RECENT ADVANCES in BIOTECHNOLOGY & NANOBIOTECHNOLOGY (Int-BIONANO-2016) February 10-12, 2016

Total Page:16

File Type:pdf, Size:1020Kb

RECENT ADVANCES in BIOTECHNOLOGY & NANOBIOTECHNOLOGY (Int-BIONANO-2016) February 10-12, 2016 INTERNATIONAL CONFERENCE ON RECENT ADVANCES IN BIOTECHNOLOGY & NANOBIOTECHNOLOGY (Int-BIONANO-2016) February 10-12, 2016 CONFERENCE PROCEEDINGS (ISSN: 0975-6299) AMITY INSTITUTE OF BIOTECHNOLOGY AMITY UNIVERSITY MADHYA PRADESH, GWALIOR 1 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) ORGANISING COMMITTEE CHIEF PATRON Dr. Aseem Chauhan Additional President, RBEF (An Umbrella foundation of all Amity Institutes) Chancellor, Amity University Rajasthan, Jaipur PATRON Prof.(Dr.) Sunil Saran Chancellor, Amity University Madhya Pradesh Gwalior CHAIRPERSON Lt. Gen. V. K. Sharma AVSM (Retd.), Vice Chancellor, Amity University Madhya Pradesh, Gwalior ORGANISING SECRETARY Prof.(Dr.) Rajesh Singh Tomar Director, Amity Institute of Biotechnology Dean (Academics), Amity University Madhya Pradesh, Gwalior JOINT SECRETARIES Dr. Raghvendra Kumar Mishra Coordinator & Assistant Professor-AIB Amity University Madhya Pradesh, Gwalior Dr. Vikas Shrivastava Assistant Professor-AIB Amity University Madhya Pradesh, Gwalior Dr. Shuchi Kaushik Assistant Professor-AIB Amity University Madhya Pradesh, Gwalior Dr. Anurag Jyoti Assistant Professor-AIB Amity University Madhya Pradesh, Gwalior 2 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) INTERNATIONAL ADVISORY COMMITTEE Prof.(Dr.) Sushil Kumar INSA, Honorary Scientist, India Dr. W. Selvamurthy Director General - Amity Directorate of Science & Innovation, Amity University, NOIDA, India Prof.(Dr.)P.B.S. Bhadoria Agricultural & Food Engineering Chairman, Commercial Establishment and Licensing Committee IIT Kharagpur, India Prof.(Dr.) Anastasia Kanellou Technical Educational Institute, Athens, Greece Dr. Wolfgang Fritzsche Head, Department of Nanobiophotonics Leibniz Institute of Photonic Technology, Jena, Germany Dr. Gitanjali Yadav Scientist, NIPGR, New Delhi 3 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) Editorial Board of Proceedings of Int-BIONANO-2016 Editor-in-Chief Prof. (Dr.) Rajesh Singh Tomar Editors Dr. Raghvendra Kumar Mishra Dr. Vikas Shrivastava Dr. Shuchi Kaushik Dr. Anurag Jyoti 4 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) From the Desk of Editor-in-Chief On behalf of the Editorial board, it is my great pleasure to herald the release of a special issue of the journal- International Journal of Pharma and Bio Sciences (SCOPUS Indexed, ISSN: 0975-6299). Recently we have successfully organised an International Conference on Recent Advances in Biotechnology and Nanobiotechnology (Int-BIONANO-2016) at Amity University Madhya Pradesh, Gwalior, India. Papers presented during the conference were selected for the full length publication as proceedings in the special issue of the journal. There are 22 papers in this special issue, which were selected from 150 abstracts. These papers have undergone a critical review process by the experts from various fields. The main advantage of conference is associated with the ready availability of information, the immediate possibility of opening a critical discussion and establishing networking between individuals working in the same areas. The applications of biotechnology have tremendous impacts on human welfare and society. The areas including Plant biotechnology, Bioremediation, Tissue culture, Stem cell therapy, Microbial Technology, Omics Technology, Pharmaceutical Technology etc. have a wide variety of applications. Biotechnology and Nanotechnology are two of the 21st century’s most promising technologies. Biotechnology deals with metabolic and other physiological processes of biological subjects including microorganisms. Nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometers. Association of these two technologies, i.e. Nanobiotechnology can play a vital role in developing and implementing many useful tools in the study of life. The multidisciplinary field of nanobiotechnology is bringing the science of the almost incomprehensibly small device closer and closer to reality. The effects of these developments will at some point be so vast that they will probably affect virtually all fields of science and technology. Nanobiotechnology offers a wide range 5 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) of uses in medicine and surgery. Innovations such as drug delivery systems are only the beginnings of the start of something new. Many diseases that do not have cures today may be cured by nanotechnology in the future. With the above discussion in mind, the papers are broadly divided into those describing applications of biotechnology and nanotechnology in biological sense. This Special Issue presents range of applications for biotechnology and nanobiotechnology for human health and environment. It is hoped that the reader will gain, from a reading of these papers a better appreciation and recent advances in the area. Many individuals have contributed a great deal of time and energy towards the success of the Int- BIONANO-2016 and this special issue. We would like to thank the authors of all submitted papers, the members of the Organising Committee, as well as the International Advisory Committee for their many hours of hard work. We would like to extend our sincerely thanks to the journal- International Journal of Pharma and Bio Sciences for covering and publishing our conferences proceedings in the form of a special issue. Prof. (Dr.) Rajesh Singh Tomar Director, Amity Institute of Biotechnology & Dean (Academics), Amity University Madhya Pradesh, Gwalior 6 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) Index S.No. Title Name of Author Page No. 1 Synthesis, characterization of Mg (OH)2 Alfiya Bohra, 9-21 nanoparticles and its effect on photosynthetic Dheera Sanadhya, efficiency in two cultivars of Brassica juncea Akash Shukla germinated under cadmium toxicity 2 Role of resveratrol in hyperglycemia induced enos Tarang Gaur 22-27 uncoupling: a review 3 Role of free radicals in dna damage with special Neha Sharma Nalini 28-32 reference to different stages of breast cancer Shrivastava, Meenu Rai patients 4 Effect of trichoderma fused silver nano-particles Bina Pani Gupta, Veena 33-41 on fungal phyto-pathogens Raina, Rashmi Jain, Abhishek Mathur 5 Combined effect of stress and indecorous lipid Himani Chaturvedi, 42-50 profiles on the cytokine expression in type 2 Mayuri Khare, Rahi diabetes mellitus Sharma, Vinod Singh 6 Haematological alterations due to Crataeva Shivkumar Patel, Vinita 51-62 nurvala leaf extract on albino rats Ahirwar, Sapna Rani Kusum Singh 7 Immune and oxidative stress variation in the Vinod Singh, Mayuri 63-76 patients of hypothyroidism on the basis of Khare, Poonam Singh hormonal changes 8 The future of biomass energy in Shahdol division Balram Prajapati, Smita 77-82 of Madhya Pradesh, India Verma, Mamta Prajapati 9 Molecular characterization of Ganoderma lucidum Vinod Singh, 83-90 and analysis of few secondary metabolites use as Shailendra Singh antimicrobial activity Parihar, Govind Gupta, Mayuri Khare 10 Intellectual property rights for medicinal and M.K. Tripathi, 91-100 aromatic plants in india: an overview S.S. Bimal, A.K.Singh, Ashok Ahuja 11 Effect of phenolic compounds on the metabolic Vikash Gaur, 101-115 profile of Labeo rohita Veena Raina, Rashmi Jain, Abhishek Mathur 12 Rhizobacteria: a promising tool for drought Priya Verma, 116-125 tolerance in crop plants Raghvendra Saxena, Rajesh Singh Tomar 13 Epitope-based vaccine target screening Shuchi Kaushik, 126-130 7 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) against Human Immunodeficiency Virus Rajesh Singh Tomar 14 Growth inhibition of enterotoxigenic Escherichia Mohit Agarwal, 131-139 coli by citrate capped copper nanoparticles Anurag Jyoti, Rajesh Singh Tomar 15 Investigation of polarization and depolarization Pankaj Kumar Mishra 140-152 current measurements in pure and doped PVK nanocomposite 16 Chemical composition analysis and free radical Pooja Sharma, 153-183 scavenging activities of microwave extracted Rajesh Singh Tomar, essential oil from Allium sativum rhizomes Raghvendra Kumar Mishra 17 Phytomediated synthesis of silver nanoparticles Pallavi Singh Chauhan, 184-195 and evaluation of its antibacterial activity against Vikas Shrivastava, Bacillus subtilis and Staphylococcus aureus. Rajesh Singh Tomar 18 An advance mathematical model to detect thermal Manisha Jain 196-206 data of wounded tissues of human being 19 Role of p-glycoprotein and its inhibition in cancer Sharmistha Banerjee, 207-219 therapy: a review Shuchi Kaushik, Rajesh Singh Tomar 20 Genetic diversity of epiphytic pink pigmented Gagan Jyot Kaur, 220-229 facultative methylotrophs from leaf phyllosphere Manish Kumar, of crop plants Rajesh Singh Tomar 21 Growing of Staphylococcus aureus cells with soil Pratistha Dwivedi, 230-235 components enhances virulence in mice caused by Rajesh Singh Tomar soft tissue infections. 22 Antimicrobial efficacy of leaf extract of some Surendra Singh Parihar, 236-241 medicinal plants against Staphylococcus aureus Raj Narayangupta, Rajesh Singh Tomar 8 International Journal of Pharma & Bio Sciences Spl Ed. (Int-BIONANO-2016) Synthesis, characterization of Mg (OH)2 nanoparticles and its effect on photosynthetic efficiency in two cultivars of Brassica juncea germinated under cadmium toxicity ALFIYA BOHRA*, DHEERA SANADHYA, AKASH SHUKLA School of Life Sciences, Jaipur National University, Jaipur, Rajasthan,
Recommended publications
  • Analysis of Essential Oil from Leaves and Bulbs of Allium Atroviolaceum
    Brief Communication and Method report 2020;3(1):e8 Analysis of essential oil from leaves and Bulbs of Allium atroviolaceum a a b c* Parniyan Sebtosheikh , Mahnaz Qomi , Shima Ghadami , Faraz Mojab a. Faculty of Pharmaceutical Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. b. Faculty of Pharmacy, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran. c. School of Pharmacy and Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran. Article Info: Abstract: Received: September 2020 Introduction: Medicinal plants used in traditional medicine as prevention and treatment Accepted: September 2020 of disease and illness or use in foods, has a long history. Plants belonging to genera Published online: Allium have widely been acquired as food and medicine. In many countries, including September 2020 Iran, a variety of species of the genus Allium such as garlic, onions, leeks, shallots, etc use for food and medicinal uses. Methods and Results: The leaves and bulbs of Allium atroviolaceum, collected from * Corresponding Author: Borujerd (Lorestan Province, Iran) in May 2015 and their essential oils of were obtained Faraz Mojab Email: [email protected] by hydro-distillation. The oils were analyzed by gas chromatography coupled with mass spectrometry (GC/MS) and their chemical composition was identified. The major constituents of A. atroviolaceum leaves oil were dimethyl trisulfide (59.0%), ethyl linolenate (12.4%), phytol (11.4%) and in bulb oil were methyl methyl thiomethyl disulfide (61.3%), dimethyl trisulfide (15.1%) and methyl allyl disulfide (4.3%). The major constituents of both essential oils are sulfur compounds. Conclusion: The results of the present study can help to increase of our information about composition of an edible herb in Iran.
    [Show full text]
  • Appendix 1 – Protocol for Preventing Or Reversing Chronic Disease The
    Appendix 1 – Protocol for Preventing or Reversing Chronic Disease The first author has developed a protocol over the past decade for preventing or reversing chronic disease based on the following systemic medical principle: “at the present time, removal of cause is a necessary, but not necessarily sufficient, condition for restorative treatment to be effective”[1]. The protocol methodology refines the age-old principles of both reducing harm in addition to providing treatment, and allows better identification of factors that contribute to the disease process (so that they may be eliminated if possible). These contributing factors are expansive and may include a combination of Lifestyle choices (diet, exercise, smoking), iatrogenic and biotoxin exposures, environmental/occupational exposures, and psychosocial stressors. This strategy exploits the existing literature to identify patterns of biologic response using biomarkers from various modalities of diagnostic testing to capture a much broader list of potential contributing factors. Existing inflammatory bowel diseases (IBD) Biomarker Identification to Remove Contributing Factors and Implement Treatment The initial protocol steps are diagnostic. The main output of these diagnostics will be identification of the biomarker levels and symptoms that reflect abnormalities, and the directions of change required to eliminate these abnormalities. In the present study, hundreds of general and specific biomarkers and symptoms were identified from the core IBD literature. The highest frequency (based on numbers of record appearances) biomarkers and symptoms were extracted, and are listed in Table 1 (highest frequency items first, reading down each column before proceeding to the next column). They are not necessarily consensus biomarkers. They are biomarkers whose values were altered by a treatment or contributing factor, and reported in the core IBD literature.
    [Show full text]
  • Review Article New Insight Into Adiponectin Role in Obesity and Obesity-Related Diseases
    Hindawi Publishing Corporation BioMed Research International Volume 2014, Article ID 658913, 14 pages http://dx.doi.org/10.1155/2014/658913 Review Article New Insight into Adiponectin Role in Obesity and Obesity-Related Diseases Ersilia Nigro,1 Olga Scudiero,1,2 Maria Ludovica Monaco,1 Alessia Palmieri,1 Gennaro Mazzarella,3 Ciro Costagliola,4 Andrea Bianco,5 and Aurora Daniele1,6 1 CEINGE-Biotecnologie Avanzate Scarl, Via Salvatore 486, 80145 Napoli, Italy 2 Dipartimento di Medicina Molecolare e Biotecnologie Mediche, UniversitadegliStudidiNapoliFedericoII,` Via De Amicis 95, 80131 Napoli, Italy 3 Dipartimento di Scienze Cardio-Toraciche e Respiratorie, Seconda Universita` degli Studi di Napoli, Via Bianchi 1, 80131 Napoli, Italy 4 Cattedra di Malattie dell’Apparato Visivo, Dipartimento di Medicina e Scienze della Salute, UniversitadelMolise,` ViaDeSanctis1,86100Campobasso,Italy 5 Cattedra di Malattie dell’Apparato Respiratorio, Dipartimento di Medicina e Scienze della Salute, UniversitadelMolise,` ViaDeSanctis1,86100Campobasso,Italy 6 Dipartimento di Scienze e Tecnologie Ambientali Biologiche Farmaceutiche, Seconda UniversitadegliStudidiNapoli,` Via Vivaldi 42, 81100 Caserta, Italy Correspondence should be addressed to Aurora Daniele; [email protected] Received 2 April 2014; Accepted 12 June 2014; Published 7 July 2014 Academic Editor: Beverly Muhlhausler Copyright © 2014 Ersilia Nigro et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution,
    [Show full text]
  • Potential Herb–Drug Interactions in the Management of Age-Related Cognitive Dysfunction
    pharmaceutics Review Potential Herb–Drug Interactions in the Management of Age-Related Cognitive Dysfunction Maria D. Auxtero 1, Susana Chalante 1,Mário R. Abade 1 , Rui Jorge 1,2,3 and Ana I. Fernandes 1,* 1 CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; [email protected] (M.D.A.); [email protected] (S.C.); [email protected] (M.R.A.); [email protected] (R.J.) 2 Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal 3 CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal * Correspondence: [email protected]; Tel.: +35-12-1294-6823 Abstract: Late-life mild cognitive impairment and dementia represent a significant burden on health- care systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treat- ment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmaco- logical interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration.
    [Show full text]
  • Natural Product Standards (1)
    Natural Product Standards (1) Group Name Product Name CAS No Purity Storage Cat. No. PKG Size List Price ($) Soy Bean Daidzein 486-66-8 98% (HPLC) R NH010102 10 mg 58.00 NH010103 100 mg 344.00 Glycitein 40957-83-3 98% (HPLC) R NH010202 10 mg 156.00 NH010203 100 mg 1,130.00 Genistein 446-72-0 98% (HPLC) R NH010302 10 mg 58.00 NH010303 100 mg 219.00 Daidzin 552-66-9 98% (HPLC) R NH012102 10 mg 138.00 NH012103 100 mg 1,130.00 Glycitin 40246-10-4 98% (HPLC) R NH012202 10 mg 156.00 NH012203 100 mg 1,130.00 Genistin 529-59-9 98% (HPLC) R NH012302 10 mg 156.00 NH012303 100 mg 1,130.00 6" -O-Acetyldaidzin 71385-83-6 98% (HPLC) F NH013101 1 mg 173.00 6" -O-Acetylglycitin 134859-96-4 98% (HPLC) F NH013201 1 mg 173.00 6" -O-Acetylgenistin 73566-30-0 98% (HPLC) F NH013301 1 mg 173.00 6" -O-Malonyldaidzin 124590-31-4 98% (HPLC) F NH014101 1 mg 173.00 6" -O-Malonylglycitin 137705-39-6 98% (HPLC) F NH014201 1 mg 173.00 6" -O-Malonylgenistin 51011-05-3 98% (HPLC) F NH014301 1 mg 173.00 Isoflavone Aglycon Mixture B Total 95% (HPLC) RT NH015204 1 g 344.00 Isoflavone Glucoside Mixture A Total 95% (HPLC) RT NH016104 1 g 346.00 8-Hydroxydaidzein 75187-63-2 98% (HPLC) R NH017102 5 mg 415.00 8-Hydroxyglycitein 113762-90-6 98% (HPLC) R NH017202 5 mg 415.00 8-Hydroxygenistein 13539-27-0 98% (HPLC) R NH017302 5 mg 415.00 Green Tea (-) -Epicatechin 〔(-) -EC 〕 490-46-0 99% (HPLC) R NH020102 10 mg 92.00 NH020103 100 mg 507.00 (-) -Epigallocatechin 〔(-) -EGC 〕 970-74-1 99% (HPLC) R NH020202 10 mg 138.00 NH020203 100 mg 761.00 (-) -Epicatechin gallate 〔(-) -ECg 〕 1257-08-5
    [Show full text]
  • Metabolic Enzyme/Protease
    Inhibitors, Agonists, Screening Libraries www.MedChemExpress.com Metabolic Enzyme/Protease Metabolic pathways are enzyme-mediated biochemical reactions that lead to biosynthesis (anabolism) or breakdown (catabolism) of natural product small molecules within a cell or tissue. In each pathway, enzymes catalyze the conversion of substrates into structurally similar products. Metabolic processes typically transform small molecules, but also include macromolecular processes such as DNA repair and replication, and protein synthesis and degradation. Metabolism maintains the living state of the cells and the organism. Proteases are used throughout an organism for various metabolic processes. Proteases control a great variety of physiological processes that are critical for life, including the immune response, cell cycle, cell death, wound healing, food digestion, and protein and organelle recycling. On the basis of the type of the key amino acid in the active site of the protease and the mechanism of peptide bond cleavage, proteases can be classified into six groups: cysteine, serine, threonine, glutamic acid, aspartate proteases, as well as matrix metalloproteases. Proteases can not only activate proteins such as cytokines, or inactivate them such as numerous repair proteins during apoptosis, but also expose cryptic sites, such as occurs with β-secretase during amyloid precursor protein processing, shed various transmembrane proteins such as occurs with metalloproteases and cysteine proteases, or convert receptor agonists into antagonists and vice versa such as chemokine conversions carried out by metalloproteases, dipeptidyl peptidase IV and some cathepsins. In addition to the catalytic domains, a great number of proteases contain numerous additional domains or modules that substantially increase the complexity of their functions.
    [Show full text]
  • Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer
    International Journal of Molecular Sciences Review Association of Adipose Tissue and Adipokines with Development of Obesity-Induced Liver Cancer Yetirajam Rajesh 1 and Devanand Sarkar 2,* 1 Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; [email protected] 2 Massey Cancer Center, Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine (VIMM), Virginia Commonwealth University, Richmond, VA 23298, USA * Correspondence: [email protected]; Tel.: +1-804-827-2339 Abstract: Obesity is rapidly dispersing all around the world and is closely associated with a high risk of metabolic diseases such as insulin resistance, dyslipidemia, and nonalcoholic fatty liver disease (NAFLD), leading to carcinogenesis, especially hepatocellular carcinoma (HCC). It results from an imbalance between food intake and energy expenditure, leading to an excessive accumulation of adipose tissue (AT). Adipocytes play a substantial role in the tumor microenvironment through the secretion of several adipokines, affecting cancer progression, metastasis, and chemoresistance via diverse signaling pathways. AT is considered an endocrine organ owing to its ability to secrete adipokines, such as leptin, adiponectin, resistin, and a plethora of inflammatory cytokines, which modulate insulin sensitivity and trigger chronic low-grade inflammation in different organs. Even though the precise mechanisms are still unfolding, it is now established that the dysregulated secretion of adipokines by AT contributes to the development of obesity-related metabolic disorders. This review focuses on several obesity-associated adipokines and their impact on obesity-related Citation: Rajesh, Y.; Sarkar, D. metabolic diseases, subsequent metabolic complications, and progression to HCC, as well as their Association of Adipose Tissue and role as potential therapeutic targets.
    [Show full text]
  • WHO Monographs on Selected Medicinal Plants. Volume 3
    WHO monographs on WHO monographs WHO monographs on WHO published Volume 1 of the WHO monographs on selected medicinal plants, containing 28 monographs, in 1999, and Volume 2 including 30 monographs in 2002. This third volume contains selected an additional collection of 32 monographs describing the quality control and use of selected medicinal plants. medicinal Each monograph contains two parts, the first of which provides plants selected medicinal plants pharmacopoeial summaries for quality assurance purposes, including botanical features, identity tests, purity requirements, Volume 3 chemical assays and major chemical constituents. The second part, drawing on an extensive review of scientific research, describes the clinical applications of the plant material, with detailed pharmacological information and sections on contraindications, warnings, precautions, adverse reactions and dosage. Also included are two cumulative indexes to the three volumes. The WHO monographs on selected medicinal plants aim to provide scientific information on the safety, efficacy, and quality control of widely used medicinal plants; provide models to assist Member States in developing their own monographs or formularies for these and other herbal medicines; and facilitate information exchange among Member States. WHO monographs, however, are Volume 3 Volume not pharmacopoeial monographs, rather they are comprehensive scientific references for drug regulatory authorities, physicians, traditional health practitioners, pharmacists, manufacturers, research scientists
    [Show full text]
  • Adipose Tissue, Obesity and Adiponectin: Role in Endocrine Cancer Risk
    International Journal of Molecular Sciences Review Adipose Tissue, Obesity and Adiponectin: Role in Endocrine Cancer Risk Andrea Tumminia, Federica Vinciguerra, Miriam Parisi, Marco Graziano, Laura Sciacca , Roberto Baratta and Lucia Frittitta * Endocrinology, Department of Clinical and Experimental Medicine, University of Catania, Garibaldi Hospital, Via Palermo 636, 95122 Catania, Italy; [email protected] (A.T.); [email protected] (F.V.); [email protected] (M.P.); [email protected] (M.G.); [email protected] (L.S.); [email protected] (R.B.) * Correspondence: [email protected]; Tel.: +39-095-7598702 Received: 24 April 2019; Accepted: 10 June 2019; Published: 12 June 2019 Abstract: Adipose tissue has been recognized as a complex organ with endocrine and metabolic roles. The excess of fat mass, as occurs during overweight and obesity states, alters the regulation of adipose tissue, contributing to the development of obesity-related disorders. In this regard, many epidemiological studies shown an association between obesity and numerous types of malignancies, comprising those linked to the endocrine system (e.g., breast, endometrial, ovarian, thyroid and prostate cancers). Multiple factors may contribute to this phenomenon, such as hyperinsulinemia, dyslipidemia, oxidative stress, inflammation, abnormal adipokines secretion and metabolism. Among adipokines, growing interest has been placed in recent years on adiponectin (APN) and on its role in carcinogenesis. APN is secreted by adipose tissue and exerts both anti-inflammatory and anti-proliferative actions. It has been demonstrated that APN is drastically decreased in obese individuals and that it can play a crucial role in tumor growth. Although literature data on the impact of APN on carcinogenesis are sometimes conflicting, the most accredited hypothesis is that it has a protective action, preventing cancer development and progression.
    [Show full text]
  • Download This PDF File
    Cancer Biol Med 2016. doi: 10.28092/j.issn.2095-3941.2015.0092 REVIEW Evolving role of adiponectin in cancer-controversies and update Arnav Katira1, Peng H. Tan1, 2 1UCL Medical School, UCL Faculty of Medical Science, University College London, London WC1E 6BT, UK; 2Breast Unit, Whittington Health, London N19 5NF, UK ABSTRACT Adiponectin (APN), an adipokine produced by adipocytes, has been shown to have a critical role in the pathogenesis of obesity- associated malignancies. Through its receptor interactions, APN may exert its anti-carcinogenic effects including regulating cell survival, apoptosis and metastasis via a plethora of signalling pathways. Despite the strong evidence supporting this notion, some work may indicate otherwise. Our review addresses all controversies critically. On the whole, hypoadiponectinaemia is associated with increased risk of several malignancies and poor prognosis. In addition, various genetic polymorphisms may predispose individuals to increased risk of obesity-associated malignancies. We also provide an updated summary on therapeutic interventions to increase APN levels that are of key interest in this field. To date efforts to manipulate APN levels have been promising, but much work remains to be done. KEYWORDS Adiponectin; cancer; therapeutic target Introduction production harmony of these countering adipocytokines may represent the beauty of nature regulating oneself. Obesity is defined as a chronic and excessive growth of Dysregulation of this harmony may signify the early adipose tissue. It is a growing health problem worldwide and development of diseases such as carcinogenesis. has been described as a "global pandemic". Thus, obesity- Tempering this axis of disharmony may represent an associated diseases provide a substantial public health opportunity to correct disease process.
    [Show full text]
  • Toxicology Reference Laboratory
    TOXICOLOGY REFERENCE LABORATORY Laboratory User Guide ROOM 708, BLOCK P PRINCESS MARGARET HOSPITAL 2-10 Princess Margaret Hospital Road Lai Chi Kok Tel: 2990 1941 Fax: 2990 1942 http://trl.home Version 6.1 Effective date: 1/July/2014 Contents Contents ..................................................................................................................................................... 2 Introduction ............................................................................................................................................... 4 Staff ............................................................................................................................................................ 5 Honorary Medical Staff .......................................................................................................................... 5 Scientific Staff ........................................................................................................................................ 5 Technical Staff ........................................................................................................................................ 5 Supportive Staff ...................................................................................................................................... 6 How to Make Laboratory Request .......................................................................................................... 7 Instruction for Referring Clinician ........................................................................................................
    [Show full text]
  • Karyotype Analysis in Allium Roseum L. (Alliaceae) Using Fluorescent in Situ Hybridization of Rdna Sites and Conventional Stainings
    Turkish Journal of Botany Turk J Bot (2015) 39: 796-807 http://journals.tubitak.gov.tr/botany/ © TÜBİTAK Research Article doi:10.3906/bot-1408-50 Karyotype analysis in Allium roseum L. (Alliaceae) using fluorescent in situ hybridization of rDNA sites and conventional stainings 1,2, 3 3 2 Arbi GUETAT *, Marcela ROSATO , Josep A. ROSSELLÓ , Mohamed BOUSSAID 1 Department of Biology, College of Sciences, Northern Border University, Arar, Saudi Arabia 2 Laboratory of Plant Biotechnology, National Institute of Applied Sciences and Technology, University of Carthage, Tunis, Tunisia 3 Botanical Garden, University of Valencia, Valencia, Spain Received: 27.08.2014 Accepted/Published Online: 02.04.2015 Printed: 30.09.2015 Abstract: In North Africa, Allium roseum L. has been treated as a polymorphic species comprising 12 different taxa. More than 80 individuals in the Allium roseum complex were sampled from 20 populations at different localities in Tunisia and investigated karyologically. Basic chromosome number was confirmed as x = 8. Three cytotypes, diploid (2n = 2x = 16), triploid (2n = 3x = 24), and tetraploid (2n = 4x = 32), were found. Polyploidy was recorded for the first time for this species in Tunisia. Most of the populations were diploid (17 populations), whereas two populations were tetraploid and only one was triploid. The chromosome set of studied populations is nonuniform at the species level and within cytotypes. The 45S and 5S ribosomal genes (rDNA) were visualized by fluorescent in situ hybridization for the A. roseum polyploid complex. The diploid showed three loci 45S rDNA; the triploid and tetraploid showed 9 and 12 signals, respectively. However, 5S rDNA showed 2 signals for the diploid genome and 4 signals for both triploid and tetraploid.
    [Show full text]