Chapter 10 *Lecture Powerpoint

Total Page:16

File Type:pdf, Size:1020Kb

Chapter 10 *Lecture Powerpoint Chapter 10 *Lecture PowerPoint The Muscular System *See separate FlexArt PowerPoint slides for all figures and tables preinserted into PowerPoint without notes. Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Introduction • Facts about muscles – Muscles constitute nearly half of the body’s weight and occupy a place of central interest in several fields of health care and fitness • Physical and occupational therapy, athletes, dancers, trainers, acrobats, nurses, and more – Muscular system is closely related to other systems covered previously – Chapters 11 and 12 will examine the mechanisms of muscle contraction at the cellular and molecular levels 10-2 Introduction • In this chapter we will cover: – Structural and functional organization of muscles – Muscles of the head and neck – Muscles of the trunk – Muscles acting on the shoulder and upper limb – Muscles acting on the hip and lower limb Figure 10.5 10-3 The Structural and Functional Organization of Muscles • Expected Learning Outcomes – Describe the varied functions of muscles. – Describe the connective tissue components of a muscle and their relationship to the bundling of muscle fibers. – Describe the various shapes of skeletal muscles and relate this to their functions. – Explain what is meant by the origin, insertion, belly, action, and innervation of a muscle. 10-4 The Structural and Functional Organization of Muscles Cont. – Describe the ways that muscles work in groups to aid, oppose, or moderate each other’s actions. – Distinguish between intrinsic and extrinsic muscles. – Describe in general terms the nerve supply to the muscles and where these nerves originate. – Explain how the Latin names of muscles can aid in visualizing and remembering them. 10-5 The Structural and Functional Organization of Muscles • About 600 human skeletal muscles • Constitute about half of our body weight • Three kinds of muscle tissue – Skeletal, cardiac, smooth • Specialized for one major purpose – Converting the chemical energy in ATP into the mechanical energy of motion • Myology—the study of the muscular system 10-6 The Functions of Muscles • Movement – Move from place to place, movement of body parts and body contents in breathing, circulation, feeding and digestion, defecation, urination, and childbirth – Role in communication: speech, writing, nonverbal communications • Stability – Maintain posture by preventing unwanted movements – Antigravity muscles: resist pull of gravity and prevent us from falling or slumping over – Stabilize joints 10-7 The Functions of Muscles • Control of openings and passageways – Sphincters: internal muscular rings that control the movement of food, bile, blood, and other materials within the body • Heat production by skeletal muscles – As much as 85% of our body heat • Glycemic control – Regulation of blood glucose concentrations within its normal range 10-8 Connective Tissues of a Muscle Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Tendon Fascia Skeletal muscle Muscle fascicle Nerve Blood vessels Epimysium Perimysium Figure 10.1a Endomysium Muscle fiber Muscle fascicle Perimysium Muscle fiber (a) 10-9 Connective Tissues and Fascicles • Endomysium – Thin sleeve of loose connective tissue surrounding each muscle fiber – Allows room for capillaries and nerve fibers to reach each muscle fiber – Provides extracellular chemical environment for the muscle fiber and its associated nerve ending • Perimysium – Slightly thicker layer of connective tissue – Fascicles: bundles of muscle fibers wrapped in perimysium – Carry larger nerves and blood vessels, and stretch receptors 10-10 Connective Tissues and Fascicles • Epimysium – Fibrous sheath surrounding the entire muscle – Outer surface grades into the fascia – Inner surface sends projections between fascicles to form perimysium • Fascia – Sheet of connective tissue that separates neighboring muscles or muscle groups from each other and the subcutaneous tissue 10-11 Connective Tissues of a Muscle Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Perimysium Endomysium Muscle fiber, c.s. Fascicle, c.s. Muscle fiber, l.s. Fascicle, l.s. (c) Victor Eroschenko Figure 10.1c 10-12 Fascicles and Muscle Shapes Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Unipennate Triangular Bipennate Parallel Multipennate Fusiform Tendon Circular Belly Pectoralis major Tendon Palmar interosseous Rectus femoris Rectus abdominis Deltoid Biceps brachii Orbicularis oculi Figure 10.2 • Strength of a muscle and the direction of its pull are determined partly by the orientation of its fascicles 10-13 Muscle Compartments Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Anterior Lateral Medial Tibia Fibula Posterior Interosseous membrane Artery, veins, and nerve Intermuscular septa Fasciae Key Subcutaneous Anterior compartment fat Lateral compartment Posterior compartment, deep layer Figure 10.3 Posterior compartment, superficial layer • A group of functionally related muscles enclosed and separated from others by connective tissue fascia • Contains nerves, blood vessels that supply the muscle group – Thoracic, abdominal walls, pelvic floor, limbs • Intermuscular septa separate one compartment from another 10-14 Muscle Attachments • Indirect attachment to bone – Tendons bridge the gap between muscle ends and bony attachment • Collagen fibers of the endo-, peri-, and epimysium continue into the tendon • From there into the periosteum and the matrix of bone • Very strong structural continuity from muscle to bone • Biceps brachii, Achilles tendon • Aponeurosis—tendon is a broad, flat sheet (palmar aponeurosis) • Retinaculum—connective tissue band that tendons from separate muscles pass under 10-15 Muscle Attachments • Direct (fleshy) attachment to bone – Little separation between muscle and bone – Muscle seems to immerge directly from bone • Margins of brachialis, lateral head of triceps brachii 10-16 Muscle Origins and Insertions • Origin Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. – Bony attachment at stationary end of muscle Origins Origins Humerus Scapula • Belly Bellies – Thicker, middle region of Extensors: Flexors: Triceps brachii Biceps brachii muscle between origin Long head Brachialis and insertion Lateral head • Insertion Insertion Radius – Bony attachment to Insertion Ulna mobile end of muscle Figure 10.4 10-17 Muscle Origin and Insertions • Also can be determined by proximal or distal or superior and inferior attachments, especially on limbs (nontraditional) • Some muscles insert not on bone but on the fascia or tendon of another muscle or on collagen fibers of the dermis – Distal tendon of the biceps brachii inserts on the fascia of the forearm – Facial muscles insert in the skin 10-18 Functional Groups of Muscles • Action—the effects produced by a muscle – To produce or prevent movement • Four categories depending on action – Prime mover (agonist) • Muscle that produces most of force during a joint action – Synergist: muscle that aids the prime mover • Stabilizes the nearby joint • Modifies the direction of movement 10-19 Functional Groups of Muscles Cont. – Antagonist: opposes the prime mover • Relaxes to give prime mover control over an action • Preventing excessive movement and injury • Antagonistic pairs—muscles that act on opposite sides of a joint – Fixator: muscle that prevents movement of bone 10-20 Functional Groups of Muscles Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. • Prime mover—brachialis Origins Origins Humerus Scapula • Synergist—biceps brachii Bellies Extensors: Flexors: • Antagonist—triceps brachii Triceps brachii Biceps brachii Long head Brachialis Lateral head • Fixator—muscle that holds scapula firmly in place Insertion Radius – Rhomboids Insertion Ulna Figure 10.4 10-21 Intrinsic and Extrinsic Muscles Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. • Intrinsic muscles— entirely contained Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Common Tendon sheath First dorsal flexor within a region, such interosseous tendon Tendon of flexor Adductor as the hand digitorum profundus pollicis Tendon of flexor digitorum superficialis Tendon of flexor – Both its origin and Lumbricals pollicis longus Flexor Opponens digiti minimi Flexor pollicis digitorum insertion there brevis Flexor digiti superficialis Abductor pollicis brevis Abductor digiti Flexor minimi Opponens pollicis Flexor retinaculum pollicis longus Tendons of: • Extrinsic muscles— Tendons of: Abductor pollicis Flexor carpi ulnaris longus Flexor carpi Flexor digitorum radialis superficialis act on a designated Flexor pollicis Palmaris longus longus Flexor region, but has its digitorum (a) Palmar aspect, superficial superficialis origin elsewhere tendons Figure 10.31a Flexor – Fingers: extrinsic digitorum profundus muscles in the tendons forearm (b) Intermediate flexor Figure 10.28b 10-22 Muscle Innervation • Innervation of a muscle—refers to the identity of the nerve that stimulates it – Enables the diagnosis of nerve, spinal cord, and brainstem injuries from their effects on muscle function • Spinal nerves arise from the spinal cord – Emerge through intervertebral foramina – Immediately branch into a posterior and anterior ramus – Innervate muscles
Recommended publications
  • The Anatomy of the Rectum and Anal Canal
    BASIC SCIENCE identify the rectosigmoid junction with confidence at operation. The anatomy of the rectum The rectosigmoid junction usually lies approximately 6 cm below the level of the sacral promontory. Approached from the distal and anal canal end, however, as when performing a rigid or flexible sigmoid- oscopy, the rectosigmoid junction is seen to be 14e18 cm from Vishy Mahadevan the anal verge, and 18 cm is usually taken as the measurement for audit purposes. The rectum in the adult measures 10e14 cm in length. Abstract Diseases of the rectum and anal canal, both benign and malignant, Relationship of the peritoneum to the rectum account for a very large part of colorectal surgical practice in the UK. Unlike the transverse colon and sigmoid colon, the rectum lacks This article emphasizes the surgically-relevant aspects of the anatomy a mesentery (Figure 1). The posterior aspect of the rectum is thus of the rectum and anal canal. entirely free of a peritoneal covering. In this respect the rectum resembles the ascending and descending segments of the colon, Keywords Anal cushions; inferior hypogastric plexus; internal and and all of these segments may be therefore be spoken of as external anal sphincters; lymphatic drainage of rectum and anal canal; retroperitoneal. The precise relationship of the peritoneum to the mesorectum; perineum; rectal blood supply rectum is as follows: the upper third of the rectum is covered by peritoneum on its anterior and lateral surfaces; the middle third of the rectum is covered by peritoneum only on its anterior 1 The rectum is the direct continuation of the sigmoid colon and surface while the lower third of the rectum is below the level of commences in front of the body of the third sacral vertebra.
    [Show full text]
  • Female Perineum Doctors Notes Notes/Extra Explanation Please View Our Editing File Before Studying This Lecture to Check for Any Changes
    Color Code Important Female Perineum Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, the student should be able to describe the: ✓ Boundaries of the perineum. ✓ Division of perineum into two triangles. ✓ Boundaries & Contents of anal & urogenital triangles. ✓ Lower part of Anal canal. ✓ Boundaries & contents of Ischiorectal fossa. ✓ Innervation, Blood supply and lymphatic drainage of perineum. Lecture Outline ‰ Introduction: • The trunk is divided into 4 main cavities: thoracic, abdominal, pelvic, and perineal. (see image 1) • The pelvis has an inlet and an outlet. (see image 2) The lowest part of the pelvic outlet is the perineum. • The perineum is separated from the pelvic cavity superiorly by the pelvic floor. • The pelvic floor or pelvic diaphragm is composed of muscle fibers of the levator ani, the coccygeus muscle, and associated connective tissue. (see image 3) We will talk about them more in the next lecture. Image (1) Image (2) Image (3) Note: this image is seen from ABOVE Perineum (In this lecture the boundaries and relations are important) o Perineum is the region of the body below the pelvic diaphragm (The outlet of the pelvis) o It is a diamond shaped area between the thighs. Boundaries: (these are the external or surface boundaries) Anteriorly Laterally Posteriorly Medial surfaces of Intergluteal folds Mons pubis the thighs or cleft Contents: 1. Lower ends of urethra, vagina & anal canal 2. External genitalia 3. Perineal body & Anococcygeal body Extra (we will now talk about these in the next slides) Perineum Extra explanation: The perineal body is an irregular Perineal body fibromuscular mass.
    [Show full text]
  • Thoracic Outlet and Pectoralis Minor Syndromes
    S EMINARS IN V ASCULAR S URGERY 27 (2014) 86– 117 Available online at www.sciencedirect.com www.elsevier.com/locate/semvascsurg Thoracic outlet and pectoralis minor syndromes n Richard J. Sanders, MD , and Stephen J. Annest, MD Presbyterian/St. Luke's Medical Center, 1719 Gilpin, Denver, CO 80218 article info abstract Compression of the neurovascular bundle to the upper extremity can occur above or below the clavicle; thoracic outlet syndrome (TOS) is above the clavicle and pectoralis minor syndrome is below. More than 90% of cases involve the brachial plexus, 5% involve venous obstruction, and 1% are associate with arterial obstruction. The clinical presentation, including symptoms, physical examination, pathology, etiology, and treatment differences among neurogenic, venous, and arterial TOS syndromes. This review details the diagnostic testing required to differentiate among the associated conditions and recommends appropriate medical or surgical treatment for each compression syndrome. The long- term outcomes of patients with TOS and pectoralis minor syndrome also vary and depend on duration of symptoms before initiation of physical therapy and surgical intervention. Overall, it can be expected that 480% of patients with these compression syndromes can experience functional improvement of their upper extremity; higher for arterial and venous TOS than for neurogenic compression. & 2015 Published by Elsevier Inc. 1. Introduction compression giving rise to neurogenic TOS (NTOS) and/or neurogenic PMS (NPMS). Much less common is subclavian Compression of the neurovascular bundle of the upper and axillary vein obstruction giving rise to venous TOS (VTOS) extremity can occur above or below the clavicle. Above the or venous PMS (VPMS).
    [Show full text]
  • By Dr.Ahmed Salman Assistant Professorofanatomy &Embryology My Advice to You Is to Focus on the Diagrams That I Drew
    The University Of Jordan Faculty Of Medicine REPRODUCTIVE SYSTEM By Dr.Ahmed Salman Assistant ProfessorofAnatomy &embryology My advice to you is to focus on the diagrams that I drew. These diagrams cover the Edited by Dana Hamo doctor’s ENTIRE EXPLANATION AND WHAT HE HAS MENTIONED Quick Recall : Pelvic brim Pelvic diaphragm that separates the true pelvis above and perineum BELOW Perineum It is the diamond-shaped lower end of the trunk Glossary : peri : around, ineo - discharge, evacuate Location : it lies below the pelvic diaphragm, between the upper parts of the thighs. Boundaries : Anteriorly : Inferior margin of symphysis pubis. Posteriorly : Tip of coccyx. Anterolateral : Fused rami of pubis and ischium and ischial tuberosity. Posterolateral : Sacrotuberous ligaments. Dr.Ahmed Salman • Same boundaries as the pelvic Anteriorly: outlet. inferior part of • If we drew a line between the 2 symphysis pubis ischial tuberosities, the diamond shape will be divided into 2 triangles. Anterior and Anterior and Lateral : Lateral : •The ANTERIOR triangle is called ischiopubic ischiopubic urogenital triangle ramus The perineum ramus •The POSTERIOR triangle is called has a diamond anal triangle shape. ischial tuberosity Posterior and Posterior and Lateral : Lateral : Urogenital sacrotuberous sacrotuberous tri. ligament ligament Anal tri. Posteriorly : tip of coccyx UROGENITAL TRI. ANAL TRI. Divisions of the Perineum : By a line joining the anterior parts of the ischial tuberosities, the perineum is divided into two triangles : Anteriorly :Urogenital
    [Show full text]
  • Lab #23 Anal Triangle
    THE BONY PELVIS AND ANAL TRIANGLE (Grant's Dissector [16th Ed.] pp. 141-145) TODAY’S GOALS: 1. Identify relevant bony features/landmarks on skeletal materials or pelvic models. 2. Identify the sacrotuberous and sacrospinous ligaments. 3. Describe the organization and divisions of the perineum into two triangles: anal triangle and urogenital triangle 4. Dissect the ischiorectal (ischioanal) fossa and define its boundaries. 5. Identify the inferior rectal nerve and artery, the pudendal (Alcock’s) canal and the external anal sphincter. DISSECTION NOTES: The perineum is the diamond-shaped area between the upper thighs and below the inferior pelvic aperture and pelvic diaphragm. It is divided anatomically into 2 triangles: the anal triangle and the urogenital (UG) triangle (Dissector p. 142, Fig. 5.2). The anal triangle is bounded by the tip of the coccyx, sacrotuberous ligaments, and a line connecting the right and left ischial tuberosities. It contains the anal canal, which pierced the levator ani muscle portion of the pelvic diaphragm. The urogenital triangle is bounded by the ischiopubic rami to the inferior surface of the pubic symphysis and a line connecting the right and left ischial tuberosities. This triangular space contains the urogenital (UG) diaphragm that transmits the urethra (in male) and urethra and vagina (in female). A. Anal Triangle Turn the cadaver into the prone position. Make skin incisions as on page 144, Fig. 5.4 of the Dissector. Reflect skin and superficial fascia of the gluteal region in one flap to expose the large gluteus maximus muscle. This muscle has proximal attachments to the posteromedial surface of the ilium, posterior surfaces of the sacrum and coccyx, and the sacrotuberous ligament.
    [Show full text]
  • Thoracic Outlet Syndrome of Pectoralis Minor Etiology Mimicking Cardiac
    0008-3194/2012/311–315/$2.00/©JCCA 2012 Thoracic outlet syndrome of pectoralis minor etiology mimicking cardiac symptoms on activity: a case report Gary Fitzgerald BSc(NUI), BSc(Hons)(Chiro), MSc(Chiro), ICSSD* Thoracic outlet syndrome is the result of compression Le syndrome de la traversée thoracobrachial est le or irritation of neurovascular bundles as they pass résultat de la compression ou de l’irritation d’un from the lower cervical spine into the arm, via the paquet vasculonerveux au cours de son trajet entre axilla. If the pectoralis minor muscle is involved the la colonne cervicale inférieure et le bras, en passant patient may present with chest pain, along with pain par l’aisselle. Si le muscle petit pectoral est sollicité, and paraesthesia into the arm. These symptoms are also le patient peut subir de la douleur à la poitrine ainsi commonly seen in patients with chest pain of a cardiac que de la douleur et de la paresthésie dans le bras. origin. In this case, a patient presents with a history of On voit souvent ces symptômes aussi chez des patients left sided chest pain with pain and paraesthesia into the souffrant de douleurs thoraciques d’origine cardiaque. left upper limb, which only occurs whilst running. The Dans de tels cas, le patient présente des antécédents de symptoms were reproduced on both digital pressure over douleurs thoraciques du côté gauche, accompagnées the pectoralis minor muscle and on provocative testing de douleur et de paresthésie dans le membre supérieur for thoracic outlet syndrome. The patient’s treatment gauche, qui survient uniquement pendant que le patient therefore focused on the pectoralis minor muscle, with court.
    [Show full text]
  • Build-A-Pelvis: Modeling Pelvic and Perineal Anatomy Female Pelvis
    Build-A-Pelvis: Modeling Pelvic and Perineal Anatomy Female Pelvis Theodore Smith, M.S. Polly Husmann, Ph.D All images in this activity were created by the authors © Theodore Smith & Polly Husmann 2017 Materials needed: Pipecleaners-5 different colors Plastic Binder Pockets Scotch Tape Removable Adhesive Tack Masking Tape Scissors Bony Pelvis/Plastic Pelvis Model Fuzzy Pom-Poms Pens/Markers Flexible Plastic Tubing (optional) Image created by authors Structures Discussed: Perineal Membrane Ischiocavernosus Muscle Anal Triangle Bulbospongiosus Muscle Urogenital Diaphragm Superficial Perineal Pouch Deep Perineal Pouch External Anal Sphincter Superior fascia of the Urogenital Diaphragm Internal Anal Sphincter* External Urethral Sphincter Internal Urethral Sphincter* Compressor Urethrae Crura of the Clitoris Urethrovaginal Sphincter Bulb of the Vestibule Deep Transverse Perineal Muscle Greater Vestibular Glands Internal pudendal artery and vein Pudendal nerve Anal Canal* Vagina* Urethra* Superficial Transverse Perineal Muscles *only in optional activity with plastic tubing © Theodore Smith & Polly Husmann 2017 Build-A-Pelvis: Female Pelvis Directions 1) Begin by cutting 2 triangular pieces (wide isosceles, see Appendix A for templates) of the plastic binder dividers. These will serve as the perineal membrane (inferior fascia of urogenital diaphragm) and a boundary for the anal triangle. Cut a 3rd smaller triangle from the plastic dividers to serve as the superior fascia of the urogenital diaphragm. 2) Choose one large triangle to serve as the perineal membrane. Place the small triangle in the center of the large triangle and mark 2 spots a few centimeters apart in the midline of each triangle. At the marks, cut 2 holes. The hole closest to the pinnacle of the triangle will represent the opening for the urethra and the in- ferior will represent the opening for the vagina.
    [Show full text]
  • Pectoral Region and Axilla Doctors Notes Notes/Extra Explanation Editing File Objectives
    Color Code Important Pectoral Region and Axilla Doctors Notes Notes/Extra explanation Editing File Objectives By the end of the lecture the students should be able to : Identify and describe the muscles of the pectoral region. I. Pectoralis major. II. Pectoralis minor. III. Subclavius. IV. Serratus anterior. Describe and demonstrate the boundaries and contents of the axilla. Describe the formation of the brachial plexus and its branches. The movements of the upper limb Note: differentiate between the different regions Flexion & extension of Flexion & extension of Flexion & extension of wrist = hand elbow = forearm shoulder = arm = humerus I. Pectoralis Major Origin 2 heads Clavicular head: From Medial ½ of the front of the clavicle. Sternocostal head: From; Sternum. Upper 6 costal cartilages. Aponeurosis of the external oblique muscle. Insertion Lateral lip of bicipital groove (humerus)* Costal cartilage (hyaline Nerve Supply Medial & lateral pectoral nerves. cartilage that connects the ribs to the sternum) Action Adduction and medial rotation of the arm. Recall what we took in foundation: Only the clavicular head helps in flexion of arm Muscles are attached to bones / (shoulder). ligaments / cartilage by 1) tendons * 3 muscles are attached at the bicipital groove: 2) aponeurosis Latissimus dorsi, pectoral major, teres major 3) raphe Extra Extra picture for understanding II. Pectoralis Minor Origin From 3rd ,4th, & 5th ribs close to their costal cartilages. Insertion Coracoid process (scapula)* 3 Nerve Supply Medial pectoral nerve. 4 Action 1. Depression of the shoulder. 5 2. Draw the ribs upward and outwards during deep inspiration. *Don’t confuse the coracoid process on the scapula with the coronoid process on the ulna Extra III.
    [Show full text]
  • CHAPTER 6 Perineum and True Pelvis
    193 CHAPTER 6 Perineum and True Pelvis THE PELVIC REGION OF THE BODY Posterior Trunk of Internal Iliac--Its Iliolumbar, Lateral Sacral, and Superior Gluteal Branches WALLS OF THE PELVIC CAVITY Anterior Trunk of Internal Iliac--Its Umbilical, Posterior, Anterolateral, and Anterior Walls Obturator, Inferior Gluteal, Internal Pudendal, Inferior Wall--the Pelvic Diaphragm Middle Rectal, and Sex-Dependent Branches Levator Ani Sex-dependent Branches of Anterior Trunk -- Coccygeus (Ischiococcygeus) Inferior Vesical Artery in Males and Uterine Puborectalis (Considered by Some Persons to be a Artery in Females Third Part of Levator Ani) Anastomotic Connections of the Internal Iliac Another Hole in the Pelvic Diaphragm--the Greater Artery Sciatic Foramen VEINS OF THE PELVIC CAVITY PERINEUM Urogenital Triangle VENTRAL RAMI WITHIN THE PELVIC Contents of the Urogenital Triangle CAVITY Perineal Membrane Obturator Nerve Perineal Muscles Superior to the Perineal Sacral Plexus Membrane--Sphincter urethrae (Both Sexes), Other Branches of Sacral Ventral Rami Deep Transverse Perineus (Males), Sphincter Nerves to the Pelvic Diaphragm Urethrovaginalis (Females), Compressor Pudendal Nerve (for Muscles of Perineum and Most Urethrae (Females) of Its Skin) Genital Structures Opposed to the Inferior Surface Pelvic Splanchnic Nerves (Parasympathetic of the Perineal Membrane -- Crura of Phallus, Preganglionic From S3 and S4) Bulb of Penis (Males), Bulb of Vestibule Coccygeal Plexus (Females) Muscles Associated with the Crura and PELVIC PORTION OF THE SYMPATHETIC
    [Show full text]
  • Ana Tomical Triangles J
    43 ANA TOMICAL TRIANGLES J. LESLIE PACE, M.D. Department of Anatomy, Royal University of Malta Anatomical description is given of certain areas in the human hody which have :.l triangular sha!)e and which are of anatomical or surgical importance. There are at lea;,t 30 describe,d ,anatomical triangles, many of which receive eponymous names. Some are of nUlrked importance and well known e.g. Scarpa's femoral triangle, Hesselbach's inguinal triangle, H!ld Petit '5 lumbar triangle; others arc of relative1y minor importance and n.ot so well-known e.g. Elau's, Friteau's and Assezat's triangles. Anatomical trianlfles are described in various regions .of the body e.g. Macewen's ana Trautmann's in the head regiml, Beclaud's and PirDgoff's in the neck region, He'lSelbach '5, Henke '5, Petit's amI Grynfeltt's in the ,abdominal wall region and Searpa's Hnd Weber's in the lower limb Tf~gion. Their size varies, some being large e.g. Scarpa's triangle, others being very small e.g. Macewen's triangle. The bDundaries of these triangular areas may cDnsist of muscle borders e.g. the triangle .of Lannier and the variDUS tria,ngles of the neck; of n111sc1e borders and· bony cn1"fac(1,~ e.g. P(~lit'.~l tri,f)ng]c, t]1(' tria11['1]" ,C)f M'll"('ille J;lIlfl t1H~ tl"i[J11~le of Auscultation; of muscle borders and blood ves,ds e.g. Uesselbach's; of imaginary line, clrawn hetween fixed bony points e.g.
    [Show full text]
  • Muscles of Mastication Muscles That Move the Head
    1 Muscles Of Mastication identification origin insertion action maxilla, zygomatic arch Mandible elevates & protracts mandible MASSETER Human Cat Zygomatic Bone Mandible elevates mandible TEMPORALIS Human/Cat Temporal Bone Mandible elevates and retracts mandible Hyoid Bone DIGASTRIC Human mandible & mastoid process depress mandible Cat occipital bone & mastoid process Mandible depress mandible raises floor of mouth; MYLOHYOID Human/Cat Mandible Hyoid bone pulls hyoid forward Muscles That Move The Head identification origin insertion action STERNOCLEIDOMAStoID clavicle, sternum mastoid process flexes and laterally rotates head HUMAN ONLY STERNOMAStoID CAT ONLY sternum mastoid process turns and depresses head pulls head laterally; CLEIDOMAStoID CAT ONLY clavicle mastoid process pulls clavicle craniad 2 Muscles Of The Hyoid, Larynx And Tongue identification origin insertion action Human Sternum Hyoid depresses hyoid bone STERNOHYOID Cat costal cartilage 1st rib Hyoid pulls hyoid caudally; raises ribs and sternum sternum Throid cartilage of larynx Human depresses thyroid cartilage STERNothYROID Cat costal cartilage 1st rib Throid cartilage of larynx pulls larynx caudad elevates thyroid cartilage and Human thyroid cartilage of larynx Hyoid THYROHYOID depresses hyoid bone Cat thyroid cartilage of larynx Hyoid raises larynx GENIOHYOID Human/Cat Mandible Hyoid pulls hyoid craniad 3 Muscles That Attach Pectoral Appendages To Vertebral Column identification origin insertion action Human Occipital bone; Thoracic and Cervical raises clavicle; adducts,
    [Show full text]
  • Congenital Absence of the Pectoral Muscles
    Arch Dis Child: first published as 10.1136/adc.12.68.123 on 1 April 1937. Downloaded from CONGENITAL ABSENCE OF THE PECTORAL MUSCLES BY E. D. IRVINE, M.D., AND J. B. TILLEY, M.D. (Blackburn). The four patients described in this paper exhibit congenital absence of the pectoral muscles in varying degree, and illustrate many points of interest. Three of them were observed during routine and special medical examinations of approximately 15,000 elementary school children, and one was a pre-school child in hospital: it is interesting to note that Scheslinger, according to Rector', discovered five cases in 54,000 patients. Case 1 was discovered during the examination of a boy aged ten, the second of four children, who complained of cough: he is under observation http://adc.bmj.com/ on September 30, 2021 by guest. Protected copyright. FIG. 1. as a tuberculosis contact. The sterno-costal portion of the left pectoralis major and the left pectoralis minor are both missing. Although not previously noted, this is believed to be a congenital defect. The clavicular head of the pectoralis major is well developed and arises from the inner half of the clavicle; the deltoid is not hypertrophied (fig. 1). When the arms are extended above the head, a well-marked fold of skin running vertically across the axilla to the second left rib and interspace can be seen and in Arch Dis Child: first published as 10.1136/adc.12.68.123 on 1 April 1937. Downloaded from I 2d4 AIICIlIVES 0O' DISEASE IN CHILDHOOD the fold fibrous tissue can be felt deep to the skin: whether this is simply fascia or a vestigial or degenerated muscle is not known.
    [Show full text]