal University of São Paulo, São Paulo 04023-062, Brazil; [email protected] 4 Department of Pediatrics, IOP/GRAACC Medical School of Federal University of São Paulo, São Paulo 04023-062, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-086-99932-5493 Received: 10 July 2018; Accepted: 5 September 2018; Published: 12 October 2018 Abstract: Oral mucositis is frequently a toxic effect of chemotherapeutic and/or radiotherapeutic treatment, resulting from complex multifaceted biological events involving DNA damage. The clinical manifestations have a negative impact on the life quality of cancer patients. Preventive measures and curative treatment of mucositis are still not well established. The glycine has anti-inflammatory, immunomodulatory, and cytoprotective actions, being a potential therapeutic in mucositis. The objective was to evaluate the effects of glycine on the expression of collagen and growth factors, platelet and epidermal in a hamster model oral mucositis. The mucositis was induced by the protocol of Sonis. There were 40 hamsters used, divided into two groups: Group I-control; Group II-supplemented with 5% intraperitoneal glycine, 2.0 mg/g diluted in hepes. Histopathological sections were used to perform the immune-histochemical method, the evaluation of collagen expression, and the growth factors: Epidermal growth factor (EGF) and platelet (PDGF).
    [Show full text]
  • Nebraska Medicaid Program Monthly Maximum Allowable Cost (MAC) Listing
    1 ** Confidential and Proprietary ** Septemb 2021 Nebraska Medicaid Program Monthly Maximum Allowable Cost (MAC) Listing Due to frequent changes in price and product availability, this listing should NOT be considered all-inclusive. Updated listings will be posted monthly. Effective MAC Generic Name Strength Form Route Date Price 0.9 % SODIUM CHLORIDE 0.9 % VIAL INJECTION 01/27/2021 0.07271 0.9 % SODIUM CHLORIDE 0.9 % IV SOLN INTRAVEN 03/17/2021 0.00327 ABACAVIR SULFATE 20 MG/ML SOLUTION ORAL 12/30/2020 0.67190 ABACAVIR SULFATE 300 MG TABLET ORAL 06/09/2021 0.89065 ABACAVIR SULFATE/LAMIVUDINE 600-300MG TABLET ORAL 03/10/2021 2.11005 ABACAVIR/LAMIVUDINE/ZIDOVUDINE 150-300 MG TABLET ORAL 12/11/2019 26.74276 ABIRATERONE ACETATE 250 MG TABLET ORAL 09/29/2019 11.03425 ABIRATERONE ACETATE 500 MG TABLET ORAL 01/12/2021 145.40750 ACACIA POWDER MISCELL 01/22/2020 0.14149 ACAMPROSATE CALCIUM 333 MG TABLET DR ORAL 07/29/2020 0.97128 ACARBOSE 100 MG TABLET ORAL 09/08/2021 0.40079 ACARBOSE 50 MG TABLET ORAL 11/11/2020 0.28140 ACARBOSE 25 MG TABLET ORAL 01/13/2021 0.22780 ACEBUTOLOL HCL 200 MG CAPSULE ORAL 09/08/2021 0.88574 ACEBUTOLOL HCL 400 MG CAPSULE ORAL 03/31/2021 1.02443 ACESULFAME POTASSIUM 100 % POWDER MISCELL 01/22/2020 2.98320 ACETAMINOPHEN 500 MG CAPSULE ORAL 06/03/2020 0.04047 ACETAMINOPHEN 160 MG/5ML ORAL SUSP ORAL 08/18/2021 0.02010 ACETAMINOPHEN 160 MG/5ML ORAL SUSP ORAL 06/16/2021 0.16884 ACETAMINOPHEN 160 MG/5ML SOLUTION ORAL 08/04/2021 0.30514 ACETAMINOPHEN 325/10.15 SOLUTION ORAL 08/04/2021 0.17266 NE MAC Pricing Information contained in this document is confidential and proprietary and is available to you solely for the purpose of assisting with claim processing and program reimbursement analysis.
    [Show full text]
  • A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor
    nal atio Me sl d n ic a in r e T Yang, et al., Transl Med (Sunnyvale) 2014, 4:2 Translational Medicine DOI: 10.4172/2161-1025.1000127 ISSN: 2161-1025 Research Article Open Access A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor, Sarcosine, in High-Functioning Children with Autistic Disorder Pinchen Yang1, Hsien-Yuan Lane2, Cheng-Fang Yen1, Chen-Lin Chang 3,4* 1Department of Psychiatry, College of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 2Institute of Clinical Medical Science & Departments of Psychiatry, China Medical University and Hospital, Taichung, Taiwan 3Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 4Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan *Corresponding author: Chen-Lin Chang, 100, Shin Chuan 1 st Rd, Kaohsiung 807, Taiwan, Graduate Institute of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital & Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Tel:+886-9-36360220; Fax: +886-7-3134761; E-mail: [email protected] Rec date: Apr 01, 2014; Acc date: Apr 17, 2014; Pub date: Apr 22, 2014 Copyright: © 2014 Yang P et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This open-label trial examined the efficacy and safety of a glycine transporter I inhibitor, sarcosine, in the 24-week treatment of high-functioning children with autistic disorder.
    [Show full text]
  • Studies of Glycine Metabolism and Transport in Fibroblasts from Patients with Nonketotic Hyperglycinemia
    Pediatr. Res. 14: 932-934 (1980) fibroblasts nonketotic hyperglycinemia glycine serine metabolism, amino acids valine Na+ transport system Studies of Glycine Metabolism and Transport in Fibroblasts from Patients with Nonketotic Hyperglycinemia DAVID M. HALTON"" AND INGEBORG KRIEGER Wa,vne State Universirv School of Medicine. The Metabolic Service, Department of Pediatrics. Children's Hospital of Michigan, Detroit. Michigan, USA Summary coverslips were rinsed twice with phosphate-buffered saline glu- cose (PBSG) [I30 mM NaCI, 5 mM KCI, 1.2 mM MgS04, 1 mM Glycine transport in both normal and nonketotic hyperglycine- CaC12, 5 mM glucose. and 10 mM Na2HP04(pH 7.4)]. In a final mia fibroblasts was shown to occur by a sodium-dependent system. wash, the coverslips were left for one hr in PBSG at 37OC to No significant difference could be detected in either the Km's (1.4 minimize endogenous glycine levels. to 2.0 mM) or the Vm,'s (6.2 to 16 nmole per mg protein per min) The incubation procedure was similar to that of Foster and of the three control and three patient cell lines. Valine was a weak Pardee (3). Four yl of [2-L4C]glycine (15) were added per ml of competitive inhibitor of glycine uptake. Ki's from both groups fell incubation medium containing PBSG, unlabeled glycine, and, in into the 5.6 to 5.8 mM range. Plasma levels of valine of one patient some studies, valine. Incubations were camed out for 2 min at reached a maximum of 0.6 mM following a valine load. Glycine 37°C.
    [Show full text]
  • Glycine Plus Serine Requirement of Broilers Fed Low-Protein Diets
    Wageningen UR Livestock Research Together with our clients, we integrate scientific know-how and practical experience P.O. Box 65 to develop livestock concepts for the 21st century. With our expertise on innovative Glycine plus serine requirement of broilers 8200 AB Lelystad livestock systems, nutrition, welfare, genetics and environmental impact of livestock The Netherlands farming and our state-of-the art research facilities, such as Dairy Campus and Swine T +31 (0)320 23 82 38 Innovation Centre Sterksel, we support our customers to find solutions for current fed low-protein diets E [email protected] and future challenges. www.wageningenUR.nl/livestockresearch The mission of Wageningen UR (University & Research centre) is ‘To explore Livestock Research Report 0000 the potential of nature to improve the quality of life’. Within Wageningen UR, ISSN 0000-000 nine specialised research institutes of the DLO Foundation have joined forces J. van Harn, M.A. Dijkslag and M.M. van Krimpen RE[PORT 1116 with Wageningen University to help answer the most important questions in the domain of healthy food and living environment. With approximately 30 locations, 6,000 members of staff and 9,000 students, Wageningen UR is one of the leading organisations in its domain worldwide. The integral approach to problems and the cooperation between the various disciplines are at the heart of the unique Wageningen Approach. Glycine plus serine requirement of broilers fed low-protein diets A dose response study J. van Harn1, M.A. Dijkslag2 and M.M. van Krimpen1 1 Wageningen Livestock Research 2 ForFarmers This research was conducted by Wageningen Livestock Research, within the framework of the public private partnership “Feed4Foodure” , and partially funded by "Vereniging Diervoederonderzoek Nederland" (VDN), and partially funded by the Ministry of Agriculture, Nature and Food Quality (Policy Support Research project number BO-31.03-005-00) Wageningen Livestock Research Wageningen, July 2018 Report 1116 Harn, J.
    [Show full text]
  • Michigan Medicaid Program Maximum Allowable Cost (MAC) Pricing
    1 ** Confidential and Proprietary ** For Week Ending 09/22/2021 Michigan Medicaid Program Maximum Allowable Cost (MAC) Pricing Due to frequent changes in price and product availability, this listing should NOT be considered all-inclusive. Updated listings will be posted weekly. Effective MAC Generic Name Strength Form Route Date Price 0.9 % SODIUM CHLORIDE 0.9 % VIAL INJECTION 01/27/2021 0.07271 0.9 % SODIUM CHLORIDE 0.9 % IV SOLN INTRAVEN 03/17/2021 0.00327 1,2-PENTANEDIOL 100 % LIQUID MISCELL 10/28/2020 0.56682 2-DEOXY-D-GLUCOSE POWDER MISCELL 12/09/2020 54.63250 5-HYDROXYTRYPTOPHAN (5-HTP) 100 MG CAPSULE ORAL 01/20/2021 0.33500 5HYDROXYTRYPTOPHAN(OXITRIPTAN) POWDER MISCELL 12/16/2020 11.24640 7-OXODEHYDROEPIANDROSTERONE,MC 100 % POWDER MISCELL 10/07/2020 7.36092 ABACAVIR SULFATE 20 MG/ML SOLUTION ORAL 12/30/2020 0.67190 ABACAVIR SULFATE 300 MG TABLET ORAL 06/09/2021 0.89065 ABACAVIR SULFATE/LAMIVUDINE 600-300MG TABLET ORAL 03/10/2021 2.11005 ABACAVIR/LAMIVUDINE/ZIDOVUDINE 150-300 MG TABLET ORAL 12/11/2019 26.74276 ABIRATERONE ACETATE 500 MG TABLET ORAL 09/20/2021 145.40750 ACACIA POWDER MISCELL 01/22/2020 0.14149 ACAI BERRY EXTRACT 500 MG CAPSULE ORAL 05/01/2019 0.06689 ACAMPROSATE CALCIUM 333 MG TABLET DR ORAL 07/29/2020 0.97128 ACARBOSE 100 MG TABLET ORAL 09/08/2021 0.40079 ACARBOSE 50 MG TABLET ORAL 11/11/2020 0.28140 ACARBOSE 25 MG TABLET ORAL 01/13/2021 0.22780 ACEBUTOLOL HCL 200 MG CAPSULE ORAL 09/08/2021 0.88574 ACEBUTOLOL HCL 400 MG CAPSULE ORAL 03/31/2021 1.02443 ACESULFAME POTASSIUM 100 % POWDER MISCELL 12/09/2020 3.34620 MI MAC Pricing Information contained in this document is confidential and proprietary and is available to you solely for the purpose of assisting with claim processing and program reimbursement analysis.
    [Show full text]
  • 24Amino Acids, Peptides, and Proteins
    WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1153 CHAPTER COOϪ a -h eli AMINO ACIDS, x ϩ PEPTIDES, AND NH3 PROTEINS Proteins are the most abundant organic molecules 24-1 in animals, playing important roles in all aspects of cell structure and function. Proteins are biopolymers of Introduction 24A-amino acids, so named because the amino group is bonded to the a carbon atom, next to the carbonyl group. The physical and chemical properties of a protein are determined by its constituent amino acids. The individual amino acid subunits are joined by amide linkages called peptide bonds. Figure 24-1 shows the general structure of an a-amino acid and a protein. α carbon atom O H2N CH C OH α-amino group R side chain an α-amino acid O O O O O H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH H2N CH C OH CH3 CH2OH H CH2SH CH(CH3)2 alanine serine glycine cysteine valine several individual amino acids peptide bonds O O O O O NH CH C NH CH C NH CH C NH CH C NH CH C CH3 CH2OH H CH2SH CH(CH3)2 a short section of a protein a FIGURE 24-1 Structure of a general protein and its constituent amino acids. The amino acids are joined by amide linkages called peptide bonds. 1153 WADEMC24_1153-1199hr.qxp 16-12-2008 14:15 Page 1154 1154 CHAPTER 24 Amino Acids, Peptides, and Proteins TABLE 24-1 Examples of Protein Functions Class of Protein Example Function of Example structural proteins collagen, keratin strengthen tendons, skin, hair, nails enzymes DNA polymerase replicates and repairs DNA transport proteins hemoglobin transports O2 to the cells contractile proteins actin, myosin cause contraction of muscles protective proteins antibodies complex with foreign proteins hormones insulin regulates glucose metabolism toxins snake venoms incapacitate prey Proteins have an amazing range of structural and catalytic properties as a result of their varying amino acid composition.
    [Show full text]
  • Appendix B - Product Name Sorted by Applicant
    JUNE 2021 - APPROVED DRUG PRODUCT LIST B - 1 APPENDIX B - PRODUCT NAME SORTED BY APPLICANT ** 3 ** 3D IMAGING DRUG * 3D IMAGING DRUG DESIGN AND DEVELOPMENT LLC AMMONIA N 13, AMMONIA N-13 FLUDEOXYGLUCOSE F18, FLUDEOXYGLUCOSE F-18 SODIUM FLUORIDE F-18, SODIUM FLUORIDE F-18 3M * 3M CO PERIDEX, CHLORHEXIDINE GLUCONATE * 3M HEALTH CARE INC AVAGARD, ALCOHOL (OTC) DURAPREP, IODINE POVACRYLEX (OTC) 3M HEALTH CARE * 3M HEALTH CARE INFECTION PREVENTION DIV SOLUPREP, CHLORHEXIDINE GLUCONATE (OTC) ** 6 ** 60 DEGREES PHARMS * 60 DEGREES PHARMACEUTICALS LLC ARAKODA, TAFENOQUINE SUCCINATE ** A ** AAA USA INC * ADVANCED ACCELERATOR APPLICATIONS USA INC LUTATHERA, LUTETIUM DOTATATE LU-177 NETSPOT, GALLIUM DOTATATE GA-68 AAIPHARMA LLC * AAIPHARMA LLC AZASAN, AZATHIOPRINE ABBVIE * ABBVIE INC ANDROGEL, TESTOSTERONE CYCLOSPORINE, CYCLOSPORINE DEPAKOTE ER, DIVALPROEX SODIUM DEPAKOTE, DIVALPROEX SODIUM GENGRAF, CYCLOSPORINE K-TAB, POTASSIUM CHLORIDE KALETRA, LOPINAVIR NIASPAN, NIACIN NIMBEX PRESERVATIVE FREE, CISATRACURIUM BESYLATE NIMBEX, CISATRACURIUM BESYLATE NORVIR, RITONAVIR SYNTHROID, LEVOTHYROXINE SODIUM ** TARKA, TRANDOLAPRIL TRICOR, FENOFIBRATE TRILIPIX, CHOLINE FENOFIBRATE ULTANE, SEVOFLURANE ZEMPLAR, PARICALCITOL ABBVIE ENDOCRINE * ABBVIE ENDOCRINE INC LUPANETA PACK, LEUPROLIDE ACETATE ABBVIE ENDOCRINE INC * ABBVIE ENDOCRINE INC LUPRON DEPOT, LEUPROLIDE ACETATE LUPRON DEPOT-PED KIT, LEUPROLIDE ACETATE ABBVIE INC * ABBVIE INC DUOPA, CARBIDOPA MAVYRET, GLECAPREVIR NORVIR, RITONAVIR ORIAHNN (COPACKAGED), ELAGOLIX SODIUM,ESTRADIOL,NORETHINDRONE ACETATE
    [Show full text]