Genename Sequence Peptidecount

Total Page:16

File Type:pdf, Size:1020Kb

Genename Sequence Peptidecount GeneName Sequence PeptideCount A1BG SLPAPWLSMAPVSWITPGLK 1 A1S9T;UBA1;UBE1 AAVATFLQSVQVPEFTPK 18 A1S9T;UBA1;UBE1 AENYDIPSADR 18 A1S9T;UBA1;UBE1 ALPAVQQNNLDEDLIR 18 A1S9T;UBA1;UBE1 ALPAVQQNNLDEDLIRK 18 A1S9T;UBA1;UBE1 ATLPSPDKLPGFK 18 A1S9T;UBA1;UBE1 DEFEGLFK 18 A1S9T;UBA1;UBE1 GGIVSQVK 18 A1S9T;UBA1;UBE1 GLGVEIAK 18 A1S9T;UBA1;UBE1 HQYYNQEWTLWDR 18 A1S9T;UBA1;UBE1 IYDDDFFQNLDGVANALDNVDAR 18 A1S9T;UBA1;UBE1 KPLLESGTLGTK 18 A1S9T;UBA1;UBE1 LAGTQPLEVLEAVQR 18 A1S9T;UBA1;UBE1 LQTSSVLVSGLR 18 A1S9T;UBA1;UBE1 NEEDAAELVALAQAVNAR 18 A1S9T;UBA1;UBE1 NFPNAIEHTLQWAR 18 A1S9T;UBA1;UBE1 QFLDYFK 18 A1S9T;UBA1;UBE1 QFLFRPWDVTK 18 A1S9T;UBA1;UBE1 SLVASLAEPDFVVTDFAK 18 A2LD1 TLEPYPLVIAGEHNIPWLLHLPGSGR 1 A4;AD1;APP THPHFVIPYR 2 A4;AD1;APP WYFDVTEGK 2 AAAS;ADRACALA;GL003 GGGVTNLLWSPDGSK 12 AAAS;ADRACALA;GL003 GQWINLPVLQLTK 12 AAAS;ADRACALA;GL003 IAHIPLYFVNAQFPR 12 AAAS;ADRACALA;GL003 ILATTPSAVFR 12 AAAS;ADRACALA;GL003 LAVLMK 12 AAAS;ADRACALA;GL003 LLSASPVDAAIR 12 AAAS;ADRACALA;GL003 SATIVADLSETTIQTPDGEER 12 AAAS;ADRACALA;GL003 VFAWHPHTNK 12 AAAS;ADRACALA;GL003 VQDGKPVILLFR 12 AAAS;ADRACALA;GL003 VWEAQMWTCER 12 AAAS;ADRACALA;GL003 VYNASSTIVPSLK 12 AAAS;ADRACALA;GL003 WPTLSGR 12 AAC4;ANT4;SFEC;SLC25A31 DLLAGGVAAAVSK 21 AAC4;ANT4;SFEC;SLC25A31 EQGFFSFWR 21 AAC4;ANT4;SFEC;SLC25A31 GAFSNVLR 21 AAC4;ANT4;SFEC;SLC25A31 GLGDCIMK 21 AAC4;ANT4;SFEC;SLC25A31 GLLPKPK 21 AAC4;ANT4;SFEC;SLC25A31 GMVDCLVR 21 AAC4;ANT4;SFEC;SLC25A31 GNLANVIR 21 AAC4;ANT4;SFEC;SLC25A31 GTGGALVLVLYDK 21 AAC4;ANT4;SFEC;SLC25A31 IKEFFHIDIGGR 21 AAC4;ANT4;SFEC;SLC25A31 IPREQGFFSFWR 21 AAC4;ANT4;SFEC;SLC25A31 LFDASSFGK 21 AAC4;ANT4;SFEC;SLC25A31 LFDASSFGKDLLAGGVAAAVSK 21 AAC4;ANT4;SFEC;SLC25A31 LGVDIGK 21 AAC4;ANT4;SFEC;SLC25A31 LGVDIGKGPEER 21 AAC4;ANT4;SFEC;SLC25A31 LLLQVQASSK 21 AAC4;ANT4;SFEC;SLC25A31 MMMQSGEAK 21 AAC4;ANT4;SFEC;SLC25A31 RLFDASSFGK 21 AAC4;ANT4;SFEC;SLC25A31 TAVAPIER 21 AAC4;ANT4;SFEC;SLC25A31 YFPTQALNFAFK 21 AAC4;ANT4;SFEC;SLC25A31 YFPTQALNFAFKDK 21 AAC4;ANT4;SFEC;SLC25A31 YFPTQALNFAFKDKYK 21 AAG4;APOJ;CLI;CLU;KUB1 ASSIIDELFQDR 19 AAG4;APOJ;CLI;CLU;KUB1 ASSIIDELFQDRFFTR 19 AAG4;APOJ;CLI;CLU;KUB1 EILSVDCSTNNPSQAK 19 AAG4;APOJ;CLI;CLU;KUB1 ELDESLQVAER 19 AAG4;APOJ;CLI;CLU;KUB1 EPQDTYHYLPFSLPHR 19 AAG4;APOJ;CLI;CLU;KUB1 FFTREPQDTYHYLPFSLPHR 19 AAG4;APOJ;CLI;CLU;KUB1 FMETVAEK 19 AAG4;APOJ;CLI;CLU;KUB1 IDSLLENDR 19 AAG4;APOJ;CLI;CLU;KUB1 KTLLSNLEEAK 19 AAG4;APOJ;CLI;CLU;KUB1 KYNELLK 19 AAG4;APOJ;CLI;CLU;KUB1 LFDSDPITVTVPVEVSR 19 AAG4;APOJ;CLI;CLU;KUB1 LFDSDPITVTVPVEVSRK 19 AAG4;APOJ;CLI;CLU;KUB1 MKDQCDK 19 AAG4;APOJ;CLI;CLU;KUB1 QQTHMLDVMQDHFSR 19 AAG4;APOJ;CLI;CLU;KUB1 RELDESLQVAER 19 AAG4;APOJ;CLI;CLU;KUB1 RPHFFFPK 19 AAG4;APOJ;CLI;CLU;KUB1 TLLSNLEEAK 19 AAG4;APOJ;CLI;CLU;KUB1 TLLSNLEEAKK 19 AAG4;APOJ;CLI;CLU;KUB1 VTTVASHTSDSDVPSGVTEVVVK 19 AAG5;AGPS ESISDVGFGMLK 4 AAG5;AGPS IRPVPEYQK 4 AAG5;AGPS NIYGNIEDLVVHIK 4 AARS ASEWVQQVSGLMDGK 11 AARS AVFDETYPDPVR 11 AARS FIDFFK 11 AARS GAMSTQQIK 11 AARS GLVVDMDGFEEER 11 AARS MALELLTQEFGIPIER 11 AARS MSNYDTDLFVPYFEAIQK 11 AARS QIWQNLGLDDTK 11 AARS RIVAVTGAEAQK 11 AARS VDDSSEDKTEFTVK 11 AARS VGDQVWLFIDEPR 11 AARSD1;hCG_16967 ALTALLK 15 AARSD1;hCG_16967 ELSLDDPEVEQVSGR 15 AARSD1;hCG_16967 GGGLFLLAGPPASVETLGPR 15 AARSD1;hCG_16967 GLPDDHAGPIR 15 AARSD1;hCG_16967 KLQNSTK 15 AARSD1;hCG_16967 NSPDWGGVVILHR 15 AARSD1;hCG_16967 RFDHMQQHSGQHLITAVADHLFK 15 AARSD1;hCG_16967 RGEQADHFTQTPLDPGSQVLVR 15 AARSD1;hCG_16967 RMEAQALLQDYISTQSAKE 15 AARSD1;hCG_16967 SAIELDTPSMTAEQVAAIEQSVNEK 15 AARSD1;hCG_16967 TNLIFLSGNR 15 AARSD1;hCG_16967 TTSWELGR 15 AARSD1;hCG_16967 VAEVLEGK 15 AASDHPPT;CGI-80;HAH-P;HSPC223;x0005GKPVLAK 7 AASDHPPT;CGI-80;HAH-P;HSPC223;x0005GSIPEFFHIMK 7 AASDHPPT;CGI-80;HAH-P;HSPC223;x0005IGQFVFAR 7 AASDHPPT;CGI-80;HAH-P;HSPC223;x0005LNIPWNHIR 7 AASDHPPT;CGI-80;HAH-P;HSPC223;x0005SFKDEWTQLDMFYR 7 AASS;hCG_33410;tcag7.61 GLMGPFSK 3 AASS;hCG_33410;tcag7.61 KTYAFFSHTIK 3 AASS;hCG_33410;tcag7.61 LGFLVAK 3 AAT;PI;PRO0684;PRO2209;SERPINA1ITPNLAEFAFSLYR 4 AAT;PI;PRO0684;PRO2209;SERPINA1KLSSWVLLMK 4 AAT;PI;PRO0684;PRO2209;SERPINA1LSSWVLLMK 4 AAT1;C3orf15;DKFZp434B1917 ALADMFDFLSK 2 AAT1;C3orf15;DKFZp434B1917 KREENQNEVNMK 2 ABAT;GABAT FRPTLVFR 1 ABC50;ABCF1;DADB-129D20.7-001;DAMA-178G23.9-001;DAMC-83F13.6-001;DASS-182C6.1-001;DADB-129D20.7-002;DAMA-178G23.9-002;DAMC-83F13.6-002;DASS-182C6.1-002;hCG_26012STLLLLLTGK 1 ABCB6;MTABC3;PRP;UMAT AIQASLAK 4 ABCB6;MTABC3;PRP;UMAT APGIILLDEATSALDTSNER 4 ABCB6;MTABC3;PRP;UMAT AVDSLLNFETVK 4 ABCB6;MTABC3;PRP;UMAT YQGLEWK 4 ABCD3;PMP70;PXMP1 VLGELWPLFGGR 1 ABCG4;WHITE2;DKFZp434P1420 STFMNILAGYR 1 ABH7;ALKBH7;SPATA11;UNQ6002/PRO34564YDFSHEILRDEESFFGER 2 ABH7;ALKBH7;SPATA11;UNQ6002/PRO34564YEYDHWDAAIHGFR 2 ABHD10 ADIQLLVYTIDDLIDK 11 ABHD10 ALAIEEFCK 11 ABHD10 APRWLPACRQK 11 ABHD10 FDYSGVGSSDGNSEESTLGK 11 ABHD10 FNQLPVELKK 11 ABHD10 GVWSMPSK 11 ABHD10 LLHGMKDDIVPWHTSMQVADR 11 ABHD10 VLSTDVDVILR 11 ABHD10 VLSTDVDVILRK 11 ABHD10 VVALIGVATAADTLVTK 11 ABHD10 YSEEGVYNVQYSFIK 11 ABHD14B;CIB AVAIDLPGLGHSK 3 ABHD14B;CIB FSSETWQNLGTLHR 3 ABHD14B;CIB FSVLLLHGIR 3 ABHD2;LABH2 EYIPPLIWGK 2 ABHD2;LABH2 FYNFLMADNMK 2 ABP32;PEF1;UNQ1845/PRO3573 IDVYGFSALWK 1 ACAA2 AANDAGYFNDEMAPIEVK 12 ACAA2 DFTATDLSEFAAK 12 ACAA2 DGTVTAGNASGVADGAGAVIIASEDAVK 12 ACAA2 DMDLVEVNEAFAPQYLAVER 12 ACAA2 ETPALTINR 12 ACAA2 GVFVVAAK 12 ACAA2 KHNFTPLAR 12 ACAA2 QTMQVDEHARPQTTLEQLQK 12 ACAA2 RTPFGAYGGLLK 12 ACAA2 SLDLDISK 12 ACAA2 TPFGAYGGLLK 12 ACAC;ACACA;ACC1;ACCA;hCG_30204RWSYEMFR 1 ACAD8;ARC42;IBD;hCG_37259 DYAVQQYVR 9 ACAD8;ARC42;IBD;hCG_37259 EMAPNMAEWDQKELFPVDVMR 9 ACAD8;ARC42;IBD;hCG_37259 GTPGLSFGK 9 ACAD8;ARC42;IBD;hCG_37259 IGSEGQGFLIAVR 9 ACAD8;ARC42;IBD;hCG_37259 KVGWNSQPTR 9 ACAD8;ARC42;IBD;hCG_37259 NAAVALQEER 9 ACAD8;ARC42;IBD;hCG_37259 VAFDFAAR 9 ACAD8;ARC42;IBD;hCG_37259 VGWNSQPTR 9 ACAD8;ARC42;IBD;hCG_37259 VHQILEGSNEVMR 9 ACAD9;hCG_2022772 ELFLGK 7 ACAD9;hCG_2022772 FALMAQK 7 ACAD9;hCG_2022772 FSMGSVVAGLLK 7 ACAD9;hCG_2022772 FSMGSVVAGLLKR 7 ACAD9;hCG_2022772 KIDQEGKIPDETLEK 7 ACAD9;hCG_2022772 TEVVDSDGSVKDK 7 ACAD9;hCG_2022772 VSTVMDTVGR 7 ACADS AWITNAWEASAAVVFASTDR 15 ACADS DFAEKELFPIAAQVDKEHLFPAAQVK 15 ACADS DSILGEPGMGFK 15 ACADS ELFPIAAQVDKEHLFPAAQVK 15 ACADS GISAFLVPMPTPGLTLGK 15 ACADS GISAFLVPMPTPGLTLGKKEDK 15 ACADS IAMQTLDMGR 15 ACADS IPKDSILGEPGMGFK 15 ACADS ITEIYEGTSEIQR 15 ACADS LAASEAATAISHQAIQILGGMGYVTEMPAER 15 ACADS LADMALALESAR 15 ACADS LQVIQFK 15 ACADS LVIAGHLLR 15 ACADS MAFGAPLTK 15 ACADS QAWVTPFTSGDK 15 ACADSB;hCG_1781685;RP11-162A23.1-001LFDFQGLQHQVAHVATQLEAAR 3 ACADSB;hCG_1781685;RP11-162A23.1-001YAIGSLNEGR 3 ACADVL;VLCAD;hCG_42007 ALEQFATVVEAK 25 ACADVL;VLCAD;hCG_42007 ASNTAEVFFDGVR 25 ACADVL;VLCAD;hCG_42007 EGMAALQSDPWQQELYR 25 ACADVL;VLCAD;hCG_42007 ELSGLGSALK 25 ACADVL;VLCAD;hCG_42007 ELVEPVSR 25 ACADVL;VLCAD;hCG_42007 FFEEVNDPAKNDALEMVEETTWQGLK 25 ACADVL;VLCAD;hCG_42007 FGMAAALAGTMR 25 ACADVL;VLCAD;hCG_42007 GFGGITHGPPEKK 25 ACADVL;VLCAD;hCG_42007 GGVVTSNPLGF 25 ACADVL;VLCAD;hCG_42007 GILLFGTK 25 ACADVL;VLCAD;hCG_42007 GIVNEQFLLQR 25 ACADVL;VLCAD;hCG_42007 GKELSGLGSALK 25 ACADVL;VLCAD;hCG_42007 GQLTTDQVFPYPSVLNEEQTQFLK 25 ACADVL;VLCAD;hCG_42007 IFEGTNDILR 25 ACADVL;VLCAD;hCG_42007 IFGSEAAWK 25 ACADVL;VLCAD;hCG_42007 IHNFGLIQEK 25 ACADVL;VLCAD;hCG_42007 IREGMAALQSDPWQQELYR 25 ACADVL;VLCAD;hCG_42007 ITAFVVER 25 ACADVL;VLCAD;hCG_42007 KGIVNEQFLLQR 25 ACADVL;VLCAD;hCG_42007 LWISNGGLADIFTVFAK 25 ACADVL;VLCAD;hCG_42007 NPFGNAGLLLGEAGK 25 ACADVL;VLCAD;hCG_42007 SFAVGMFK 25 ACADVL;VLCAD;hCG_42007 TPVTDPATGAVK 25 ACADVL;VLCAD;hCG_42007 TPVTDPATGAVKEK 25 ACADVL;VLCAD;hCG_42007 VPSENVLGEVGSGFK 25 ACAT;ACAT1;MAT AAWEAGK 29 ACAT;ACAT1;MAT AAWEAGKFGNEVIPVTVTVK 29 ACAT;ACAT1;MAT AGIPKEEVK 29 ACAT;ACAT1;MAT AGIPKEEVKEAYMGNVLQGGEGQAPTR 29 ACAT;ACAT1;MAT DGLTDVYNK 29 ACAT;ACAT1;MAT EAYMGNVLQGGEGQAPTR 29 ACAT;ACAT1;MAT EEVKEAYMGNVLQGGEGQAPTR 29 ACAT;ACAT1;MAT EVVIVSATR 29 ACAT;ACAT1;MAT FGNEVIPVTVTVK 29 ACAT;ACAT1;MAT GQPDVVVKEDEEYK 29 ACAT;ACAT1;MAT GQPDVVVKEDEEYKR 29 ACAT;ACAT1;MAT GSTPYGGVK 29 ACAT;ACAT1;MAT GSTPYGGVKLEDLIVK 29 ACAT;ACAT1;MAT GSTPYGGVKLEDLIVKDGLTDVYNK 29 ACAT;ACAT1;MAT IHMGSCAENTAK 29 ACAT;ACAT1;MAT IVAFADAAVEPIDFPIAPVYAASMVLK 29 ACAT;ACAT1;MAT LEDLIVK 29 ACAT;ACAT1;MAT LEDLIVKDGLTDVYNK 29 ACAT;ACAT1;MAT LGSIAIQGAIEK 29 ACAT;ACAT1;MAT LNVTPLAR 29 ACAT;ACAT1;MAT MLEIDPQK 29 ACAT;ACAT1;MAT NEQDAYAINSYTR 29 ACAT;ACAT1;MAT QAVLGAGLPISTPCTTINK 29 ACAT;ACAT1;MAT RLNVTPLAR 29 ACAT;ACAT1;MAT SKAAWEAGK 29 ACAT;ACAT1;MAT TPIGSFLGSLSLLPATK 29 ACAT;ACAT1;MAT VCASGMK 29 ACAT;ACAT1;MAT VDFSKVPK 29 ACAT2;ACTL ELGLNPEK 2 ACAT2;ACTL ILVTLLHTLER 2 ACE;DCP;DCP1;hCG_41821 AALPAQELEEYNK 22 ACE;DCP;DCP1;hCG_41821 AILQFYPK 22 ACE;DCP;DCP1;hCG_41821 DLPVALR 22 ACE;DCP;DCP1;hCG_41821 ENYNQEWWSLR 22 ACE;DCP;DCP1;hCG_41821 FHIPSSVPYIR 22 ACE;DCP;DCP1;hCG_41821 FVEEYDR 22 ACE;DCP;DCP1;hCG_41821 HSHGPQFGSEVELR 22 ACE;DCP;DCP1;hCG_41821 KVQDLER 22 ACE;DCP;DCP1;hCG_41821 KYEDLLWAWEGWRDK 22 ACE;DCP;DCP1;hCG_41821 LATAMK 22 ACE;DCP;DCP1;hCG_41821 LFQELQPLYLNLHAYVR 22 ACE;DCP;DCP1;hCG_41821 LGWPQYNWTPNSAR 22 ACE;DCP;DCP1;hCG_41821 PLLDWLR 22 ACE;DCP;DCP1;hCG_41821 SMLEKPTDGR 22 ACE;DCP;DCP1;hCG_41821 SMYETPSLEQDLER 22 ACE;DCP;DCP1;hCG_41821 TENELHGEK 22 ACE;DCP;DCP1;hCG_41821 TQGDFDPGAK 22 ACE;DCP;DCP1;hCG_41821 VFDGSITK 22 ACE;DCP;DCP1;hCG_41821 VFDGSITKENYNQEWWSLR 22 ACE;DCP;DCP1;hCG_41821 VSFLGLDLDAQQAR 22 ACE;DCP;DCP1;hCG_41821 YNFDWWYLR 22 ACE;DCP;DCP1;hCG_41821 YVELINQAAR 22 ACE2;UNQ868/PRO1885;hCG_15744 LWAWESWR 1 ACLY variant protein;ACLY ADEVAPAKK 24 ACLY variant protein;ACLY AFDSGIIPMEFVNK 24 ACLY variant protein;ACLY AGKDLVSSLTSGLLTIGDR 24 ACLY variant protein;ACLY AISEQTGKELLYK 24 ACLY variant protein;ACLY AIVWGMQTR 24 ACLY variant protein;ACLY DLVSSLTSGLLTIGDR 24 ACLY variant protein;ACLY DYQGPLKEHEVTIFVR 24 ACLY
Recommended publications
  • Identification of Key Pathways and Genes in Endometrial Cancer Using Bioinformatics Analyses
    ONCOLOGY LETTERS 17: 897-906, 2019 Identification of key pathways and genes in endometrial cancer using bioinformatics analyses YAN LIU, TENG HUA, SHUQI CHI and HONGBO WANG Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China Received March 16, 2018; Accepted October 12, 2018 DOI: 10.3892/ol.2018.9667 Abstract. Endometrial cancer (EC) is one of the most Introduction common gynecological cancer types worldwide. However, to the best of our knowledge, its underlying mechanisms Endometrial carcinoma (EC) is one of the most common remain unknown. The current study downloaded three mRNA gynecological cancer types, with increasing global incidence and microRNA (miRNA) datasets of EC and normal tissue in recent years (1). A total of 60,050 cases of EC and 10,470 samples, GSE17025, GSE63678 and GSE35794, from the EC-associated cases of mortality were reported in the USA in Gene Expression Omnibus to identify differentially expressed 2016 (1), which was markedly higher than the 2012 statistics genes (DEGs) and miRNAs (DEMs) in EC tumor tissues. of 47,130 cases and 8,010 mortalities (2). Although numerous The DEGs and DEMs were then validated using data from studies have been conducted to investigate the mechanisms of The Cancer Genome Atlas and subjected to gene ontology endometrial tumorigenesis and development, to the best of our and Kyoto Encyclopedia of Genes and Genomes pathway knowledge, the exact etiology remains unknown. Understanding analysis. STRING and Cytoscape were used to construct a the potential molecular mechanisms underlying EC initiation protein-protein interaction network and the prognostic effects and progression is of great clinical significance.
    [Show full text]
  • Table S1 the Four Gene Sets Derived from Gene Expression Profiles of Escs and Differentiated Cells
    Table S1 The four gene sets derived from gene expression profiles of ESCs and differentiated cells Uniform High Uniform Low ES Up ES Down EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol EntrezID GeneSymbol 269261 Rpl12 11354 Abpa 68239 Krt42 15132 Hbb-bh1 67891 Rpl4 11537 Cfd 26380 Esrrb 15126 Hba-x 55949 Eef1b2 11698 Ambn 73703 Dppa2 15111 Hand2 18148 Npm1 11730 Ang3 67374 Jam2 65255 Asb4 67427 Rps20 11731 Ang2 22702 Zfp42 17292 Mesp1 15481 Hspa8 11807 Apoa2 58865 Tdh 19737 Rgs5 100041686 LOC100041686 11814 Apoc3 26388 Ifi202b 225518 Prdm6 11983 Atpif1 11945 Atp4b 11614 Nr0b1 20378 Frzb 19241 Tmsb4x 12007 Azgp1 76815 Calcoco2 12767 Cxcr4 20116 Rps8 12044 Bcl2a1a 219132 D14Ertd668e 103889 Hoxb2 20103 Rps5 12047 Bcl2a1d 381411 Gm1967 17701 Msx1 14694 Gnb2l1 12049 Bcl2l10 20899 Stra8 23796 Aplnr 19941 Rpl26 12096 Bglap1 78625 1700061G19Rik 12627 Cfc1 12070 Ngfrap1 12097 Bglap2 21816 Tgm1 12622 Cer1 19989 Rpl7 12267 C3ar1 67405 Nts 21385 Tbx2 19896 Rpl10a 12279 C9 435337 EG435337 56720 Tdo2 20044 Rps14 12391 Cav3 545913 Zscan4d 16869 Lhx1 19175 Psmb6 12409 Cbr2 244448 Triml1 22253 Unc5c 22627 Ywhae 12477 Ctla4 69134 2200001I15Rik 14174 Fgf3 19951 Rpl32 12523 Cd84 66065 Hsd17b14 16542 Kdr 66152 1110020P15Rik 12524 Cd86 81879 Tcfcp2l1 15122 Hba-a1 66489 Rpl35 12640 Cga 17907 Mylpf 15414 Hoxb6 15519 Hsp90aa1 12642 Ch25h 26424 Nr5a2 210530 Leprel1 66483 Rpl36al 12655 Chi3l3 83560 Tex14 12338 Capn6 27370 Rps26 12796 Camp 17450 Morc1 20671 Sox17 66576 Uqcrh 12869 Cox8b 79455 Pdcl2 20613 Snai1 22154 Tubb5 12959 Cryba4 231821 Centa1 17897
    [Show full text]
  • Table 2. Significant
    Table 2. Significant (Q < 0.05 and |d | > 0.5) transcripts from the meta-analysis Gene Chr Mb Gene Name Affy ProbeSet cDNA_IDs d HAP/LAP d HAP/LAP d d IS Average d Ztest P values Q-value Symbol ID (study #5) 1 2 STS B2m 2 122 beta-2 microglobulin 1452428_a_at AI848245 1.75334941 4 3.2 4 3.2316485 1.07398E-09 5.69E-08 Man2b1 8 84.4 mannosidase 2, alpha B1 1416340_a_at H4049B01 3.75722111 3.87309653 2.1 1.6 2.84852656 5.32443E-07 1.58E-05 1110032A03Rik 9 50.9 RIKEN cDNA 1110032A03 gene 1417211_a_at H4035E05 4 1.66015788 4 1.7 2.82772795 2.94266E-05 0.000527 NA 9 48.5 --- 1456111_at 3.43701477 1.85785922 4 2 2.8237185 9.97969E-08 3.48E-06 Scn4b 9 45.3 Sodium channel, type IV, beta 1434008_at AI844796 3.79536664 1.63774235 3.3 2.3 2.75319499 1.48057E-08 6.21E-07 polypeptide Gadd45gip1 8 84.1 RIKEN cDNA 2310040G17 gene 1417619_at 4 3.38875643 1.4 2 2.69163229 8.84279E-06 0.0001904 BC056474 15 12.1 Mus musculus cDNA clone 1424117_at H3030A06 3.95752801 2.42838452 1.9 2.2 2.62132809 1.3344E-08 5.66E-07 MGC:67360 IMAGE:6823629, complete cds NA 4 153 guanine nucleotide binding protein, 1454696_at -3.46081884 -4 -1.3 -1.6 -2.6026947 8.58458E-05 0.0012617 beta 1 Gnb1 4 153 guanine nucleotide binding protein, 1417432_a_at H3094D02 -3.13334396 -4 -1.6 -1.7 -2.5946297 1.04542E-05 0.0002202 beta 1 Gadd45gip1 8 84.1 RAD23a homolog (S.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Functional Parsing of Driver Mutations in the Colorectal Cancer Genome Reveals Numerous Suppressors of Anchorage-Independent
    Supplementary information Functional parsing of driver mutations in the colorectal cancer genome reveals numerous suppressors of anchorage-independent growth Ugur Eskiocak1, Sang Bum Kim1, Peter Ly1, Andres I. Roig1, Sebastian Biglione1, Kakajan Komurov2, Crystal Cornelius1, Woodring E. Wright1, Michael A. White1, and Jerry W. Shay1. 1Department of Cell Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9039. 2Department of Systems Biology, University of Texas M.D. Anderson Cancer Center, Houston, TX 77054. Supplementary Figure S1. K-rasV12 expressing cells are resistant to p53 induced apoptosis. Whole-cell extracts from immortalized K-rasV12 or p53 down regulated HCECs were immunoblotted with p53 and its down-stream effectors after 10 Gy gamma-radiation. ! Supplementary Figure S2. Quantitative validation of selected shRNAs for their ability to enhance soft-agar growth of immortalized shTP53 expressing HCECs. Each bar represents 8 data points (quadruplicates from two separate experiments). Arrows denote shRNAs that failed to enhance anchorage-independent growth in a statistically significant manner. Enhancement for all other shRNAs were significant (two tailed Studentʼs t-test, compared to none, mean ± s.e.m., P<0.05)." ! Supplementary Figure S3. Ability of shRNAs to knockdown expression was demonstrated by A, immunoblotting for K-ras or B-E, Quantitative RT-PCR for ERICH1, PTPRU, SLC22A15 and SLC44A4 48 hours after transfection into 293FT cells. Two out of 23 tested shRNAs did not provide any knockdown. " ! Supplementary Figure S4. shRNAs against A, PTEN and B, NF1 do not enhance soft agar growth in HCECs without oncogenic manipulations (Student!s t-test, compared to none, mean ± s.e.m., ns= non-significant).
    [Show full text]
  • The Ubiquitination Enzymes of Leishmania Mexicana
    The ubiquitination enzymes of Leishmania mexicana Rebecca Jayne Burge Doctor of Philosophy University of York Biology October 2020 Abstract Post-translational modifications such as ubiquitination are important for orchestrating the cellular transformations that occur as the Leishmania parasite differentiates between its main morphological forms, the promastigote and amastigote. Although 20 deubiquitinating enzymes (DUBs) have been partially characterised in Leishmania mexicana, little is known about the role of E1 ubiquitin-activating (E1), E2 ubiquitin- conjugating (E2) and E3 ubiquitin ligase (E3) enzymes in this parasite. Using bioinformatic methods, 2 E1, 13 E2 and 79 E3 genes were identified in the L. mexicana genome. Subsequently, bar-seq analysis of 23 E1, E2 and HECT/RBR E3 null mutants generated in promastigotes using CRISPR-Cas9 revealed that the E2s UBC1/CDC34, UBC2 and UEV1 and the HECT E3 ligase HECT2 are required for successful promastigote to amastigote differentiation and UBA1b, UBC9, UBC14, HECT7 and HECT11 are required for normal proliferation during mouse infection. Null mutants could not be generated for the E1 UBA1a or the E2s UBC3, UBC7, UBC12 and UBC13, suggesting these genes are essential in promastigotes. X-ray crystal structure analysis of UBC2 and UEV1, orthologues of human UBE2N and UBE2V1/UBE2V2 respectively, revealed a heterodimer with a highly conserved structure and interface. Furthermore, recombinant L. mexicana UBA1a was found to load ubiquitin onto UBC2, allowing UBC2- UEV1 to form K63-linked di-ubiquitin chains in vitro. UBC2 was also shown to cooperate with human E3s RNF8 and BIRC2 in vitro to form non-K63-linked polyubiquitin chains, but association of UBC2 with UEV1 inhibits this ability.
    [Show full text]
  • Supplementary Figures 1-14 and Supplementary References
    SUPPORTING INFORMATION Spatial Cross-Talk Between Oxidative Stress and DNA Replication in Human Fibroblasts Marko Radulovic,1,2 Noor O Baqader,1 Kai Stoeber,3† and Jasminka Godovac-Zimmermann1* 1Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK. 2Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia 3Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, UK †Present Address: Shionogi Europe, 33 Kingsway, Holborn, London WC2B 6UF, UK TABLE OF CONTENTS 1. Supplementary Figures 1-14 and Supplementary References. Figure S-1. Network and joint spatial razor plot for 18 enzymes of glycolysis and the pentose phosphate shunt. Figure S-2. Correlation of SILAC ratios between OXS and OAC for proteins assigned to the SAME class. Figure S-3. Overlap matrix (r = 1) for groups of CORUM complexes containing 19 proteins of the 49-set. Figure S-4. Joint spatial razor plots for the Nop56p complex and FIB-associated complex involved in ribosome biogenesis. Figure S-5. Analysis of the response of emerin nuclear envelope complexes to OXS and OAC. Figure S-6. Joint spatial razor plots for the CCT protein folding complex, ATP synthase and V-Type ATPase. Figure S-7. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated by GO to nucleocytoplasmic transport (GO:0006913). Figure S-8. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated to endocytosis (GO:0006897). Figure S-9. Joint spatial razor plots for 401-set proteins annotated by GO to small GTPase mediated signal transduction (GO:0007264) and/or GTPase activity (GO:0003924).
    [Show full text]
  • Serum Albumin OS=Homo Sapiens
    Protein Name Cluster of Glial fibrillary acidic protein OS=Homo sapiens GN=GFAP PE=1 SV=1 (P14136) Serum albumin OS=Homo sapiens GN=ALB PE=1 SV=2 Cluster of Isoform 3 of Plectin OS=Homo sapiens GN=PLEC (Q15149-3) Cluster of Hemoglobin subunit beta OS=Homo sapiens GN=HBB PE=1 SV=2 (P68871) Vimentin OS=Homo sapiens GN=VIM PE=1 SV=4 Cluster of Tubulin beta-3 chain OS=Homo sapiens GN=TUBB3 PE=1 SV=2 (Q13509) Cluster of Actin, cytoplasmic 1 OS=Homo sapiens GN=ACTB PE=1 SV=1 (P60709) Cluster of Tubulin alpha-1B chain OS=Homo sapiens GN=TUBA1B PE=1 SV=1 (P68363) Cluster of Isoform 2 of Spectrin alpha chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTAN1 (Q13813-2) Hemoglobin subunit alpha OS=Homo sapiens GN=HBA1 PE=1 SV=2 Cluster of Spectrin beta chain, non-erythrocytic 1 OS=Homo sapiens GN=SPTBN1 PE=1 SV=2 (Q01082) Cluster of Pyruvate kinase isozymes M1/M2 OS=Homo sapiens GN=PKM PE=1 SV=4 (P14618) Glyceraldehyde-3-phosphate dehydrogenase OS=Homo sapiens GN=GAPDH PE=1 SV=3 Clathrin heavy chain 1 OS=Homo sapiens GN=CLTC PE=1 SV=5 Filamin-A OS=Homo sapiens GN=FLNA PE=1 SV=4 Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens GN=DYNC1H1 PE=1 SV=5 Cluster of ATPase, Na+/K+ transporting, alpha 2 (+) polypeptide OS=Homo sapiens GN=ATP1A2 PE=3 SV=1 (B1AKY9) Fibrinogen beta chain OS=Homo sapiens GN=FGB PE=1 SV=2 Fibrinogen alpha chain OS=Homo sapiens GN=FGA PE=1 SV=2 Dihydropyrimidinase-related protein 2 OS=Homo sapiens GN=DPYSL2 PE=1 SV=1 Cluster of Alpha-actinin-1 OS=Homo sapiens GN=ACTN1 PE=1 SV=2 (P12814) 60 kDa heat shock protein, mitochondrial OS=Homo
    [Show full text]
  • Datasheet: VPA00586KT Product Details
    Datasheet: VPA00586KT Description: EIF3E ANTIBODY WITH CONTROL LYSATE Specificity: EIF3E Format: Purified Product Type: PrecisionAb™ Polyclonal Isotype: Polyclonal IgG Quantity: 2 Westerns Product Details Applications This product has been reported to work in the following applications. This information is derived from testing within our laboratories, peer-reviewed publications or personal communications from the originators. Please refer to references indicated for further information. For general protocol recommendations, please visit www.bio-rad-antibodies.com/protocols. Yes No Not Determined Suggested Dilution Western Blotting 1/1000 PrecisionAb antibodies have been extensively validated for the western blot application. The antibody has been validated at the suggested dilution. Where this product has not been tested for use in a particular technique this does not necessarily exclude its use in such procedures. Further optimization may be required dependant on sample type. Target Species Human Species Cross Reacts with: Rat Reactivity N.B. Antibody reactivity and working conditions may vary between species. Product Form Purified IgG - liquid Preparation 20μl Rabbit polyclonal antibody purified by affinity chromatography Buffer Solution Phosphate buffered saline Preservative 0.09% Sodium Azide (NaN3) Stabilisers 2% Sucrose Immunogen Synthetic peptide directed towards the middle region of human EIF3E External Database Links UniProt: P60228 Related reagents Entrez Gene: 3646 EIF3E Related reagents Synonyms EIF3S6, INT6 Page 1 of 2 Specificity Rabbit anti Human EIF3E antibody recognizes the eukaryotic translation initiation factor 3 subunit E, also known as eIF-3 p48, eukaryotic translation initiation factor 3 subunit 6, mammary tumor- associated protein INT6 or viral integration site protein INT-6 homolog. Rabbit anti Human EIF3E antibody detects a band of 48 kDa.
    [Show full text]
  • The UBE2L3 Ubiquitin Conjugating Enzyme: Interplay with Inflammasome Signalling and Bacterial Ubiquitin Ligases
    The UBE2L3 ubiquitin conjugating enzyme: interplay with inflammasome signalling and bacterial ubiquitin ligases Matthew James George Eldridge 2018 Imperial College London Department of Medicine Submitted to Imperial College London for the degree of Doctor of Philosophy 1 Abstract Inflammasome-controlled immune responses such as IL-1β release and pyroptosis play key roles in antimicrobial immunity and are heavily implicated in multiple hereditary autoimmune diseases. Despite extensive knowledge of the mechanisms regulating inflammasome activation, many downstream responses remain poorly understood or uncharacterised. The cysteine protease caspase-1 is the executor of inflammasome responses, therefore identifying and characterising its substrates is vital for better understanding of inflammasome-mediated effector mechanisms. Using unbiased proteomics, the Shenoy grouped identified the ubiquitin conjugating enzyme UBE2L3 as a target of caspase-1. In this work, I have confirmed UBE2L3 as an indirect target of caspase-1 and characterised its role in inflammasomes-mediated immune responses. I show that UBE2L3 functions in the negative regulation of cellular pro-IL-1 via the ubiquitin- proteasome system. Following inflammatory stimuli, UBE2L3 assists in the ubiquitylation and degradation of newly produced pro-IL-1. However, in response to caspase-1 activation, UBE2L3 is itself targeted for degradation by the proteasome in a caspase-1-dependent manner, thereby liberating an additional pool of IL-1 which may be processed and released. UBE2L3 therefore acts a molecular rheostat, conferring caspase-1 an additional level of control over this potent cytokine, ensuring that it is efficiently secreted only in appropriate circumstances. These findings on UBE2L3 have implications for IL-1- driven pathology in hereditary fever syndromes, and autoinflammatory conditions associated with UBE2L3 polymorphisms.
    [Show full text]
  • Supporting Information
    Supporting Information Pouryahya et al. SI Text Table S1 presents genes with the highest absolute value of Ricci curvature. We expect these genes to have significant contribution to the network’s robustness. Notably, the top two genes are TP53 (tumor protein 53) and YWHAG gene. TP53, also known as p53, it is a well known tumor suppressor gene known as the "guardian of the genome“ given the essential role it plays in genetic stability and prevention of cancer formation (1, 2). Mutations in this gene play a role in all stages of malignant transformation including tumor initiation, promotion, aggressiveness, and metastasis (3). Mutations of this gene are present in more than 50% of human cancers, making it the most common genetic event in human cancer (4, 5). Namely, p53 mutations play roles in leukemia, breast cancer, CNS cancers, and lung cancers, among many others (6–9). The YWHAG gene encodes the 14-3-3 protein gamma, a member of the 14-3-3 family proteins which are involved in many biological processes including signal transduction regulation, cell cycle pro- gression, apoptosis, cell adhesion and migration (10, 11). Notably, increased expression of 14-3-3 family proteins, including protein gamma, have been observed in a number of human cancers including lung and colorectal cancers, among others, suggesting a potential role as tumor oncogenes (12, 13). Furthermore, there is evidence that loss Fig. S1. The histogram of scalar Ricci curvature of 8240 genes. Most of the genes have negative scalar Ricci curvature (75%). TP53 and YWHAG have notably low of p53 function may result in upregulation of 14-3-3γ in lung cancer Ricci curvatures.
    [Show full text]
  • Apoptotic Genes As Potential Markers of Metastatic Phenotype in Human Osteosarcoma Cell Lines
    17-31 10/12/07 14:53 Page 17 INTERNATIONAL JOURNAL OF ONCOLOGY 32: 17-31, 2008 17 Apoptotic genes as potential markers of metastatic phenotype in human osteosarcoma cell lines CINZIA ZUCCHINI1, ANNA ROCCHI2, MARIA CRISTINA MANARA2, PAOLA DE SANCTIS1, CRISTINA CAPANNI3, MICHELE BIANCHINI1, PAOLO CARINCI1, KATIA SCOTLANDI2 and LUISA VALVASSORI1 1Dipartimento di Istologia, Embriologia e Biologia Applicata, Università di Bologna, Via Belmeloro 8, 40126 Bologna; 2Laboratorio di Ricerca Oncologica, Istituti Ortopedici Rizzoli; 3IGM-CNR, Unit of Bologna, c/o Istituti Ortopedici Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy Received May 29, 2007; Accepted July 19, 2007 Abstract. Metastasis is the most frequent cause of death among malignant primitive bone tumor, usually developing in children patients with osteosarcoma. We have previously demonstrated and adolescents, with a high tendency to metastasize (2). in independent experiments that the forced expression of Metastases in osteosarcoma patients spread through peripheral L/B/K ALP and CD99 in U-2 OS osteosarcoma cell lines blood very early and colonize primarily the lung, and later markedly reduces the metastatic ability of these cancer cells. other skeleton districts (3). Since disseminated hidden micro- This behavior makes these cell lines a useful model to assess metastases are present in 80-90% of OS patients at the time the intersection of multiple and independent gene expression of diagnosis, the identification of markers of invasiveness signatures concerning the biological problem of dissemination. and metastasis forms a target of paramount importance in With the aim to characterize a common transcriptional profile planning the treatment of osteosarcoma lesions and enhancing reflecting the essential features of metastatic behavior, we the prognosis.
    [Show full text]