A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor

Total Page:16

File Type:pdf, Size:1020Kb

A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor nal atio Me sl d n ic a in r e T Yang, et al., Transl Med (Sunnyvale) 2014, 4:2 Translational Medicine DOI: 10.4172/2161-1025.1000127 ISSN: 2161-1025 Research Article Open Access A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor, Sarcosine, in High-Functioning Children with Autistic Disorder Pinchen Yang1, Hsien-Yuan Lane2, Cheng-Fang Yen1, Chen-Lin Chang 3,4* 1Department of Psychiatry, College of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 2Institute of Clinical Medical Science & Departments of Psychiatry, China Medical University and Hospital, Taichung, Taiwan 3Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital, Kaohsiung, Taiwan 4Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan *Corresponding author: Chen-Lin Chang, 100, Shin Chuan 1 st Rd, Kaohsiung 807, Taiwan, Graduate Institute of Medicine, Kaohsiung Medical University and Kaohsiung Medical University Hospital & Department of Psychiatry, Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan, Tel:+886-9-36360220; Fax: +886-7-3134761; E-mail: [email protected] Rec date: Apr 01, 2014; Acc date: Apr 17, 2014; Pub date: Apr 22, 2014 Copyright: © 2014 Yang P et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Abstract This open-label trial examined the efficacy and safety of a glycine transporter I inhibitor, sarcosine, in the 24-week treatment of high-functioning children with autistic disorder. Four children (three boys, one girl, 9-11 years of age; average intelligence quotient 80.5) completed the 24 weeks of study. Sarcosine administration was at 30 mg/kg/day in the form of a capsule in two divided doses. The outcome measures were. Autism Diagnostic Observation Schedule (Module 3), parent and teacher-reported Adaptive Behavior Assessment System-II, parenting stress index, Conners’ Continuous Performance Test, Wisconsin Card Sorting Test, child behavior checklist and Swanson, Nolan and Pelham IV hyperactivity attention scales. Safety assessments included monthly recorded vital signs, body weight, body height and adverse events. Statistical analysis found no significant treatment effect on all the outcome measures using the Wilcoxon Signed Rank test and generalized estimating equations analysis. However, an activation effect was reported by caregivers, and was corroborated by clinician’s observation. Details were reported as a case-series in the text. We concluded that sarcosine was well tolerated. Though the data are too preliminary to draw any definite conclusions about efficacy, they do suggest this therapy to be safe, and worthy of a double-blind placebo-controlled study with a focus on a certain subgroup of children with autism spectrum disorders. Keywords: Glutamate; Autism; Clinical trial; Sarcosine; Glycine It has been suggested that direct stimulation of NMDA receptors can cause neuronal injury through excessive excitotoxicity. An indirect Introduction approach to enhancing the NMDA neurotransmission is through increasing the availability of synaptic glycine, the “co-transmitter” of Autism Spectrum Disorders (ASDs), including autistic disorder, glutamate, by the attenuation of the glycine reuptake through glycine Asperger’s syndrome, and pervasive developmental disorder not transporter 1 (GlyT-1) [7]. Sarcosine, also known as N-methylglycine otherwise specified, are developmental disorders characterized by with the chemical formula CH3NHCH2COOH, is a potent dysfunction in several core behavioral dimensions: social endogenous inhibitor of GlyT-1 and can enhance NMDA communication/interaction deficits and specific behavior neurotransmission [8-10]. Sarcosine was firstly isolated and named by characteristics. The social deficit dimension involves deficits in German chemist Justus von Liebig in 1847. It is a non-proteinogenic reciprocal social interactions, lack of eye contact, diminished ability to amino acid that occurs as an intermediate product in the synthesis and carry on conversation, and impaired daily interaction skills. The degradation of the amino acid glycine. This molecule has been shown communication domain can include problems ranging from lack of to be effective in clinical trials involving the negative and cognitive verbal language to fluent but odd speech with little comprehension of symptoms of chronic patients with schizophrenia [11], in acutely ill pragmatics. The behavioral domain involves compulsive behaviors, persons with schizophrenia [12,13], in patients with obsessive– unusual attachments to objects, rigid adherence to routines or rituals, compulsive disorders[14], to temporarily relieve the depressive and repetitive motor mannerisms and unusual reactions to sensory stimuli neuropsychiatric symptoms of patients with Parkinson-related [1]. Genetic studies and human pathological and model system studies dementia [15] and to improve depressive-like behavior in a rodent have all led to the hypothesis that molecular pathways involved in model and inhuman depression [16]. To the authors’ knowledge, there brain synaptic growth, development, and stability are perturbed in is currently no report on using sarcosine for the treatment of patients ASDs [2-4]. Molecules targeting brain cell dendritic spine regulation with ASD. In the present study, we hypothesized that sarcosine is a for the purpose of promoting its maturation and restoring spine therapeutic agent for children with ASD due to its activity as an stability are thus proposed to be of therapeutic potential in ASD. NMDA receptor and glutamate transmission enhancement. Because glutamate and its ionotropic N-methyl-D-Aspartate (NMDA) receptors have long been known to be associated with synaptic Methods plasticity, glutamate and NMDA receptors-mediated signaling have become targets of interest in exploring the pharmacological treatment This study was a pilot 24-week open label trial with the aim of of ASDs [5,6]. gaining preliminary experience with sarcosine for the treatment of Transl Med (Sunnyvale) Volume 4 • Issue 2 • 1000127 ISSN:2161-1025 TM, an open access Journal Citation: Yang P, Lane HY, Yen CF, Chang CL (2014) A Pilot Open-Label Trial of Use of the Glycine Transporter I Inhibitor, Sarcosine, in High- Functioning Children with Autistic Disorder. Transl Med (Sunnyvale) 4: 127. doi:10.4172/2161-1025.1000127 Page 2 of 4 children with autistic disorders. The participants were a convenient Data analysis sample of outpatients children aged between 9 to 12 years old and of both genders. They were recruited from the Department of Psychiatry, Statistical analysis found no significant treatment effect for all the Kaohsiung Medical University Hospital and Kaohsiung Armed Forces outcome measures using the Wilcoxon Signed Rank test for baseline General, which are major medical centers in Taiwan. and final state comparison and generalized estimating equations analysis for some of the outcome measures. Nevertheless, observation The diagnosis of autistic disorder was made using DSM-IV-TR of subjects by parents and clinicians noted that sarcosine criteria [17] with clear documentation of each criterion in the history administration seemed to have an activating effect. Details were record or current interview. All the interviews were conducted by an reported as the case-series as below. Please see Table 1 for the expert child and adolescent psychiatrist (P.Y). Assessments were summary of the characteristics and primary outcome measures of the performed by a child psychologist trained to use the Autism four subjects. Diagnostic Observation Schedule [18]. Each participant’s mother and a designated teacher were responsible for filling out the required A B C D questionnaires. The level of intelligence was considered as an Gender M M F M exclusion criterion, in that for each participant the Full Scale Intelligent Quotient (FSIQ) or the subscale of the Perceptual Age 9Y9M 10Y9M 9Y10M 11Y2M Reasoning Index (PRI) as ascertained by the Wechsler Intelligence Scale for Children Fourth Edition-Chinese version [19] had to be Highest subscale IQ 83 103 83 101 above 70. For children receiving other medication treatments, the Sarcosine mg/day 1000 1000 900 900 drugs had to be at a stable dose for at least 2 months before entering the study and remained unaltered throughout the clinical trial. Other mg/day Concerta 54 Concerta54 X X Concomitant educational, occupational, physical, communicational or ADOS-1 11 22 20 14 behavioral treatment was permitted, but no new treatment was allowed to be added. Special care was taken to exclude children with ADOS-2 19 21 22 13 seizure disorders or known genetic syndromes. The research protocol was approved by the Institutional Review Boards (Registration GCS-P-1 70 77 87 72 number: 101-023) of the hospital mentioned above. Sarcosine is GCS-P-2 70 81 91 87 regulated as a food supplement in Taiwan and an Investigational New Drug (IND) application was not required. After a description of the GCS-T-1 75 89 78 88 study, informed consent was obtained from parents and the children GCS-T-2 67 86 84 76 themselves gave their assents. This trial was performed in 2012 and 2013. ADOS-1: Social interaction & communication score from Autism Diagnostic Observation Schedule (ADOS) at the baseline; ADOS-2: ADOS at the
Recommended publications
  • United States Patent Office Patented Apr
    2,881,193 United States Patent Office Patented Apr. 7, 1959 2 propionic acid, glutamic acid, aspartic acid and the like. 2,881,193 Particularly satisfactory results are obtained in the PURIFICATION OF N-HIGHER FATTY ACED purification of N-higher fatty acyl sarcosine compounds AMDES OF LOWER MONOAMINOCAR such as salts of N-lauroyl sarcosine, N-myristoyl sarcosine BOXYFLIC ACDS and N-palmitoyl sarcosine, e.g., sodium, potassium salts thereof. Morton Batlan Epstein, Linden, N.J., assignor to Colgate While the present invention is broadly applicable to Palmolive Company, Jersey City, N.J., a corporation mixtures of the amide and higher fatty acid material of Delaware as indicated, it is effective particularly with the reaction No Drawing. Application May 9, 1955 product produced in the following manner and results Serial No. 507,177 in an amide material substantially free from soap and the like. Thus, the amide may be formed by condensing 6 Claims. (C. 260-404) a higher fatty acyl halide with a salt of said amino car boxylic acid, which has a primary or secondary amino The present invention relates to a novel process for 5 group, in an aqueous alkaline medium. purifying N-higher. acyl amide compounds. More This condensation reaction may be performed under specifically the invention is of a method for removing various suitable conditions. The reaction may be con impurities of the fatty acid or soap type from compounds ducted by mixing suitable proportions of the reactants which are N-higher fatty amides of lower monoamino in an aqueous medium. In general, the reaction is effected carboxylic acids or salts thereof.
    [Show full text]
  • Targeting Glycine Reuptake in Alcohol Seeking and Relapse
    JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. TITLE PAGE Targeting Glycine Reuptake in Alcohol Seeking and Relapse Valentina Vengeliene, Martin Roßmanith, Tatiane T. Takahashi, Daniela Alberati, Berthold Behl, Anton Bespalov, Rainer Spanagel Downloaded from The primary laboratory of origin: Institute of Psychopharmacology, Central Institute of jpet.aspetjournals.org Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; at ASPET Journals on September 30, 2021 VV, MR, TTT, RS: Institute of Psychopharmacology, Central Institute of Mental Health, Faculty of Medicine Mannheim, Heidelberg University, Germany; DA: Roche Pharma Research and Early Development, Neuroscience, Ophthalmology and Rare Diseases, Roche Innovation Center Basel, CH-4070 Basel, Switzerland; BB, AB: Department of Neuroscience Research, AbbVie Deutschland GmbH & Co. KG, Ludwigshafen, Germany; AB: Department of Psychopharmacology, Pavlov Medical University, St Petersburg, Russia JPET #244822 JPET Fast Forward. Published on January 24, 2018 as DOI: 10.1124/jpet.117.244822 This article has not been copyedited and formatted. The final version may differ from this version. RUNNING TITLE GlyT1 in Alcohol Seeking and Relapse Corresponding author with complete address: Valentina Vengeliene, Institute of Psychopharmacology, Central Institute of Mental Health (CIMH), J5, 68159 Mannheim, Germany Email: [email protected], phone: +49-621-17036261; fax: +49-621- Downloaded from 17036255 jpet.aspetjournals.org The number of text pages: 33 Number of tables: 0 Number of figures: 6 Number of references: 44 at ASPET Journals on September 30, 2021 Number of words in the Abstract: 153 Number of words in the Introduction: 729 Number of words in the Discussion: 999 A recommended section assignment to guide the listing in the table of content: Drug Discovery and Translational Medicine 2 JPET #244822 JPET Fast Forward.
    [Show full text]
  • The Impact of D-Cycloserine and Sarcosine on in Vivo Frontal Neural
    Yao et al. BMC Psychiatry (2019) 19:314 https://doi.org/10.1186/s12888-019-2306-1 RESEARCH ARTICLE Open Access The impact of D-cycloserine and sarcosine on in vivo frontal neural activity in a schizophrenia-like model Lulu Yao1, Zongliang Wang1, Di Deng1, Rongzhen Yan1, Jun Ju1 and Qiang Zhou1,2* Abstract Background: N-methyl-D-aspartate receptor (NMDAR) hypofunction has been proposed to underlie the pathogenesis of schizophrenia. Specifically, reduced function of NMDARs leads to altered balance between excitation and inhibition which further drives neural network malfunctions. Clinical studies suggested that NMDAR modulators (glycine, D-serine, D-cycloserine and glycine transporter inhibitors) may be beneficial in treating schizophrenia patients. Preclinical evidence also suggested that these NMDAR modulators may enhance synaptic NMDAR function and synaptic plasticity in brain slices. However, an important issue that has not been addressed is whether these NMDAR modulators modulate neural activity/spiking in vivo. Methods: By using in vivo calcium imaging and single unit recording, we tested the effect of D-cycloserine, sarcosine (glycine transporter 1 inhibitor) and glycine, on schizophrenia-like model mice. Results: In vivo neural activity is significantly higher in the schizophrenia-like model mice, compared to control mice. D-cycloserine and sarcosine showed no significant effect on neural activity in the schizophrenia-like model mice. Glycine induced a large reduction in movement in home cage and reduced in vivo brain activity in control mice which prevented further analysis of its effect in schizophrenia-like model mice. Conclusions: We conclude that there is no significant impact of the tested NMDAR modulators on neural spiking in the schizophrenia-like model mice.
    [Show full text]
  • Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors
    Neurochemical Research (2019) 44:735–750 https://doi.org/10.1007/s11064-018-02712-1 REVIEW PAPER Therapeutic Effect of Agmatine on Neurological Disease: Focus on Ion Channels and Receptors Sumit Barua1 · Jong Youl Kim1 · Jae Young Kim1 · Jae Hwan Kim4 · Jong Eun Lee1,2,3 Received: 15 October 2018 / Revised: 19 December 2018 / Accepted: 24 December 2018 / Published online: 4 January 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract The central nervous system (CNS) is the most injury-prone part of the mammalian body. Any acute or chronic, central or peripheral neurological disorder is related to abnormal biochemical and electrical signals in the brain cells. As a result, ion channels and receptors that are abundant in the nervous system and control the electrical and biochemical environment of the CNS play a vital role in neurological disease. The N-methyl-D-aspartate receptor, 2-amino-3-(5-methyl-3-oxo-1,2-oxazol-4-yl) propanoic acid receptor, kainate receptor, acetylcholine receptor, serotonin receptor, α2-adrenoreceptor, and acid-sensing ion channels are among the major channels and receptors known to be key components of pathophysiological events in the CNS. The primary amine agmatine, a neuromodulator synthesized in the brain by decarboxylation of L-arginine, can regu- late ion channel cascades and receptors that are related to the major CNS disorders. In our previous studies, we established that agmatine was related to the regulation of cell differentiation, nitric oxide synthesis, and murine brain endothelial cell migration, relief of chronic pain, cerebral edema, and apoptotic cell death in experimental CNS disorders.
    [Show full text]
  • Flavor Masking/Enhancement
    T,&YJJIVMRK %RMQEP*IIHW *PEZSV1EWOMRK)RLERGIQIRX 'LIQMGEP-RXIVQIHMEXI ® §%7MQTPI%QMRS%GMH [MXL'SQTPI\*YRGXMSREPMX] Glycine, also known as aminoacetic acid, is the simplest amino acid. Found naturally in many foods, glycine is also synthesized in the human body, where, among other functions, it helps improve glycogen storage, is utilized in the synthesis of hemoglobin, collagen, and glutathione, and facilitates the amelioration of high blood fat and uric acid levels. In addition to the important metabolic functions glycine &YJJIVMRKT,7XEFMPM^EXMSR performs, this versatile substance is widely used in With acidic and basic properties in the same molecule, a range of applications, such as flavor enhancers and glycine acts to buffer or stabilize the pH of those maskers, pH buffers and stabilizers, ingredients in phar- systems containing it. Many of the uses for glycine maceutical products, and as a chemical intermediate. depend on this ability. Glycine’s efficiency in stabilizing pH has resulted in %X,SQIMRE,SWXSJ%TTPMGEXMSRW its wide usage as a buffering agent in many pharma- ceutical products. Antacid and analgesic products are often formulated with glycine to stabilize the acidity *PEZSV1EWOMRK*PEZSV)RLERGIQIRX of the digestive tract and prevent hyperacidity. Glycine Glycine has a refreshingly sweet taste, and is one and a has been shown to promote the gastric absorption of half times as sweet as sugar. In addition to its sweetness, certain drugs, including aspirin. glycine also has the ability to mellow saltiness and bit- terness. The bitter after-taste of saccharin, for example, When formulated in an aluminum-zirconium is masked by glycine. Carbonated soft drinks and flavor tetrachlorohydrex complex, glycine buffers the high concentrates based on saccharin may contain up to 0.2 acidity of active ingredients in antiperspirants.
    [Show full text]
  • Toluene Toxicity
    Case Studies in Environmental Medicine Course: SS3061 Date: February 2001 Original Date: August 1993 Expiration Date: February 28, 2007 TOLUENE TOXICITY Environmental Alert Use of toluene is increasing, in part because of its popularity as a solvent replacement for benzene. Gasoline contains 5% to 7% toluene by weight, making toluene a common airborne contaminant in industrialized countries. Many organic solvents have great addictive potential; toluene is the most commonly abused hydrocarbon solvent, primarily through “glue sniffing.” This monograph is one in a series of self- instructional publications designed to increase the primary care provider’s knowledge of hazardous substances in the environment and to aid in the evaluation of potentially exposed patients. This course is also available on the ATSDR Web site, www.atsdr.cdc.gov/HEC/CSEM/. See page 3 for more information about continuing medical education credits, continuing nursing education units, and continuing education units. U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine Toluene Toxicity Table of Contents ATSDR/DHEP Authors: Kim Gehle, MD, MPH; Felicia Pharagood-Wade, MD; Darlene Case Study ......................................................................................... 5 Johnson, RN, BSN, MA; Lourdes Who’s At Risk .................................................................................... 5 Rosales-Guevara, MD ATSDR/DHEP Revision Planners: Exposure Pathways ...........................................................................
    [Show full text]
  • Effects of Glycine on Collagen, PDGF, and EGF Expression in Model of Oral Mucositis
    nutrients Article Effects of Glycine on Collagen, PDGF, and EGF Expression in Model of Oral Mucositis Odara Maria de Sousa Sá 1,* , Nilza Nelly Fontana Lopes 2, Maria Teresa Seixas Alves 3 and Eliana Maria Monteiro Caran 4 1 Department of Pediatrics, Federal University of São Paulo, São Paulo 04023-062, Brazil 2 Former Head Division of Dentistry, Pediatric Oncology Institute, São Paulo 04023-062, Brazil; nnfl[email protected] 3 Department of Pathology, Federal University of São Paulo, São Paulo 04023-062, Brazil; [email protected] 4 Department of Pediatrics, IOP/GRAACC Medical School of Federal University of São Paulo, São Paulo 04023-062, Brazil; [email protected] * Correspondence: [email protected]; Tel.: +55-086-99932-5493 Received: 10 July 2018; Accepted: 5 September 2018; Published: 12 October 2018 Abstract: Oral mucositis is frequently a toxic effect of chemotherapeutic and/or radiotherapeutic treatment, resulting from complex multifaceted biological events involving DNA damage. The clinical manifestations have a negative impact on the life quality of cancer patients. Preventive measures and curative treatment of mucositis are still not well established. The glycine has anti-inflammatory, immunomodulatory, and cytoprotective actions, being a potential therapeutic in mucositis. The objective was to evaluate the effects of glycine on the expression of collagen and growth factors, platelet and epidermal in a hamster model oral mucositis. The mucositis was induced by the protocol of Sonis. There were 40 hamsters used, divided into two groups: Group I-control; Group II-supplemented with 5% intraperitoneal glycine, 2.0 mg/g diluted in hepes. Histopathological sections were used to perform the immune-histochemical method, the evaluation of collagen expression, and the growth factors: Epidermal growth factor (EGF) and platelet (PDGF).
    [Show full text]
  • Incorporation of Sarcosine Into the Actinomycins Synthesized by Streptomyces Antibioticus
    82 Biochem. J. (1964) 90, 82 Incorporation of Sarcosine into the Actinomycins Synthesized by Streptomyces antibioticus By 0. CIFERRI, A. ALBERTINI AND G. CASSANI Department of Genetics, University of Pavia, Italy (Received 3 April 1963) Sarcosine is an amino acid apparently not Micro-organism. Streptomyces antibioticus (no. 1692 of widely distributed in Nature. As a free amino acid, the Culture Collection of the Botanical Institute of this sarcosine has been demonstrated in the radial University) was maintained on slants ofEmerson's medium caeca of the starfish Astropecten aurantiacus (Emerson, Whiffen, Bohonas & DeBoer, 1946). A suspen- sion of spores from such slants was used to inoculate the (Kossel & Edlbacher, 1915), in the muscles of vegetative medium: soya-bean flour 20 g., glucose 10 g., Elasmobranchii (Tarr, 1958) and in the reindeer tap water 1000 ml. (adjusted to pH 7-4 with N-NaOH). The moss, Cladonia itlvatica (Linko, Alfthan, Miettinen culture was incubated at 280 for 48 hr. on an alternating & Virtanen, 1953). Sarcosine has been found shaker. The cells were recovered by centrifuging in the bound in peptides in the antibiotics of the actino- cold, washed twice with the fermentation medium (see mycin (Dalgliesh, Johnson, Todd & Vining, 1950) below) and suspended in the same solution to give a cell and etamycin (Sheehan, Zachau & Lawson, 1957) concentration twice that of the vegetative-medium suspen- groups. The reported presence of sarcosine in the sion. A portion (5 ml.) of this suspension was used to hydrolysate of groundnut protein (Haworth, inoculate 100 ml. of the synthetic galactose-glutamic acid ('fermentation') medium (Katz & Goss, 1960).
    [Show full text]
  • 230 Subpart K—Indirect Discharge Point Sources
    § 414.110 40 CFR Ch. I (7±1±00 Edition) [52 FR 42568, Nov. 5, 1987, as amended at 58 PSES and PSNS 1 FR 36893, July 9, 1993] Maximum Effluent characteristics Maximum for any for any monthly Subpart KÐIndirect Discharge one day average Point Sources Acenaphthene ................................... 47 19 Anthracene ........................................ 47 19 SOURCE: 58 FR 36893, July 9, 1993, unless Benzene ............................................ 134 57 otherwise noted. Bis(2-ethylhexyl) phthalate ................ 258 95 Carbon Tetrachloride ......................... 380 142 § 414.110 Applicability; description of Chlorobenzene .................................. 380 142 Chloroethane ..................................... 295 110 the subcategory of indirect dis- Chloroform ......................................... 325 111 charge point sources. Di-n-butyl phthalate ........................... 43 20 1,2-Dichlorobenzene .......................... 794 196 The provisions of this subpart are ap- 1,3-Dichlorobenzene .......................... 380 142 plicable to the process wastewater dis- 1,4-Dichlorobenzene .......................... 380 142 charges resulting from the manufac- 1,1-Dichloroethane ............................ 59 22 ture of the OCPSF products and prod- 1,2-Dichloroethane ............................ 574 180 1,1-Dichloroethylene .......................... 60 22 uct groups defined by § 414.11 from any 1,2-trans-Dichloroethylene ................. 66 25 indirect discharge point source. 1,2-Dichloropropane .........................
    [Show full text]
  • Nebraska Medicaid Program Monthly Maximum Allowable Cost (MAC) Listing
    1 ** Confidential and Proprietary ** Septemb 2021 Nebraska Medicaid Program Monthly Maximum Allowable Cost (MAC) Listing Due to frequent changes in price and product availability, this listing should NOT be considered all-inclusive. Updated listings will be posted monthly. Effective MAC Generic Name Strength Form Route Date Price 0.9 % SODIUM CHLORIDE 0.9 % VIAL INJECTION 01/27/2021 0.07271 0.9 % SODIUM CHLORIDE 0.9 % IV SOLN INTRAVEN 03/17/2021 0.00327 ABACAVIR SULFATE 20 MG/ML SOLUTION ORAL 12/30/2020 0.67190 ABACAVIR SULFATE 300 MG TABLET ORAL 06/09/2021 0.89065 ABACAVIR SULFATE/LAMIVUDINE 600-300MG TABLET ORAL 03/10/2021 2.11005 ABACAVIR/LAMIVUDINE/ZIDOVUDINE 150-300 MG TABLET ORAL 12/11/2019 26.74276 ABIRATERONE ACETATE 250 MG TABLET ORAL 09/29/2019 11.03425 ABIRATERONE ACETATE 500 MG TABLET ORAL 01/12/2021 145.40750 ACACIA POWDER MISCELL 01/22/2020 0.14149 ACAMPROSATE CALCIUM 333 MG TABLET DR ORAL 07/29/2020 0.97128 ACARBOSE 100 MG TABLET ORAL 09/08/2021 0.40079 ACARBOSE 50 MG TABLET ORAL 11/11/2020 0.28140 ACARBOSE 25 MG TABLET ORAL 01/13/2021 0.22780 ACEBUTOLOL HCL 200 MG CAPSULE ORAL 09/08/2021 0.88574 ACEBUTOLOL HCL 400 MG CAPSULE ORAL 03/31/2021 1.02443 ACESULFAME POTASSIUM 100 % POWDER MISCELL 01/22/2020 2.98320 ACETAMINOPHEN 500 MG CAPSULE ORAL 06/03/2020 0.04047 ACETAMINOPHEN 160 MG/5ML ORAL SUSP ORAL 08/18/2021 0.02010 ACETAMINOPHEN 160 MG/5ML ORAL SUSP ORAL 06/16/2021 0.16884 ACETAMINOPHEN 160 MG/5ML SOLUTION ORAL 08/04/2021 0.30514 ACETAMINOPHEN 325/10.15 SOLUTION ORAL 08/04/2021 0.17266 NE MAC Pricing Information contained in this document is confidential and proprietary and is available to you solely for the purpose of assisting with claim processing and program reimbursement analysis.
    [Show full text]
  • Is Glycine an 'Antidote'
    Editorial Open Heart: first published as 10.1136/openhrt-2014-000103 on 28 May 2014. Downloaded from The cardiometabolic benefits of glycine: Is glycine an ‘antidote’ to dietary fructose? Mark F McCarty,1 James J DiNicolantonio2 To cite: McCarty MF, VASCULAR PROTECTIVE PROPERTIES OF gated chloride channels. They also demon- DiNicolantonio JJ. The SUPPLEMENTAL GLYCINE strated that human platelets likewise were glycine cardiometabolic benefits of glycine: Is glycine an Supplemental glycine, via activation of responsive and expressed such channels. Studies ‘antidote’ to dietary glycine-gated chloride channels that are evaluating the interaction of glycine with aspirin fructose?. Open Heart expressed on a number of types of cells, or other pharmaceutical platelet-stabilising 2014;1:e000103. including Kupffer cells, macrophages, lym- agents would clearly be appropriate, as would a doi:10.1136/openhrt-2014- phocytes, platelets, cardiomyocytes and endo- clinical study examining the impact of supple- 000103 thelial cells, has been found to exert mental glycine on platelet function. anti-inflammatory, immunomodulatory, cyto- Another recent study has established that car- protective, platelet-stabilising and antiangio- diomyocytes express chloride channels.17 This genic effects in rodent studies that may be of may rationalise evidence that preadministration Accepted 26 April 2014 – clinical relevance.1 17 The plasma concentra- of glycine (500 mg/kg intraperitoneal) reduces tion of glycine in normally nourished indivi- the infarct size by 21% when rats are subse- — — duals around 200 µM is near the Km for quently subjected to cardiac ischaemia- activation of these channels, implying that reperfusion injury; this effect was associated the severalfold increases in plasma glycine with increases in ventricular ejection fraction achievable with practical supplementation and fractional shortening in the glycine pre- 17 can be expected to further activate these treated animals as compared with the controls.
    [Show full text]
  • Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets
    Ashdin Publishing Journal of Drug and Alcohol Research ASHDIN Vol. 3 (2014), Article ID 235840, 8 pages publishing doi:10.4303/jdar/235840 Review Article Review of Toluene Actions: Clinical Evidence, Animal Studies, and Molecular Targets Silvia L. Cruz,1 Mar´ıa Teresa Rivera-Garc´ıa,1 and John J. Woodward2 1Department of Pharmacobiology, Centre for Research and Advanced Studies of the National Polytechnic Institute (Cinvestav-IPN), Calzada de los Tenorios 235, Col. Granjas Coapa, 14330 Mexico, DF, Mexico 2Department of Neurosciences, Medical University of South Carolina, Charleston, SC 29425, USA Address correspondence to Silvia L. Cruz, [email protected] Received 11 December 2013; Accepted 31 December 2013 Copyright © 2014 Silvia L. Cruz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract It has long been known that individuals will engage in voluntary inhalation of volatile solvents for their rewarding effects. However, research into the neurobiology of these agents has lagged behind that of more commonly misused drugs such as psychostimu- lants, alcohol, and nicotine. This imbalance has begun to shift in recent years as the serious effects of misused inhalants, especially among children and adolescents, on brain function and behavior have become appreciated and scientifically documented. In this review, we discuss the physicochemical and pharmacological properties of toluene, a rep- resentative member of a large class of organic solvents commonly used as inhalants. This is followed by a brief summary of the clinical and preclinical evidence showing that toluene and related solvents produce significant effects on brain structures and processes involved in the rewarding aspects of drugs.
    [Show full text]